Update app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,105 @@
|
|
| 1 |
-
|
| 2 |
-
from fastapi.responses import HTMLResponse, JSONResponse
|
| 3 |
-
from fastapi.staticfiles import StaticFiles
|
| 4 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 5 |
-
import uvicorn
|
| 6 |
from transformers import pipeline
|
| 7 |
from PIL import Image, ImageDraw
|
| 8 |
-
import io
|
| 9 |
-
import base64
|
| 10 |
import numpy as np
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
CORSMiddleware,
|
| 17 |
-
allow_origins=["*"],
|
| 18 |
-
allow_credentials=True,
|
| 19 |
-
allow_methods=["*"],
|
| 20 |
-
allow_headers=["*"],
|
| 21 |
)
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def load_models():
|
| 25 |
return {
|
| 26 |
"KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
|
|
@@ -29,8 +108,6 @@ def load_models():
|
|
| 29 |
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
| 30 |
}
|
| 31 |
|
| 32 |
-
models = load_models()
|
| 33 |
-
|
| 34 |
def translate_label(label):
|
| 35 |
translations = {
|
| 36 |
"fracture": "Knochenbruch",
|
|
@@ -49,17 +126,21 @@ def create_heatmap_overlay(image, box, score):
|
|
| 49 |
x1, y1 = box['xmin'], box['ymin']
|
| 50 |
x2, y2 = box['xmax'], box['ymax']
|
| 51 |
|
|
|
|
| 52 |
if score > 0.8:
|
| 53 |
-
fill_color = (255, 0, 0, 100)
|
| 54 |
border_color = (255, 0, 0, 255)
|
| 55 |
elif score > 0.6:
|
| 56 |
-
fill_color = (255, 165, 0, 100)
|
| 57 |
border_color = (255, 165, 0, 255)
|
| 58 |
else:
|
| 59 |
-
fill_color = (255, 255, 0, 100)
|
| 60 |
border_color = (255, 255, 0, 255)
|
| 61 |
|
|
|
|
| 62 |
draw.rectangle([x1, y1, x2, y2], fill=fill_color)
|
|
|
|
|
|
|
| 63 |
draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
|
| 64 |
|
| 65 |
return overlay
|
|
@@ -71,16 +152,20 @@ def draw_boxes(image, predictions):
|
|
| 71 |
box = pred['box']
|
| 72 |
score = pred['score']
|
| 73 |
|
|
|
|
| 74 |
overlay = create_heatmap_overlay(image, box, score)
|
| 75 |
result_image = Image.alpha_composite(result_image, overlay)
|
| 76 |
|
|
|
|
| 77 |
draw = ImageDraw.Draw(result_image)
|
| 78 |
temp = 36.5 + (score * 2.5)
|
| 79 |
label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)"
|
| 80 |
|
|
|
|
| 81 |
text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
|
| 82 |
draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
|
| 83 |
|
|
|
|
| 84 |
draw.text(
|
| 85 |
(box['xmin'], box['ymin']-20),
|
| 86 |
label,
|
|
@@ -89,200 +174,101 @@ def draw_boxes(image, predictions):
|
|
| 89 |
|
| 90 |
return result_image
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
margin: 0 auto;
|
| 110 |
-
background: white;
|
| 111 |
-
padding: 20px;
|
| 112 |
-
border-radius: 10px;
|
| 113 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 114 |
-
}
|
| 115 |
-
.result-box {
|
| 116 |
-
background: #f8f9fa;
|
| 117 |
-
padding: 15px;
|
| 118 |
-
border-radius: 8px;
|
| 119 |
-
margin: 10px 0;
|
| 120 |
-
border: 1px solid #e9ecef;
|
| 121 |
-
}
|
| 122 |
-
.button {
|
| 123 |
-
background: #f8f9fa;
|
| 124 |
-
border: 1px solid #e9ecef;
|
| 125 |
-
padding: 10px 20px;
|
| 126 |
-
border-radius: 5px;
|
| 127 |
-
cursor: pointer;
|
| 128 |
-
transition: all 0.3s ease;
|
| 129 |
-
}
|
| 130 |
-
.button:hover {
|
| 131 |
-
background: #e9ecef;
|
| 132 |
-
transform: translateY(-1px);
|
| 133 |
-
}
|
| 134 |
-
.row {
|
| 135 |
-
display: flex;
|
| 136 |
-
margin: 20px -10px;
|
| 137 |
-
}
|
| 138 |
-
.col {
|
| 139 |
-
flex: 1;
|
| 140 |
-
padding: 0 10px;
|
| 141 |
-
}
|
| 142 |
-
img {
|
| 143 |
-
max-width: 100%;
|
| 144 |
-
border-radius: 8px;
|
| 145 |
-
}
|
| 146 |
-
.loading {
|
| 147 |
-
display: none;
|
| 148 |
-
text-align: center;
|
| 149 |
-
padding: 20px;
|
| 150 |
-
}
|
| 151 |
-
</style>
|
| 152 |
-
</head>
|
| 153 |
-
<body>
|
| 154 |
-
<div class="container">
|
| 155 |
-
<h1>📤 Fraktur Detektion</h1>
|
| 156 |
-
|
| 157 |
-
<form id="uploadForm">
|
| 158 |
-
<input type="file" id="image" name="image" accept="image/*">
|
| 159 |
-
<input type="range" id="threshold" min="0" max="1" step="0.05" value="0.6">
|
| 160 |
-
<label for="threshold">Konfidenzschwelle: <span id="thresholdValue">0.60</span></label>
|
| 161 |
-
<button type="submit" class="button">Analysieren</button>
|
| 162 |
-
</form>
|
| 163 |
-
|
| 164 |
-
<div class="loading" id="loading">
|
| 165 |
-
Bild wird analysiert...
|
| 166 |
-
</div>
|
| 167 |
-
|
| 168 |
-
<div class="row">
|
| 169 |
-
<div class="col" id="results"></div>
|
| 170 |
-
<div class="col" id="imageResult"></div>
|
| 171 |
-
</div>
|
| 172 |
-
</div>
|
| 173 |
-
|
| 174 |
-
<script>
|
| 175 |
-
document.getElementById('threshold').addEventListener('input', function(e) {
|
| 176 |
-
document.getElementById('thresholdValue').textContent =
|
| 177 |
-
parseFloat(e.target.value).toFixed(2);
|
| 178 |
-
});
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
document.getElementById('imageResult').innerHTML = '';
|
| 190 |
-
|
| 191 |
-
try {
|
| 192 |
-
const response = await fetch('/analyze', {
|
| 193 |
-
method: 'POST',
|
| 194 |
-
body: formData
|
| 195 |
-
});
|
| 196 |
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
for pred in predictions_watcher:
|
| 233 |
-
confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
|
| 234 |
-
if pred['score'] >= threshold and 'fracture' in pred['label'].lower():
|
| 235 |
-
has_fracture = True
|
| 236 |
-
max_fracture_score = max(max_fracture_score, pred['score'])
|
| 237 |
-
results_html += f"""
|
| 238 |
-
<div class="result-box">
|
| 239 |
-
<span style="color: {confidence_color}; font-weight: 500;">
|
| 240 |
-
{pred['score']:.1%}
|
| 241 |
-
</span> - {translate_label(pred['label'])}
|
| 242 |
-
</div>
|
| 243 |
-
"""
|
| 244 |
-
|
| 245 |
-
# RöntgenMeister results
|
| 246 |
-
results_html += "<h3>🎓 RöntgenMeister</h3>"
|
| 247 |
-
for pred in predictions_master:
|
| 248 |
-
confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
|
| 249 |
-
results_html += f"""
|
| 250 |
-
<div class="result-box">
|
| 251 |
-
<span style="color: {confidence_color}; font-weight: 500;">
|
| 252 |
-
{pred['score']:.1%}
|
| 253 |
-
</span> - {translate_label(pred['label'])}
|
| 254 |
-
</div>
|
| 255 |
-
"""
|
| 256 |
-
|
| 257 |
-
# Probabilité si fracture détectée
|
| 258 |
-
if max_fracture_score > 0:
|
| 259 |
-
no_fracture_prob = 1 - max_fracture_score
|
| 260 |
-
results_html += f"""
|
| 261 |
-
<h3>📊 Wahrscheinlichkeit</h3>
|
| 262 |
-
<div class="result-box">
|
| 263 |
-
Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
|
| 264 |
-
Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
|
| 265 |
-
</div>
|
| 266 |
-
"""
|
| 267 |
-
|
| 268 |
-
# Traitement de l'image
|
| 269 |
-
predictions = models["KnochenAuge"](image)
|
| 270 |
-
filtered_preds = [p for p in predictions if p['score'] >= threshold]
|
| 271 |
-
|
| 272 |
-
if filtered_preds:
|
| 273 |
-
result_image = draw_boxes(image, filtered_preds)
|
| 274 |
-
else:
|
| 275 |
-
result_image = image
|
| 276 |
-
|
| 277 |
-
# Conversion de l'image en base64
|
| 278 |
-
buffered = io.BytesIO()
|
| 279 |
-
result_image.save(buffered, format="JPEG")
|
| 280 |
-
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 281 |
-
|
| 282 |
-
return JSONResponse({
|
| 283 |
-
"results": results_html,
|
| 284 |
-
"image": img_str
|
| 285 |
-
})
|
| 286 |
|
| 287 |
if __name__ == "__main__":
|
| 288 |
-
|
|
|
|
| 1 |
+
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
from PIL import Image, ImageDraw
|
|
|
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
+
import colorsys
|
| 6 |
|
| 7 |
+
st.set_page_config(
|
| 8 |
+
page_title="Fraktur Detektion",
|
| 9 |
+
layout="wide",
|
| 10 |
+
initial_sidebar_state="collapsed"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
)
|
| 12 |
|
| 13 |
+
st.markdown("""
|
| 14 |
+
<style>
|
| 15 |
+
.stApp {
|
| 16 |
+
background: #f0f2f5 !important;
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
.block-container {
|
| 20 |
+
padding-top: 0 !important;
|
| 21 |
+
padding-bottom: 0 !important;
|
| 22 |
+
max-width: 1400px !important;
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
.upload-container {
|
| 26 |
+
background: white;
|
| 27 |
+
padding: 1.5rem;
|
| 28 |
+
border-radius: 10px;
|
| 29 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 30 |
+
margin-bottom: 1rem;
|
| 31 |
+
text-align: center;
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
.results-container {
|
| 35 |
+
background: white;
|
| 36 |
+
padding: 1.5rem;
|
| 37 |
+
border-radius: 10px;
|
| 38 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
.result-box {
|
| 42 |
+
background: #f8f9fa;
|
| 43 |
+
padding: 0.75rem;
|
| 44 |
+
border-radius: 8px;
|
| 45 |
+
margin: 0.5rem 0;
|
| 46 |
+
border: 1px solid #e9ecef;
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
h1, h2, h3, h4, p {
|
| 50 |
+
color: #1a1a1a !important;
|
| 51 |
+
margin: 0.5rem 0 !important;
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
.stImage {
|
| 55 |
+
background: white;
|
| 56 |
+
padding: 0.5rem;
|
| 57 |
+
border-radius: 8px;
|
| 58 |
+
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
.stImage > img {
|
| 62 |
+
max-height: 300px !important;
|
| 63 |
+
width: auto !important;
|
| 64 |
+
margin: 0 auto !important;
|
| 65 |
+
display: block !important;
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
[data-testid="stFileUploader"] {
|
| 69 |
+
width: 100% !important;
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
.stFileUploaderFileName {
|
| 73 |
+
color: #1a1a1a !important;
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
.stButton > button {
|
| 77 |
+
width: 200px;
|
| 78 |
+
background-color: #f8f9fa !important;
|
| 79 |
+
color: #1a1a1a !important;
|
| 80 |
+
border: 1px solid #e9ecef !important;
|
| 81 |
+
padding: 0.5rem 1rem !important;
|
| 82 |
+
border-radius: 5px !important;
|
| 83 |
+
transition: all 0.3s ease !important;
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
.stButton > button:hover {
|
| 87 |
+
background-color: #e9ecef !important;
|
| 88 |
+
transform: translateY(-1px);
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
#MainMenu, footer, header, [data-testid="stToolbar"] {
|
| 92 |
+
display: none !important;
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
/* Hide deprecation warning */
|
| 96 |
+
[data-testid="stExpander"], .element-container:has(>.stAlert) {
|
| 97 |
+
display: none !important;
|
| 98 |
+
}
|
| 99 |
+
</style>
|
| 100 |
+
""", unsafe_allow_html=True)
|
| 101 |
+
|
| 102 |
+
@st.cache_resource
|
| 103 |
def load_models():
|
| 104 |
return {
|
| 105 |
"KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
|
|
|
|
| 108 |
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
|
| 109 |
}
|
| 110 |
|
|
|
|
|
|
|
| 111 |
def translate_label(label):
|
| 112 |
translations = {
|
| 113 |
"fracture": "Knochenbruch",
|
|
|
|
| 126 |
x1, y1 = box['xmin'], box['ymin']
|
| 127 |
x2, y2 = box['xmax'], box['ymax']
|
| 128 |
|
| 129 |
+
# Couleur basée sur le score
|
| 130 |
if score > 0.8:
|
| 131 |
+
fill_color = (255, 0, 0, 100) # Rouge
|
| 132 |
border_color = (255, 0, 0, 255)
|
| 133 |
elif score > 0.6:
|
| 134 |
+
fill_color = (255, 165, 0, 100) # Orange
|
| 135 |
border_color = (255, 165, 0, 255)
|
| 136 |
else:
|
| 137 |
+
fill_color = (255, 255, 0, 100) # Jaune
|
| 138 |
border_color = (255, 255, 0, 255)
|
| 139 |
|
| 140 |
+
# Rectangle semi-transparent
|
| 141 |
draw.rectangle([x1, y1, x2, y2], fill=fill_color)
|
| 142 |
+
|
| 143 |
+
# Bordure
|
| 144 |
draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
|
| 145 |
|
| 146 |
return overlay
|
|
|
|
| 152 |
box = pred['box']
|
| 153 |
score = pred['score']
|
| 154 |
|
| 155 |
+
# Création de l'overlay
|
| 156 |
overlay = create_heatmap_overlay(image, box, score)
|
| 157 |
result_image = Image.alpha_composite(result_image, overlay)
|
| 158 |
|
| 159 |
+
# Ajout du texte
|
| 160 |
draw = ImageDraw.Draw(result_image)
|
| 161 |
temp = 36.5 + (score * 2.5)
|
| 162 |
label = f"{translate_label(pred['label'])} ({score:.1%} • {temp:.1f}°C)"
|
| 163 |
|
| 164 |
+
# Fond noir pour le texte
|
| 165 |
text_bbox = draw.textbbox((box['xmin'], box['ymin']-20), label)
|
| 166 |
draw.rectangle(text_bbox, fill=(0, 0, 0, 180))
|
| 167 |
|
| 168 |
+
# Texte en blanc
|
| 169 |
draw.text(
|
| 170 |
(box['xmin'], box['ymin']-20),
|
| 171 |
label,
|
|
|
|
| 174 |
|
| 175 |
return result_image
|
| 176 |
|
| 177 |
+
def main():
|
| 178 |
+
models = load_models()
|
| 179 |
+
|
| 180 |
+
with st.container():
|
| 181 |
+
st.write("### 📤 Röntgenbild hochladen")
|
| 182 |
+
uploaded_file = st.file_uploader("Bild auswählen", type=['png', 'jpg', 'jpeg'], label_visibility="collapsed")
|
| 183 |
+
|
| 184 |
+
col1, col2 = st.columns([2, 1])
|
| 185 |
+
with col1:
|
| 186 |
+
conf_threshold = st.slider(
|
| 187 |
+
"Konfidenzschwelle",
|
| 188 |
+
min_value=0.0, max_value=1.0,
|
| 189 |
+
value=0.60, step=0.05,
|
| 190 |
+
label_visibility="visible"
|
| 191 |
+
)
|
| 192 |
+
with col2:
|
| 193 |
+
analyze_button = st.button("Analysieren")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
+
if uploaded_file and analyze_button:
|
| 196 |
+
with st.spinner("Bild wird analysiert..."):
|
| 197 |
+
image = Image.open(uploaded_file)
|
| 198 |
+
results_container = st.container()
|
| 199 |
+
|
| 200 |
+
predictions_watcher = models["KnochenWächter"](image)
|
| 201 |
+
predictions_master = models["RöntgenMeister"](image)
|
| 202 |
+
predictions_locator = models["KnochenAuge"](image)
|
| 203 |
+
|
| 204 |
+
has_fracture = False
|
| 205 |
+
max_fracture_score = 0
|
| 206 |
+
filtered_locations = [p for p in predictions_locator
|
| 207 |
+
if p['score'] >= conf_threshold]
|
| 208 |
+
|
| 209 |
+
for pred in predictions_watcher:
|
| 210 |
+
if pred['score'] >= conf_threshold and 'fracture' in pred['label'].lower():
|
| 211 |
+
has_fracture = True
|
| 212 |
+
max_fracture_score = max(max_fracture_score, pred['score'])
|
| 213 |
+
|
| 214 |
+
with results_container:
|
| 215 |
+
st.write("### 🔍 Analyse Ergebnisse")
|
| 216 |
+
col1, col2 = st.columns(2)
|
| 217 |
|
| 218 |
+
with col1:
|
| 219 |
+
st.write("#### 🤖 KI-Diagnose")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
+
st.markdown("#### 🛡️ KnochenWächter")
|
| 222 |
+
# Afficher tous les résultats de KnochenWächter
|
| 223 |
+
for pred in predictions_watcher:
|
| 224 |
+
confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
|
| 225 |
+
label_lower = pred['label'].lower()
|
| 226 |
+
# Mettre à jour max_fracture_score seulement pour les fractures
|
| 227 |
+
if pred['score'] >= conf_threshold and 'fracture' in label_lower:
|
| 228 |
+
has_fracture = True
|
| 229 |
+
max_fracture_score = max(max_fracture_score, pred['score'])
|
| 230 |
+
# Afficher tous les résultats
|
| 231 |
+
st.markdown(f"""
|
| 232 |
+
<div class="result-box" style="color: #1a1a1a;">
|
| 233 |
+
<span style="color: {confidence_color}; font-weight: 500;">
|
| 234 |
+
{pred['score']:.1%}
|
| 235 |
+
</span> - {translate_label(pred['label'])}
|
| 236 |
+
</div>
|
| 237 |
+
""", unsafe_allow_html=True)
|
| 238 |
|
| 239 |
+
st.markdown("#### 🎓 RöntgenMeister")
|
| 240 |
+
# Afficher tous les résultats de RöntgenMeister
|
| 241 |
+
for pred in predictions_master:
|
| 242 |
+
confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
|
| 243 |
+
st.markdown(f"""
|
| 244 |
+
<div class="result-box" style="color: #1a1a1a;">
|
| 245 |
+
<span style="color: {confidence_color}; font-weight: 500;">
|
| 246 |
+
{pred['score']:.1%}
|
| 247 |
+
</span> - {translate_label(pred['label'])}
|
| 248 |
+
</div>
|
| 249 |
+
""", unsafe_allow_html=True)
|
| 250 |
+
|
| 251 |
+
if max_fracture_score > 0:
|
| 252 |
+
st.write("#### 📊 Wahrscheinlichkeit")
|
| 253 |
+
no_fracture_prob = 1 - max_fracture_score
|
| 254 |
+
st.markdown(f"""
|
| 255 |
+
<div class="result-box" style="color: #1a1a1a;">
|
| 256 |
+
Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
|
| 257 |
+
Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
|
| 258 |
+
</div>
|
| 259 |
+
""", unsafe_allow_html=True)
|
| 260 |
+
|
| 261 |
+
with col2:
|
| 262 |
+
predictions = models["KnochenAuge"](image)
|
| 263 |
+
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
|
| 264 |
+
|
| 265 |
+
if filtered_preds:
|
| 266 |
+
st.write("#### 🎯 Fraktur Lokalisation")
|
| 267 |
+
result_image = draw_boxes(image, filtered_preds)
|
| 268 |
+
st.image(result_image, use_container_width=True)
|
| 269 |
+
else:
|
| 270 |
+
st.write("#### 🖼️ Röntgenbild")
|
| 271 |
+
st.image(image, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
if __name__ == "__main__":
|
| 274 |
+
main()
|