|
|
|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline |
|
|
|
base = "meta-llama/Llama-2-7b-chat-hf" |
|
adapter = "FinGPT/fingpt-mt_llama2-7b_lora" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base) |
|
model = AutoModelForCausalLM.from_pretrained(adapter, device_map="auto") |
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
def chat(user_input, history): |
|
prompt = (history + "\nUser: " + user_input) if history else ("User: " + user_input) |
|
output = pipe(prompt, max_new_tokens=256, do_sample=True)[0]["generated_text"] |
|
return output, prompt + "\nAssistant: " + output |
|
|
|
with gr.Blocks() as demo: |
|
chatbot = gr.Chatbot() |
|
txt = gr.Textbox(placeholder="Ask a finance question...") |
|
state = gr.State("") |
|
txt.submit(lambda m, h: (chatbot + [(m, chat(m, h)[0])], chat(m, h)[1]), [txt, state], [chatbot, state]) |
|
demo.launch() |
|
|