Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -1,15 +1,23 @@
|
|
1 |
|
2 |
import gradio as gr
|
3 |
-
from transformers import
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
8 |
|
9 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
10 |
|
11 |
-
|
12 |
-
response = pipe(query, max_new_tokens=300, do_sample=True)[0]["generated_text"]
|
13 |
-
return response
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("FinGPT/fingpt-mt_llama2-7b_lora", trust_remote_code=True)
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("FinGPT/fingpt-mt_llama2-7b_lora", trust_remote_code=True, device_map="auto")
|
|
|
7 |
|
8 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
9 |
|
10 |
+
chat_history = []
|
|
|
|
|
11 |
|
12 |
+
def chat(user_input, history):
|
13 |
+
prompt = (history + "\nUser: " + user_input) if history else ("User: " + user_input)
|
14 |
+
output = pipe(prompt, max_new_tokens=300, do_sample=True)[0]["generated_text"]
|
15 |
+
history = prompt + "\nAssistant: " + output
|
16 |
+
return output, history
|
17 |
+
|
18 |
+
with gr.Blocks() as demo:
|
19 |
+
chatbot = gr.Chatbot()
|
20 |
+
txt = gr.Textbox(placeholder="Ask a finance question...", show_label=False)
|
21 |
+
state = gr.State("")
|
22 |
+
txt.submit(lambda msg, hist: (chatbot + [(msg, chat(msg, hist)[0])], chat(msg, hist)[1]), [txt, state], [chatbot, state])
|
23 |
+
demo.launch()
|