Spaces:
Runtime error
Runtime error
| import spaces | |
| import gradio as gr | |
| from tryon_inference import run_inference | |
| import os | |
| import numpy as np | |
| from PIL import Image | |
| import tempfile | |
| import torch | |
| from diffusers import FluxTransformer2DModel, FluxFillPipeline | |
| import shutil | |
| def find_cuda(): | |
| # Check if CUDA_HOME or CUDA_PATH environment variables are set | |
| cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') | |
| if cuda_home and os.path.exists(cuda_home): | |
| return cuda_home | |
| # Search for the nvcc executable in the system's PATH | |
| nvcc_path = shutil.which('nvcc') | |
| if nvcc_path: | |
| # Remove the 'bin/nvcc' part to get the CUDA installation path | |
| cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) | |
| return cuda_path | |
| return None | |
| cuda_path = find_cuda() | |
| if cuda_path: | |
| print(f"CUDA installation found at: {cuda_path}") | |
| else: | |
| print("CUDA installation not found") | |
| device = torch.device('cuda') | |
| print("Start loading LoRA weights") | |
| state_dict, network_alphas = FluxFillPipeline.lora_state_dict( | |
| pretrained_model_name_or_path_or_dict="xiaozaa/catvton-flux-lora-alpha", ## The tryon Lora weights | |
| weight_name="pytorch_lora_weights.safetensors", | |
| return_alphas=True | |
| ) | |
| is_correct_format = all("lora" in key or "dora_scale" in key for key in state_dict.keys()) | |
| if not is_correct_format: | |
| raise ValueError("Invalid LoRA checkpoint.") | |
| print('Loading diffusion model ...') | |
| pipe = FluxFillPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-Fill-dev", | |
| torch_dtype=torch.bfloat16 | |
| ).to(device) | |
| FluxFillPipeline.load_lora_into_transformer( | |
| state_dict=state_dict, | |
| network_alphas=network_alphas, | |
| transformer=pipe.transformer, | |
| ) | |
| print('Loading Finished!') | |
| def gradio_inference( | |
| image_data, | |
| garment, | |
| num_steps=50, | |
| guidance_scale=30.0, | |
| seed=-1, | |
| width=768, | |
| height=1024 | |
| ): | |
| """Wrapper function for Gradio interface""" | |
| # Use temporary directory | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| # Save inputs to temp directory | |
| temp_image = os.path.join(tmp_dir, "image.png") | |
| temp_mask = os.path.join(tmp_dir, "mask.png") | |
| temp_garment = os.path.join(tmp_dir, "garment.png") | |
| # Extract image and mask from ImageEditor data | |
| image = image_data["background"] | |
| mask = image_data["layers"][0] # First layer contains the mask | |
| # Convert to numpy array and process mask | |
| mask_array = np.array(mask) | |
| is_black = np.all(mask_array < 10, axis=2) | |
| mask = Image.fromarray(((~is_black) * 255).astype(np.uint8)) | |
| # Save files to temp directory | |
| image.save(temp_image) | |
| mask.save(temp_mask) | |
| garment.save(temp_garment) | |
| try: | |
| # Run inference | |
| _, tryon_result = run_inference( | |
| pipe=pipe, | |
| image_path=temp_image, | |
| mask_path=temp_mask, | |
| garment_path=temp_garment, | |
| num_steps=num_steps, | |
| guidance_scale=guidance_scale, | |
| seed=seed, | |
| size=(width, height) | |
| ) | |
| return tryon_result | |
| except Exception as e: | |
| raise gr.Error(f"Error during inference: {str(e)}") | |
| with gr.Blocks() as demo: | |
| gr.Markdown(""" | |
| # CATVTON FLUX Virtual Try-On Demo (by using LoRA weights) | |
| Upload a model image, draw a mask, and a garment image to generate virtual try-on results. | |
| [](https://huggingface.co/xiaozaa/catvton-flux-alpha) | |
| [](https://github.com/nftblackmagic/catvton-flux) | |
| """) | |
| # gr.Video("example/github.mp4", label="Demo Video: How to use the tool") | |
| with gr.Column(): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_input = gr.ImageMask( | |
| label="Model Image (Click 'Edit' and draw mask over the clothing area)", | |
| type="pil", | |
| height=600, | |
| width=300 | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["./example/person/00008_00.jpg"], | |
| ["./example/person/00055_00.jpg"], | |
| ["./example/person/00057_00.jpg"], | |
| ["./example/person/00067_00.jpg"], | |
| ["./example/person/00069_00.jpg"], | |
| ], | |
| inputs=[image_input], | |
| label="Person Images", | |
| ) | |
| with gr.Column(): | |
| garment_input = gr.Image(label="Garment Image", type="pil", height=600, width=300) | |
| gr.Examples( | |
| examples=[ | |
| ["./example/garment/04564_00.jpg"], | |
| ["./example/garment/00055_00.jpg"], | |
| ["./example/garment/00396_00.jpg"], | |
| ["./example/garment/00067_00.jpg"], | |
| ["./example/garment/00069_00.jpg"], | |
| ], | |
| inputs=[garment_input], | |
| label="Garment Images", | |
| ) | |
| with gr.Column(): | |
| tryon_output = gr.Image(label="Try-On Result", height=600, width=300) | |
| with gr.Row(): | |
| num_steps = gr.Slider( | |
| minimum=1, | |
| maximum=100, | |
| value=30, | |
| step=1, | |
| label="Number of Steps" | |
| ) | |
| guidance_scale = gr.Slider( | |
| minimum=1.0, | |
| maximum=50.0, | |
| value=30.0, | |
| step=0.5, | |
| label="Guidance Scale" | |
| ) | |
| seed = gr.Slider( | |
| minimum=-1, | |
| maximum=2147483647, | |
| step=1, | |
| value=-1, | |
| label="Seed (-1 for random)" | |
| ) | |
| width = gr.Slider( | |
| minimum=256, | |
| maximum=1024, | |
| step=64, | |
| value=768, | |
| label="Width" | |
| ) | |
| height = gr.Slider( | |
| minimum=256, | |
| maximum=1024, | |
| step=64, | |
| value=1024, | |
| label="Height" | |
| ) | |
| submit_btn = gr.Button("Generate Try-On", variant="primary") | |
| with gr.Row(): | |
| gr.Markdown(""" | |
| ### Notes: | |
| - The model is trained on VITON-HD dataset. It focuses on the woman upper body try-on generation. | |
| - The mask should indicate the region where the garment will be placed. | |
| - The garment image should be on a clean background. | |
| - The model is not perfect. It may generate some artifacts. | |
| - The model is slow. Please be patient. | |
| - The model is just for research purpose. | |
| """) | |
| submit_btn.click( | |
| fn=gradio_inference, | |
| inputs=[ | |
| image_input, | |
| garment_input, | |
| num_steps, | |
| guidance_scale, | |
| seed, | |
| width, | |
| height | |
| ], | |
| outputs=[tryon_output], | |
| api_name="try-on" | |
| ) | |
| demo.launch() |