inclusive-ml
ner only
d98b60a
raw
history blame
5.34 kB
import streamlit as st
from transformers import pipeline
import spacy
from spacy import displacy
import plotly.express as px
import numpy as np
st.set_page_config(page_title="NLP Prototype")
st.title("Natural Language Processing Prototype")
st.write("_This web application is intended for educational use, please do not upload any sensitive information._")
st.write("- __Named Entity Recognition:__ Identifying all geopolitical entities, organizations, people, locations, or dates in a body of text.")
option = st.selectbox('Please select from the list',('','Named Entity Recognition'))
@st.cache(allow_output_mutation=True, show_spinner=False)
def Loading_Model_1():
sum2 = pipeline("summarization",framework="pt")
return sum2
@st.cache(allow_output_mutation=True, show_spinner=False)
def Loading_Model_2():
class1 = pipeline("zero-shot-classification",framework="pt")
return class1
@st.cache(allow_output_mutation=True, show_spinner=False)
def Loading_Model_3():
sentiment = pipeline("sentiment-analysis", framework="pt")
return sentiment
@st.cache(allow_output_mutation=True, show_spinner=False)
def Loading_Model_4():
nlp = spacy.load('en_core_web_sm')
return nlp
@st.cache(allow_output_mutation=True)
def entRecognizer(entDict, typeEnt):
entList = [ent for ent in entDict if entDict[ent] == typeEnt]
return entList
def plot_result(top_topics, scores):
top_topics = np.array(top_topics)
scores = np.array(scores)
scores *= 100
fig = px.bar(x=scores, y=top_topics, orientation='h',
labels={'x': 'Probability', 'y': 'Category'},
text=scores,
range_x=(0,115),
title='Top Predictions',
color=np.linspace(0,1,len(scores)),
color_continuous_scale="Bluered")
fig.update(layout_coloraxis_showscale=False)
fig.update_traces(texttemplate='%{text:0.1f}%', textposition='outside')
st.plotly_chart(fig)
with st.spinner(text="Please wait for the models to load. This should take approximately 60 seconds."):
sum2 = Loading_Model_1()
class1 = Loading_Model_2()
sentiment = Loading_Model_3()
nlp = Loading_Model_4()
if option == 'Text Classification':
cat1 = st.text_input('Enter each possible category name (separated by a comma). Maximum 5 categories.')
text = st.text_area('Enter Text Below:', height=200)
submit = st.button('Generate')
if submit:
st.subheader("Classification Results:")
labels1 = cat1.strip().split(',')
result = class1(text, candidate_labels=labels1)
cat1name = result['labels'][0]
cat1prob = result['scores'][0]
st.write('Category: {} | Probability: {:.1f}%'.format(cat1name,(cat1prob*100)))
plot_result(result['labels'][::-1][-10:], result['scores'][::-1][-10:])
if option == 'Text Summarization':
max_lengthy = st.slider('Maximum summary length (words)', min_value=30, max_value=150, value=60, step=10)
num_beamer = st.slider('Speed vs quality of summary (1 is fastest)', min_value=1, max_value=8, value=4, step=1)
text = st.text_area('Enter Text Below (maximum 800 words):', height=300)
submit = st.button('Generate')
if submit:
st.subheader("Summary:")
with st.spinner(text="This may take a moment..."):
summWords = sum2(text, max_length=max_lengthy, min_length=15, num_beams=num_beamer, do_sample=True, early_stopping=True, repetition_penalty=1.5, length_penalty=1.5)
text2 =summWords[0]["summary_text"]
st.write(text2)
if option == 'Sentiment Analysis':
text = st.text_area('Enter Text Below:', height=200)
submit = st.button('Generate')
if submit:
st.subheader("Sentiment:")
result = sentiment(text)
sent = result[0]['label']
cert = result[0]['score']
st.write('Text Sentiment: {} | Probability: {:.1f}%'.format(sent,(cert*100)))
if option == 'Named Entity Recognition':
text = st.text_area('Enter Text Below:', height=300)
submit = st.button('Generate')
if submit:
entities = []
entityLabels = []
doc = nlp(text)
for ent in doc.ents:
entities.append(ent.text)
entityLabels.append(ent.label_)
entDict = dict(zip(entities, entityLabels))
entOrg = entRecognizer(entDict, "ORG")
entPerson = entRecognizer(entDict, "PERSON")
entDate = entRecognizer(entDict, "DATE")
entGPE = entRecognizer(entDict, "GPE")
entLoc = entRecognizer(entDict, "LOC")
options = {"ents": ["ORG", "GPE", "PERSON", "LOC", "DATE"]}
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>"""
st.subheader("List of Named Entities:")
st.write("Geopolitical Entities (GPE): " + str(entGPE))
st.write("People (PERSON): " + str(entPerson))
st.write("Organizations (ORG): " + str(entOrg))
st.write("Dates (DATE): " + str(entDate))
st.write("Locations (LOC): " + str(entLoc))
st.subheader("Original Text with Entities Highlighted")
html = displacy.render(doc, style="ent", options=options)
html = html.replace("\n", " ")
st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True)