Spaces:
Runtime error
Runtime error
add layout controlnet
Browse files- annotator/dsine_hub.py +37 -0
- annotator/midas.py +34 -0
- annotator/upernet.py +190 -0
- annotator/util.py +38 -0
- app.py +147 -4
annotator/dsine_hub.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class NormalDetector:
|
| 7 |
+
def __init__(self):
|
| 8 |
+
self.model_path = "hugoycj/DSINE-hub"
|
| 9 |
+
self.dsine = torch.hub.load(self.model_path, "DSINE", trust_repo=True)
|
| 10 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 11 |
+
|
| 12 |
+
@torch.no_grad()
|
| 13 |
+
def __call__(self, image):
|
| 14 |
+
self.dsine.model.to(self.device)
|
| 15 |
+
self.dsine.model.pixel_coords = self.dsine.model.pixel_coords.to(self.device)
|
| 16 |
+
H, W, C = image.shape
|
| 17 |
+
|
| 18 |
+
normal = self.dsine.infer_pil(image)[0] # Output shape: (H, W, 3)
|
| 19 |
+
normal = (normal + 1.0) / 2.0 # Convert values to the range [0, 1]
|
| 20 |
+
normal = (normal * 255).cpu().numpy().astype(np.uint8).transpose(1, 2, 0)
|
| 21 |
+
normal_img = Image.fromarray(normal).resize((W, H))
|
| 22 |
+
|
| 23 |
+
self.dsine.model.to("cpu")
|
| 24 |
+
self.dsine.model.pixel_coords = self.dsine.model.pixel_coords.to("cpu")
|
| 25 |
+
return normal_img
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
if __name__ == "__main__":
|
| 29 |
+
from diffusers.utils import load_image
|
| 30 |
+
|
| 31 |
+
image = load_image(
|
| 32 |
+
"https://qhstaticssl.kujiale.com/image/jpeg/1716177580588/9AAA49344B9CE33512C4EBD0A287495F.jpg"
|
| 33 |
+
)
|
| 34 |
+
image = np.asarray(image)
|
| 35 |
+
normal_detector = NormalDetector()
|
| 36 |
+
normal_image = normal_detector(image)
|
| 37 |
+
normal_image.save("normal_image.jpg")
|
annotator/midas.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from transformers import DPTFeatureExtractor
|
| 5 |
+
from transformers import DPTForDepthEstimation
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class DepthDetector:
|
| 9 |
+
def __init__(self, model_path=None):
|
| 10 |
+
if model_path is not None:
|
| 11 |
+
self.model_path = model_path
|
| 12 |
+
else:
|
| 13 |
+
self.model_path = "Intel/dpt-hybrid-midas"
|
| 14 |
+
self.model = DPTForDepthEstimation.from_pretrained(self.model_path)
|
| 15 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
self.feature_extractor = DPTFeatureExtractor.from_pretrained(self.model_path)
|
| 17 |
+
|
| 18 |
+
@torch.no_grad()
|
| 19 |
+
def __call__(self, image):
|
| 20 |
+
self.model.to(self.device)
|
| 21 |
+
H, W, C = image.shape
|
| 22 |
+
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
| 23 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(self.device)
|
| 24 |
+
outputs = self.model(**inputs)
|
| 25 |
+
predicted_depth = outputs.predicted_depth
|
| 26 |
+
outputs = predicted_depth.squeeze().cpu().numpy()
|
| 27 |
+
if len(outputs.shape) == 2:
|
| 28 |
+
output = outputs[np.newaxis, :, :]
|
| 29 |
+
else:
|
| 30 |
+
output = outputs
|
| 31 |
+
formatted = (output * 255 / np.max(output)).astype("uint8")
|
| 32 |
+
depth_image = Image.fromarray(formatted[0, ...]).resize((W, H))
|
| 33 |
+
self.model.to("cpu")
|
| 34 |
+
return depth_image
|
annotator/upernet.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from transformers import AutoImageProcessor
|
| 5 |
+
from transformers import UperNetForSemanticSegmentation
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class SegmDetector:
|
| 9 |
+
def __init__(self, model_path=None):
|
| 10 |
+
if model_path is not None:
|
| 11 |
+
self.model_path = model_path
|
| 12 |
+
else:
|
| 13 |
+
self.model_path = "openmmlab/upernet-convnext-small"
|
| 14 |
+
self.model = UperNetForSemanticSegmentation.from_pretrained(self.model_path)
|
| 15 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
self.feature_extractor = AutoImageProcessor.from_pretrained(self.model_path)
|
| 17 |
+
self.palette = [
|
| 18 |
+
[120, 120, 120],
|
| 19 |
+
[180, 120, 120],
|
| 20 |
+
[6, 230, 230],
|
| 21 |
+
[80, 50, 50],
|
| 22 |
+
[4, 200, 3],
|
| 23 |
+
[120, 120, 80],
|
| 24 |
+
[140, 140, 140],
|
| 25 |
+
[204, 5, 255],
|
| 26 |
+
[230, 230, 230],
|
| 27 |
+
[4, 250, 7],
|
| 28 |
+
[224, 5, 255],
|
| 29 |
+
[235, 255, 7],
|
| 30 |
+
[150, 5, 61],
|
| 31 |
+
[120, 120, 70],
|
| 32 |
+
[8, 255, 51],
|
| 33 |
+
[255, 6, 82],
|
| 34 |
+
[143, 255, 140],
|
| 35 |
+
[204, 255, 4],
|
| 36 |
+
[255, 51, 7],
|
| 37 |
+
[204, 70, 3],
|
| 38 |
+
[0, 102, 200],
|
| 39 |
+
[61, 230, 250],
|
| 40 |
+
[255, 6, 51],
|
| 41 |
+
[11, 102, 255],
|
| 42 |
+
[255, 7, 71],
|
| 43 |
+
[255, 9, 224],
|
| 44 |
+
[9, 7, 230],
|
| 45 |
+
[220, 220, 220],
|
| 46 |
+
[255, 9, 92],
|
| 47 |
+
[112, 9, 255],
|
| 48 |
+
[8, 255, 214],
|
| 49 |
+
[7, 255, 224],
|
| 50 |
+
[255, 184, 6],
|
| 51 |
+
[10, 255, 71],
|
| 52 |
+
[255, 41, 10],
|
| 53 |
+
[7, 255, 255],
|
| 54 |
+
[224, 255, 8],
|
| 55 |
+
[102, 8, 255],
|
| 56 |
+
[255, 61, 6],
|
| 57 |
+
[255, 194, 7],
|
| 58 |
+
[255, 122, 8],
|
| 59 |
+
[0, 255, 20],
|
| 60 |
+
[255, 8, 41],
|
| 61 |
+
[255, 5, 153],
|
| 62 |
+
[6, 51, 255],
|
| 63 |
+
[235, 12, 255],
|
| 64 |
+
[160, 150, 20],
|
| 65 |
+
[0, 163, 255],
|
| 66 |
+
[140, 140, 140],
|
| 67 |
+
[250, 10, 15],
|
| 68 |
+
[20, 255, 0],
|
| 69 |
+
[31, 255, 0],
|
| 70 |
+
[255, 31, 0],
|
| 71 |
+
[255, 224, 0],
|
| 72 |
+
[153, 255, 0],
|
| 73 |
+
[0, 0, 255],
|
| 74 |
+
[255, 71, 0],
|
| 75 |
+
[0, 235, 255],
|
| 76 |
+
[0, 173, 255],
|
| 77 |
+
[31, 0, 255],
|
| 78 |
+
[11, 200, 200],
|
| 79 |
+
[255, 82, 0],
|
| 80 |
+
[0, 255, 245],
|
| 81 |
+
[0, 61, 255],
|
| 82 |
+
[0, 255, 112],
|
| 83 |
+
[0, 255, 133],
|
| 84 |
+
[255, 0, 0],
|
| 85 |
+
[255, 163, 0],
|
| 86 |
+
[255, 102, 0],
|
| 87 |
+
[194, 255, 0],
|
| 88 |
+
[0, 143, 255],
|
| 89 |
+
[51, 255, 0],
|
| 90 |
+
[0, 82, 255],
|
| 91 |
+
[0, 255, 41],
|
| 92 |
+
[0, 255, 173],
|
| 93 |
+
[10, 0, 255],
|
| 94 |
+
[173, 255, 0],
|
| 95 |
+
[0, 255, 153],
|
| 96 |
+
[255, 92, 0],
|
| 97 |
+
[255, 0, 255],
|
| 98 |
+
[255, 0, 245],
|
| 99 |
+
[255, 0, 102],
|
| 100 |
+
[255, 173, 0],
|
| 101 |
+
[255, 0, 20],
|
| 102 |
+
[255, 184, 184],
|
| 103 |
+
[0, 31, 255],
|
| 104 |
+
[0, 255, 61],
|
| 105 |
+
[0, 71, 255],
|
| 106 |
+
[255, 0, 204],
|
| 107 |
+
[0, 255, 194],
|
| 108 |
+
[0, 255, 82],
|
| 109 |
+
[0, 10, 255],
|
| 110 |
+
[0, 112, 255],
|
| 111 |
+
[51, 0, 255],
|
| 112 |
+
[0, 194, 255],
|
| 113 |
+
[0, 122, 255],
|
| 114 |
+
[0, 255, 163],
|
| 115 |
+
[255, 153, 0],
|
| 116 |
+
[0, 255, 10],
|
| 117 |
+
[255, 112, 0],
|
| 118 |
+
[143, 255, 0],
|
| 119 |
+
[82, 0, 255],
|
| 120 |
+
[163, 255, 0],
|
| 121 |
+
[255, 235, 0],
|
| 122 |
+
[8, 184, 170],
|
| 123 |
+
[133, 0, 255],
|
| 124 |
+
[0, 255, 92],
|
| 125 |
+
[184, 0, 255],
|
| 126 |
+
[255, 0, 31],
|
| 127 |
+
[0, 184, 255],
|
| 128 |
+
[0, 214, 255],
|
| 129 |
+
[255, 0, 112],
|
| 130 |
+
[92, 255, 0],
|
| 131 |
+
[0, 224, 255],
|
| 132 |
+
[112, 224, 255],
|
| 133 |
+
[70, 184, 160],
|
| 134 |
+
[163, 0, 255],
|
| 135 |
+
[153, 0, 255],
|
| 136 |
+
[71, 255, 0],
|
| 137 |
+
[255, 0, 163],
|
| 138 |
+
[255, 204, 0],
|
| 139 |
+
[255, 0, 143],
|
| 140 |
+
[0, 255, 235],
|
| 141 |
+
[133, 255, 0],
|
| 142 |
+
[255, 0, 235],
|
| 143 |
+
[245, 0, 255],
|
| 144 |
+
[255, 0, 122],
|
| 145 |
+
[255, 245, 0],
|
| 146 |
+
[10, 190, 212],
|
| 147 |
+
[214, 255, 0],
|
| 148 |
+
[0, 204, 255],
|
| 149 |
+
[20, 0, 255],
|
| 150 |
+
[255, 255, 0],
|
| 151 |
+
[0, 153, 255],
|
| 152 |
+
[0, 41, 255],
|
| 153 |
+
[0, 255, 204],
|
| 154 |
+
[41, 0, 255],
|
| 155 |
+
[41, 255, 0],
|
| 156 |
+
[173, 0, 255],
|
| 157 |
+
[0, 245, 255],
|
| 158 |
+
[71, 0, 255],
|
| 159 |
+
[122, 0, 255],
|
| 160 |
+
[0, 255, 184],
|
| 161 |
+
[0, 92, 255],
|
| 162 |
+
[184, 255, 0],
|
| 163 |
+
[0, 133, 255],
|
| 164 |
+
[255, 214, 0],
|
| 165 |
+
[25, 194, 194],
|
| 166 |
+
[102, 255, 0],
|
| 167 |
+
[92, 0, 255],
|
| 168 |
+
]
|
| 169 |
+
|
| 170 |
+
@torch.no_grad()
|
| 171 |
+
def __call__(self, image):
|
| 172 |
+
self.model.to(self.device)
|
| 173 |
+
H, W, C = image.shape
|
| 174 |
+
|
| 175 |
+
pixel_values = self.feature_extractor(
|
| 176 |
+
images=image, return_tensors="pt"
|
| 177 |
+
).pixel_values
|
| 178 |
+
pixel_values = pixel_values.to(self.device)
|
| 179 |
+
outputs = self.model(pixel_values)
|
| 180 |
+
segm_image = self.feature_extractor.post_process_semantic_segmentation(outputs)
|
| 181 |
+
segm_image = segm_image[0].cpu()
|
| 182 |
+
color_seg = np.zeros(
|
| 183 |
+
(segm_image.shape[0], segm_image.shape[1], 3), dtype=np.uint8
|
| 184 |
+
)
|
| 185 |
+
for label, color in enumerate(self.palette):
|
| 186 |
+
color_seg[segm_image == label, :] = color
|
| 187 |
+
color_seg = color_seg.astype(np.uint8)
|
| 188 |
+
segm_image = Image.fromarray(color_seg).resize((W, H))
|
| 189 |
+
self.model.to("cpu")
|
| 190 |
+
return segm_image
|
annotator/util.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import cv2
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def HWC3(x):
|
| 6 |
+
assert x.dtype == np.uint8
|
| 7 |
+
if x.ndim == 2:
|
| 8 |
+
x = x[:, :, None]
|
| 9 |
+
assert x.ndim == 3
|
| 10 |
+
H, W, C = x.shape
|
| 11 |
+
assert C == 1 or C == 3 or C == 4
|
| 12 |
+
if C == 3:
|
| 13 |
+
return x
|
| 14 |
+
if C == 1:
|
| 15 |
+
return np.concatenate([x, x, x], axis=2)
|
| 16 |
+
if C == 4:
|
| 17 |
+
color = x[:, :, 0:3].astype(np.float32)
|
| 18 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
| 19 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
| 20 |
+
y = y.clip(0, 255).astype(np.uint8)
|
| 21 |
+
return y
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def resize_image(input_image, resolution):
|
| 25 |
+
H, W, C = input_image.shape
|
| 26 |
+
H = float(H)
|
| 27 |
+
W = float(W)
|
| 28 |
+
k = float(resolution) / max(H, W)
|
| 29 |
+
H *= k
|
| 30 |
+
W *= k
|
| 31 |
+
H = int(np.round(H / 64.0)) * 64
|
| 32 |
+
W = int(np.round(W / 64.0)) * 64
|
| 33 |
+
img = cv2.resize(
|
| 34 |
+
input_image,
|
| 35 |
+
(W, H),
|
| 36 |
+
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA,
|
| 37 |
+
)
|
| 38 |
+
return img
|
app.py
CHANGED
|
@@ -1,7 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import spaces
|
| 3 |
+
import numpy as np
|
| 4 |
+
from diffusers import (
|
| 5 |
+
ControlNetModel,
|
| 6 |
+
StableDiffusionControlNetPipeline,
|
| 7 |
+
UniPCMultistepScheduler,
|
| 8 |
+
)
|
| 9 |
import gradio as gr
|
| 10 |
|
| 11 |
+
from annotator.util import resize_image, HWC3
|
| 12 |
+
from annotator.midas import DepthDetector
|
| 13 |
+
from annotator.dsine_hub import NormalDetector
|
| 14 |
+
from annotator.upernet import SegmDetector
|
| 15 |
|
| 16 |
+
controlnet_checkpoint = "kujiale-ai/controlnet"
|
| 17 |
+
# Initialize pipeline
|
| 18 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 19 |
+
controlnet_checkpoint,
|
| 20 |
+
subfolder="control_v1_sd15_layout_fp16",
|
| 21 |
+
torch_dtype=torch.float16,
|
| 22 |
+
)
|
| 23 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 24 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
| 25 |
+
).to("cuda")
|
| 26 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 27 |
+
|
| 28 |
+
apply_depth = DepthDetector()
|
| 29 |
+
apply_normal = NormalDetector()
|
| 30 |
+
apply_segm = SegmDetector()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@spaces.GPU(duration=10)
|
| 34 |
+
def generate(
|
| 35 |
+
input_image,
|
| 36 |
+
prompt,
|
| 37 |
+
a_prompt,
|
| 38 |
+
n_prompt,
|
| 39 |
+
num_samples,
|
| 40 |
+
image_resolution,
|
| 41 |
+
steps,
|
| 42 |
+
strength,
|
| 43 |
+
guidance_scale,
|
| 44 |
+
seed,
|
| 45 |
+
):
|
| 46 |
+
color_image = resize_image(HWC3(input_image), image_resolution)
|
| 47 |
+
# set seed
|
| 48 |
+
np.random.seed(seed)
|
| 49 |
+
torch.manual_seed(seed)
|
| 50 |
+
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
depth_image = apply_depth(color_image)
|
| 53 |
+
normal_image = apply_normal(color_image)
|
| 54 |
+
segm_image = apply_segm(color_image)
|
| 55 |
+
|
| 56 |
+
# Prepare Layout Control Image
|
| 57 |
+
depth_image = np.array(depth_image, dtype=np.float32) / 255.0
|
| 58 |
+
depth_image = torch.from_numpy(depth_image[:, :, None])[None].permute(
|
| 59 |
+
0, 3, 1, 2
|
| 60 |
+
)
|
| 61 |
+
normal_image = np.array(normal_image, dtype=np.float32)
|
| 62 |
+
normal_image = normal_image / 127.5 - 1.0
|
| 63 |
+
normal_image = torch.from_numpy(normal_image)[None].permute(0, 3, 1, 2)
|
| 64 |
+
segm_image = np.array(segm_image, dtype=np.float32) / 255.0
|
| 65 |
+
segm_image = torch.from_numpy(segm_image)[None].permute(0, 3, 1, 2)
|
| 66 |
+
control_image = torch.cat([depth_image, normal_image, segm_image], dim=1)
|
| 67 |
+
|
| 68 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 69 |
+
images = pipe(
|
| 70 |
+
prompt + a_prompt,
|
| 71 |
+
negative_prompt=n_prompt,
|
| 72 |
+
num_images_per_prompt=num_samples,
|
| 73 |
+
num_inference_steps=steps,
|
| 74 |
+
image=control_image,
|
| 75 |
+
generator=generator,
|
| 76 |
+
guidance_scale=guidance_scale,
|
| 77 |
+
controlnet_conditioning_scale=strength,
|
| 78 |
+
).images
|
| 79 |
+
return images
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
block = gr.Blocks().queue()
|
| 83 |
+
with block:
|
| 84 |
+
with gr.Row():
|
| 85 |
+
gr.Markdown("## KuJiaLe Layout ControlNet Demo")
|
| 86 |
+
with gr.Row():
|
| 87 |
+
input_image = gr.Image(source="upload", type="numpy", label="input_image")
|
| 88 |
+
with gr.Row():
|
| 89 |
+
prompt = gr.Textbox(label="Prompt")
|
| 90 |
+
with gr.Row():
|
| 91 |
+
run_button = gr.Button(label="Run")
|
| 92 |
+
with gr.Row():
|
| 93 |
+
with gr.Column():
|
| 94 |
+
with gr.Accordion("Advanced options", open=False):
|
| 95 |
+
num_samples = gr.Slider(
|
| 96 |
+
label="Images", minimum=1, maximum=2, value=1, step=1
|
| 97 |
+
)
|
| 98 |
+
image_resolution = gr.Slider(
|
| 99 |
+
label="Image Resolution",
|
| 100 |
+
minimum=512,
|
| 101 |
+
maximum=768,
|
| 102 |
+
value=768,
|
| 103 |
+
step=64,
|
| 104 |
+
)
|
| 105 |
+
strength = gr.Slider(
|
| 106 |
+
label="Control Strength",
|
| 107 |
+
minimum=0.0,
|
| 108 |
+
maximum=2.0,
|
| 109 |
+
value=1,
|
| 110 |
+
step=0.1,
|
| 111 |
+
)
|
| 112 |
+
steps = gr.Slider(
|
| 113 |
+
label="Steps", minimum=1, maximum=50, value=25, step=1
|
| 114 |
+
)
|
| 115 |
+
guidance_scale = gr.Slider(
|
| 116 |
+
label="Guidance Scale",
|
| 117 |
+
minimum=0.1,
|
| 118 |
+
maximum=20.0,
|
| 119 |
+
value=7.5,
|
| 120 |
+
step=0.1,
|
| 121 |
+
)
|
| 122 |
+
seed = gr.Slider(
|
| 123 |
+
label="Seed", minimum=-1, maximum=2147483647, value=1, step=1
|
| 124 |
+
)
|
| 125 |
+
a_prompt = gr.Textbox(
|
| 126 |
+
label="Added Prompt", value="best quality, extremely detailed"
|
| 127 |
+
)
|
| 128 |
+
n_prompt = gr.Textbox(
|
| 129 |
+
label="Negative Prompt",
|
| 130 |
+
value="longbody, lowres, bad anatomy, human, extra digit, fewer digits, cropped, worst quality, low quality",
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
with gr.Row():
|
| 134 |
+
image_gallery = gr.Gallery(
|
| 135 |
+
label="Output", show_label=False, elem_id="gallery"
|
| 136 |
+
).style(grid=1, height="auto")
|
| 137 |
+
|
| 138 |
+
ips = [
|
| 139 |
+
input_image,
|
| 140 |
+
prompt,
|
| 141 |
+
a_prompt,
|
| 142 |
+
n_prompt,
|
| 143 |
+
num_samples,
|
| 144 |
+
image_resolution,
|
| 145 |
+
steps,
|
| 146 |
+
strength,
|
| 147 |
+
guidance_scale,
|
| 148 |
+
seed,
|
| 149 |
+
]
|
| 150 |
+
run_button.click(fn=generate, inputs=ips, outputs=[image_gallery])
|