File size: 5,634 Bytes
375209b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import gradio as gr
import requests
import base64
import os
import re
import csv
from datetime import datetime
from pathlib import Path
# API Key and model lists
API_KEY = "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"
VISION_MODELS = [
"meta-llama/llama-4-maverick:free",
"google/gemini-pro-vision:free",
"openai/gpt-4-vision-preview"
"google/gemini-2.0-flash-exp:free"
]
TEXT_MODELS = [
"mistralai/devstral-small:free",
"openchat/openchat-3.5-1210:free",
"nousresearch/nous-capybara-7b:free"
"deepseek/deepseek-r1-0528:free"
"deepseek/deepseek-chat-v3-0324:free"
]
# Ensure ./data and ./data/saved_images exist
BASE_DATA_FOLDER = Path("data")
BASE_DATA_FOLDER.mkdir(exist_ok=True)
IMAGE_SAVE_FOLDER = BASE_DATA_FOLDER / "saved_images"
IMAGE_SAVE_FOLDER.mkdir(exist_ok=True)
LOG_FILE = BASE_DATA_FOLDER / "chat_logs.csv"
# Memory to store conversation context
chat_history = []
# Text cleaning function
def clean_text(text):
text = re.sub(r"\\[a-zA-Z]+\{.*?\}", "", text)
text = re.sub(r"\\[a-zA-Z]+", "", text)
text = re.sub(r"\$+", "", text)
text = re.sub(r"[\{\}\[\]\(\)]", "", text)
return text.strip()
# Function to query a model
def try_model(image_b64, question, model_name, is_vision=False):
headers = {
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
}
messages = chat_history.copy() # maintain context
content = [{"type": "text", "text": question}]
if is_vision:
content.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_b64}"}
})
messages.append({"role": "user", "content": content})
payload = {
"model": model_name,
"messages": messages
}
response = requests.post("https://openrouter.ai/api/v1/chat/completions", json=payload, headers=headers)
try:
data = response.json()
if "error" in data:
raise Exception(data["error"].get("message", "Unknown error"))
return data["choices"][0]["message"]["content"]
except Exception:
return None
# Main chatbot function
def ask_bot(image, question):
image_path = ""
image_b64 = None
if image:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
image_path = str(IMAGE_SAVE_FOLDER / f"img_{timestamp}.jpg")
image.save(image_path)
with open(image_path, "rb") as f:
image_b64 = base64.b64encode(f.read()).decode("utf-8")
models = VISION_MODELS if image_b64 else TEXT_MODELS
answer = None
for model in models:
result = try_model(image_b64, question, model, is_vision=bool(image_b64))
if result:
answer = result
break
if not answer:
answer = "β All free models have exceeded their daily limit or failed."
clean_answer = clean_text(answer)
# Store in memory for follow-ups
chat_history.append({"role": "assistant", "content": clean_answer})
with open(LOG_FILE, "a", newline="", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow([
datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
question,
clean_answer,
image_path
])
return clean_answer
logo_path = r"681487a8a36e5_download.jpg"
def encode_image_to_base64(image_path):
if not os.path.exists(image_path):
return None
with open(image_path, "rb") as img_file:
encoded = base64.b64encode(img_file.read()).decode("utf-8")
return f"data:image/jpeg;base64,{encoded}"
encoded_logo = encode_image_to_base64(logo_path)
# Encode the logo image to base64
def encode_image_to_base64(image_path):
if not os.path.exists(image_path):
return None
with open(image_path, "rb") as img_file:
encoded = base64.b64encode(img_file.read()).decode("utf-8")
return f"data:image/jpeg;base64,{encoded}"
logo_path = "681487a8a36e5_download.jpg"
encoded_logo = encode_image_to_base64(logo_path)
# Gradio UI with welcome message
with gr.Blocks(css="footer {display: none !important;}") as demo:
with gr.Row(elem_id="header-row"):
gr.HTML(f"""
<div style="
display: flex;
align-items: center;
gap: 15px;
padding: 15px 20px;
background-color: #f5f5f5;
border-radius: 12px;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
width: 100%;
">
<img src="{encoded_logo}" style="height: 50px; width: 50px; border-radius: 8px;">
<h1 style="
font-family: 'Segoe UI', sans-serif;
font-size: 28px;
margin: 0;
color: #333;
">Camb AI</h1>
</div>
""")
with gr.Row():
image_input = gr.Image(type="pil", label="πΈ Upload an Image (optional)")
question_input = gr.Textbox(label="π Ask something", placeholder="What would you like to know?")
submit_btn = gr.Button(" Submit")
output_box = gr.Textbox(label="π‘ Answer", lines=4)
submit_btn.click(fn=ask_bot, inputs=[image_input, question_input], outputs=output_box)
demo.load(lambda: " Hi! I'm Camb AI. Ask me anything!", outputs=output_box)
# Launch the app
if __name__ == "__main__":
demo.launch() |