Spaces:
Sleeping
Sleeping
File size: 15,460 Bytes
331a316 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import gradio as gr
import requests
import json
import os
import re
from typing import List, Dict, Optional
# Initialize OpenAI client if available
openai_client = None
if os.environ.get("OPENAI_API_KEY"):
try:
from openai import OpenAI
openai_client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
except ImportError:
print("OpenAI library not installed. Install with: pip install openai")
openai_client = None
class GradioOutreachAgent:
def __init__(self):
self.github_token = os.environ.get("GITHUB_TOKEN")
def extract_pr_info(self, pr_data: Dict) -> Dict:
"""Extract key info from PR"""
return {
"title": pr_data["title"],
"description": pr_data.get("body", "") or "",
"author": pr_data["user"]["login"],
"author_name": pr_data["user"].get("name") or pr_data["user"]["login"],
"html_url": pr_data["html_url"],
"number": pr_data["number"],
"labels": [label["name"] for label in pr_data.get("labels", [])],
"merged_at": pr_data.get("merged_at"),
"files_changed": self.get_pr_files(pr_data.get("url", "")),
"repo_name": pr_data.get("base", {}).get("repo", {}).get("name", "gradio"),
"diff_url": pr_data.get("diff_url", ""),
"patch_url": pr_data.get("patch_url", ""),
"commits": pr_data.get("commits", 0),
"additions": pr_data.get("additions", 0),
"deletions": pr_data.get("deletions", 0),
"changed_files": pr_data.get("changed_files", 0)
}
def get_pr_files(self, pr_url: str) -> List[Dict]:
"""Get files changed in PR"""
if not pr_url or not self.github_token:
return []
files_url = f"{pr_url}/files"
headers = {"Authorization": f"token {self.github_token}"}
try:
response = requests.get(files_url, headers=headers)
if response.status_code == 200:
return response.json()
except Exception as e:
print(f"Error fetching PR files: {e}")
return []
def get_pr_diff(self, pr_info: Dict) -> str:
"""Get PR diff content"""
if not pr_info.get("diff_url") or not self.github_token:
return ""
headers = {"Authorization": f"token {self.github_token}"}
try:
response = requests.get(pr_info["diff_url"], headers=headers)
if response.status_code == 200:
# Limit diff size to avoid token limits
diff_content = response.text
if len(diff_content) > 8000: # Limit to ~8k characters
diff_content = diff_content[:8000] + "\n... (truncated)"
return diff_content
except Exception as e:
print(f"Error fetching PR diff: {e}")
return ""
def extract_images_from_pr(self, pr_info: Dict) -> List[str]:
"""Extract image URLs from PR description and files"""
images = []
# Extract from PR description with multiple patterns
description = pr_info["description"]
# Pattern 1: Standard markdown images 
img_pattern1 = r'!\[.*?\]\((.*?)\)'
img_matches1 = re.findall(img_pattern1, description)
# Pattern 2: HTML img tags
img_pattern2 = r'<img[^>]+src=["\']([^"\']+)["\']'
img_matches2 = re.findall(img_pattern2, description)
# Pattern 3: Direct image URLs
img_pattern3 = r'https?://[^\s]+\.(?:png|jpg|jpeg|gif|webp|svg)'
img_matches3 = re.findall(img_pattern3, description, re.IGNORECASE)
# Combine all matches
all_matches = img_matches1 + img_matches2 + img_matches3
for img_url in all_matches:
if img_url.startswith("http"):
images.append(img_url)
# Extract from changed files
for file in pr_info.get("files_changed", []):
filename = file["filename"]
if any(filename.lower().endswith(ext) for ext in ['.png', '.jpg', '.jpeg', '.gif', '.webp', '.svg']):
if file["status"] in ["added", "modified"]:
# Try to construct the raw URL for the image
raw_url = file.get("raw_url")
if raw_url:
images.append(raw_url)
# Remove duplicates while preserving order
unique_images = []
for img in images:
if img not in unique_images:
unique_images.append(img)
return unique_images
def generate_tweet_from_pr_analysis(self, pr_info: Dict) -> str:
"""Generate tweet by analyzing the entire PR content"""
if not openai_client:
return self.generate_fallback_tweet(pr_info)
# Get PR diff for better understanding
diff_content = self.get_pr_diff(pr_info)
# Prepare comprehensive PR context
files_summary = self.summarize_files_changed(pr_info.get("files_changed", []))
prompt = f"""Analyze this GitHub PR and create a viral tweet explaining what was accomplished:
PR DETAILS:
Title: {pr_info['title']}
Description: {pr_info['description']}
Author: {pr_info['author_name']}
Files Changed: {pr_info['changed_files']} files
Lines Added: {pr_info['additions']}
Lines Deleted: {pr_info['deletions']}
Commits: {pr_info['commits']}
Labels: {', '.join(pr_info['labels'])}
Changed Files Summary: {files_summary}
TECHNICAL CHANGES:
{diff_content}
INSTRUCTIONS:
1. First understand what this PR actually does - what problem it solves or what feature it adds
2. Focus on the USER BENEFIT - what can developers/users now do that they couldn't before?
3. Create a viral tweet that explains the work done in simple, exciting terms
4. Don't mention the author name
5. Use emojis and engaging language
6. Keep it under 280 characters
7. Make it sound like a breakthrough or useful improvement
Examples of good explanations:
- "π₯ Gradio now supports [specific feature] - making [task] 10x easier for developers!"
- "β¨ New: [feature] in Gradio! No more [old pain point] - just [new simple way]"
- "π Game changer: Gradio can now [capability] - this opens up [new possibilities]"
Return only the tweet text, no additional formatting, and no hashtag."""
try:
response = openai_client.chat.completions.create(
model="gpt-4.1-mini",
messages=[
{"role": "system", "content": "You are a technical social media expert who analyzes code changes and explains them in engaging, accessible terms. Focus on practical benefits and make complex technical work sound exciting and useful."},
{"role": "user", "content": prompt}
],
max_tokens=200,
temperature=0.7
)
return response.choices[0].message.content.strip()
except Exception as e:
print(f"OpenAI error: {e}")
return self.generate_fallback_tweet(pr_info)
def generate_fallback_tweet(self, pr_info: Dict) -> str:
"""Generate fallback tweet when OpenAI is not available"""
title = pr_info['title'].lower()
pr_title = pr_info['title']
# Extract key features/benefits from title
if 'api' in title and 'description' in title:
return f"π₯ Gradio now auto-generates API documentation! No more manual docs - just add one parameter and get beautiful API descriptions instantly β¨ #gradio #ai #developer"
elif 'add' in title and 'parameter' in title:
return f"β¨ New Gradio parameter unlocked! You can now {pr_title.lower().replace('add ', '').replace('parameter', 'customize')} - making your apps even more powerful π #gradio #nocode"
elif 'fix' in title or 'bug' in title:
return f"π§ Gradio just got more reliable! Fixed the issue where {pr_title.lower().replace('fix ', '').replace('bug', 'things')} - smoother experience for everyone πͺ #gradio #ai"
elif 'support' in title or 'enable' in title:
return f"π Breaking: Gradio now supports {pr_title.lower().replace('add support for ', '').replace('enable ', '')}! This opens up so many new possibilities π #gradio #ai"
elif 'improve' in title or 'enhance' in title:
return f"β‘ Gradio upgrade: {pr_title.lower().replace('improve ', '').replace('enhance ', '')} just got way better! Your apps will feel snappier than ever π₯ #gradio #performance"
elif 'allow' in title or 'let' in title:
return f"β¨ You can now {pr_title.lower().replace('allow ', '').replace('let ', '')} in Gradio! This is exactly what the community asked for π #gradio #ai"
else:
# Generic viral template
benefit = self.extract_benefit_from_title(pr_title)
return f"π₯ Gradio just leveled up! {benefit} - this changes everything for AI app builders π #gradio #ai #machinelearning"
def extract_benefit_from_title(self, title: str) -> str:
"""Extract user benefit from PR title"""
# Simple benefit extraction
if 'add' in title.lower():
return f"New feature: {title.replace('Add ', '').replace('add ', '')}"
elif 'fix' in title.lower():
return f"No more issues with {title.replace('Fix ', '').replace('fix ', '')}"
elif 'support' in title.lower():
return f"Full support for {title.replace('Add support for ', '').replace('support for ', '')}"
else:
return title
def summarize_files_changed(self, files: List[Dict]) -> str:
"""Summarize what files were changed"""
if not files:
return "No files changed"
categories = {
"Python backend": [],
"Frontend (JS/CSS)": [],
"Documentation": [],
"Tests": [],
"Examples": [],
"Config": []
}
for file in files:
filename = file["filename"]
if filename.endswith('.py'):
categories["Python backend"].append(filename)
elif any(filename.endswith(ext) for ext in ['.js', '.jsx', '.ts', '.tsx', '.css', '.scss']):
categories["Frontend (JS/CSS)"].append(filename)
elif filename.endswith('.md') or 'readme' in filename.lower():
categories["Documentation"].append(filename)
elif 'test' in filename.lower():
categories["Tests"].append(filename)
elif 'example' in filename.lower() or 'demo' in filename.lower():
categories["Examples"].append(filename)
else:
categories["Config"].append(filename)
summary_parts = []
for category, file_list in categories.items():
if file_list:
summary_parts.append(f"{category}: {len(file_list)} files")
return ", ".join(summary_parts) if summary_parts else "misc files"
# Initialize agent
agent = GradioOutreachAgent()
def generate_tweet_from_pr(pr_url: str) -> tuple:
"""Generate tweet from PR URL by analyzing the entire PR"""
try:
# Validate PR URL
if not pr_url or 'github.com' not in pr_url or '/pull/' not in pr_url:
return "β Please provide a valid GitHub PR URL", []
# Extract PR number from URL
pr_match = re.search(r'/pull/(\d+)', pr_url)
if not pr_match:
return "β Invalid PR URL format", []
pr_number = pr_match.group(1)
# Convert to API URL
api_url = pr_url.replace('github.com', 'api.github.com/repos').replace('/pull/', '/pulls/')
# Set up headers
headers = {}
if agent.github_token:
headers["Authorization"] = f"token {agent.github_token}"
# Fetch PR data
response = requests.get(api_url, headers=headers)
if response.status_code != 200:
return f"β Failed to fetch PR data (Status: {response.status_code})", []
pr_data = response.json()
# Check if PR is merged
if not pr_data.get("merged", False):
return "β οΈ This PR is not merged yet", []
# Extract PR info
pr_info = agent.extract_pr_info(pr_data)
# Generate tweet by analyzing the entire PR
tweet = agent.generate_tweet_from_pr_analysis(pr_info)
# Extract images
images = agent.extract_images_from_pr(pr_info)
# Ensure images is a proper list for gallery
if not images:
images = []
return tweet, images
except Exception as e:
return f"β Error: {str(e)}", []
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# π¦ Gradio PR Outreach : Tweet Generator")
gr.Markdown("Generate viral format tweets for merged Gradio PRs! This tool will analyze the entire PR content and try to create an engaging tweet explaining what was accomplished.")
with gr.Row():
with gr.Column(scale=2):
pr_url_input = gr.Textbox(
label="π Merged PR URL",
placeholder="https://github.com/gradio-app/gradio/pull/11578",
value="https://github.com/gradio-app/gradio/pull/11578",
lines=1
)
generate_button = gr.Button("β¨ Analyze PR & Generate Tweet", variant="primary")
with gr.Column(scale=1):
if not openai_client:
gr.Markdown("β οΈ **OpenAI API key not configured**\nAdd `OPENAI_API_KEY` to environment variables for better tweet generation.")
else:
gr.Markdown("β
**Using OpenAI gpt-4.1-mini to analyze PRs!**")
with gr.Row():
with gr.Column(scale=3):
tweet_output = gr.Textbox(
label="π¦ Generated Tweet",
lines=6,
interactive=True,
placeholder="AI-generated tweet will appear here..."
)
gr.Markdown("*π‘ Tip: You can edit the tweet above before posting and also use the extracted images for your post!*")
with gr.Column(scale=2):
images_output = gr.Gallery(
label="πΌοΈ Extracted Images",
height=400,
columns=2,
object_fit="cover"
)
generate_button.click(
generate_tweet_from_pr,
inputs=[pr_url_input],
outputs=[tweet_output, images_output]
)
# Adding examples
gr.Examples(
examples=[
["https://github.com/gradio-app/gradio/pull/11578"],
["https://github.com/gradio-app/gradio/pull/11567"],
["https://github.com/gradio-app/gradio/pull/11532"]
],
inputs=[pr_url_input],
outputs=[tweet_output, images_output],
fn=generate_tweet_from_pr,
cache_examples=False,
label="π― Example PRs to Try:"
)
if __name__ == "__main__":
demo.launch(mcp_server=True) |