Spaces:
Sleeping
Sleeping
Add initial Dockerfile, FastAPI application, and requirements
Browse files- Dockerfile +16 -0
- app.py +141 -0
- requirements.txt +8 -0
Dockerfile
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
+
# you will also find guides on how best to write your Dockerfile
|
| 3 |
+
|
| 4 |
+
FROM python:3.9
|
| 5 |
+
|
| 6 |
+
RUN useradd -m -u 1000 user
|
| 7 |
+
USER user
|
| 8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 9 |
+
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
|
| 12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 14 |
+
|
| 15 |
+
COPY --chown=user . /app
|
| 16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, Form, HTTPException
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from fastapi.responses import JSONResponse
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
from sklearn.naive_bayes import CategoricalNB
|
| 7 |
+
from sklearn.preprocessing import LabelEncoder
|
| 8 |
+
from sklearn.model_selection import train_test_split
|
| 9 |
+
from sklearn.metrics import confusion_matrix
|
| 10 |
+
import json
|
| 11 |
+
import io
|
| 12 |
+
from typing import Dict, List, Optional
|
| 13 |
+
from pydantic import BaseModel
|
| 14 |
+
|
| 15 |
+
app = FastAPI()
|
| 16 |
+
|
| 17 |
+
app.add_middleware(
|
| 18 |
+
CORSMiddleware,
|
| 19 |
+
allow_origins=["*"],
|
| 20 |
+
allow_credentials=True,
|
| 21 |
+
allow_methods=["*"],
|
| 22 |
+
allow_headers=["*"],
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
model = None
|
| 26 |
+
feature_encoders: Dict[str, LabelEncoder] = {}
|
| 27 |
+
target_encoder: Optional[LabelEncoder] = None
|
| 28 |
+
|
| 29 |
+
class TrainOptions(BaseModel):
|
| 30 |
+
target_column: str
|
| 31 |
+
feature_columns: List[str]
|
| 32 |
+
|
| 33 |
+
class PredictionFeatures(BaseModel):
|
| 34 |
+
features: Dict[str, str]
|
| 35 |
+
|
| 36 |
+
@app.get("/api/health")
|
| 37 |
+
async def health_check():
|
| 38 |
+
return {"status": "healthy"}
|
| 39 |
+
|
| 40 |
+
@app.post("/api/upload")
|
| 41 |
+
async def upload_csv(file: UploadFile):
|
| 42 |
+
if not file.filename.endswith('.csv'):
|
| 43 |
+
raise HTTPException(status_code=400, detail="Only CSV files are allowed")
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
contents = await file.read()
|
| 47 |
+
df = pd.read_csv(io.StringIO(contents.decode()))
|
| 48 |
+
|
| 49 |
+
columns = df.columns.tolist()
|
| 50 |
+
column_types = {col: str(df[col].dtype) for col in columns}
|
| 51 |
+
|
| 52 |
+
unique_values = {col: df[col].unique().tolist() for col in columns}
|
| 53 |
+
|
| 54 |
+
for col, values in unique_values.items():
|
| 55 |
+
unique_values[col] = [v.item() if isinstance(v, np.generic) else v for v in values]
|
| 56 |
+
|
| 57 |
+
return {
|
| 58 |
+
"message": "File uploaded successfully",
|
| 59 |
+
"columns": columns,
|
| 60 |
+
"column_types": column_types,
|
| 61 |
+
"unique_values": unique_values,
|
| 62 |
+
"row_count": len(df)
|
| 63 |
+
}
|
| 64 |
+
except Exception as e:
|
| 65 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 66 |
+
|
| 67 |
+
@app.post("/api/train")
|
| 68 |
+
async def train_model(file: UploadFile, options: str = Form(...)):
|
| 69 |
+
global model, feature_encoders, target_encoder
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
train_options = json.loads(options)
|
| 73 |
+
target_column = train_options["target_column"]
|
| 74 |
+
feature_columns = train_options["feature_columns"]
|
| 75 |
+
|
| 76 |
+
contents = await file.read()
|
| 77 |
+
df = pd.read_csv(io.StringIO(contents.decode()))
|
| 78 |
+
|
| 79 |
+
X = pd.DataFrame()
|
| 80 |
+
feature_encoders = {}
|
| 81 |
+
for column in feature_columns:
|
| 82 |
+
encoder = LabelEncoder()
|
| 83 |
+
X[column] = encoder.fit_transform(df[column])
|
| 84 |
+
feature_encoders[column] = encoder
|
| 85 |
+
|
| 86 |
+
target_encoder = LabelEncoder()
|
| 87 |
+
y = target_encoder.fit_transform(df[target_column])
|
| 88 |
+
|
| 89 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 90 |
+
X, y, test_size=0.2, random_state=42
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
model = CategoricalNB()
|
| 94 |
+
model.fit(X_train, y_train)
|
| 95 |
+
|
| 96 |
+
accuracy = float(model.score(X_test, y_test))
|
| 97 |
+
|
| 98 |
+
return {
|
| 99 |
+
"message": "Model trained successfully",
|
| 100 |
+
"accuracy": accuracy,
|
| 101 |
+
"target_classes": target_encoder.classes_.tolist()
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
except Exception as e:
|
| 105 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 106 |
+
|
| 107 |
+
@app.post("/api/predict")
|
| 108 |
+
async def predict(features: PredictionFeatures):
|
| 109 |
+
global model, feature_encoders, target_encoder
|
| 110 |
+
|
| 111 |
+
if model is None:
|
| 112 |
+
raise HTTPException(status_code=400, detail="Model not trained yet")
|
| 113 |
+
|
| 114 |
+
try:
|
| 115 |
+
encoded_features = {}
|
| 116 |
+
for column, value in features.features.items():
|
| 117 |
+
if column in feature_encoders:
|
| 118 |
+
encoded_features[column] = feature_encoders[column].transform([value])[0]
|
| 119 |
+
|
| 120 |
+
X = pd.DataFrame([encoded_features])
|
| 121 |
+
|
| 122 |
+
prediction = model.predict(X)
|
| 123 |
+
prediction_proba = model.predict_proba(X)
|
| 124 |
+
|
| 125 |
+
predicted_class = target_encoder.inverse_transform(prediction)[0]
|
| 126 |
+
|
| 127 |
+
class_probabilities = {
|
| 128 |
+
target_encoder.inverse_transform([i])[0]: float(prob)
|
| 129 |
+
for i, prob in enumerate(prediction_proba[0])
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
return {
|
| 133 |
+
"prediction": predicted_class,
|
| 134 |
+
"probabilities": class_probabilities
|
| 135 |
+
}
|
| 136 |
+
except Exception as e:
|
| 137 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 138 |
+
|
| 139 |
+
if __name__ == "__main__":
|
| 140 |
+
import uvicorn
|
| 141 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
python-multipart
|
| 4 |
+
pandas
|
| 5 |
+
scikit-learn
|
| 6 |
+
numpy
|
| 7 |
+
matplotlib
|
| 8 |
+
gunicorn
|