Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,58 +1,21 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
import
|
| 4 |
|
| 5 |
-
|
| 6 |
-
client = InferenceClient("yuvrajpant56/Mistral_Posttrain_SFT",token=os.environ["HF_TOKEN"])
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
system_message,
|
| 12 |
-
max_tokens,
|
| 13 |
-
temperature,
|
| 14 |
-
top_p,
|
| 15 |
-
):
|
| 16 |
-
# Build simple prompt using system message and conversation history
|
| 17 |
-
prompt = f"{system_message.strip()}\n\n"
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
prompt += f"Assistant: {bot_msg}\n"
|
| 24 |
-
prompt += f"User: {message}\nAssistant:"
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
stream=True,
|
| 33 |
-
):
|
| 34 |
-
response += token.token
|
| 35 |
-
yield response
|
| 36 |
-
|
| 37 |
-
# Build Gradio ChatInterface
|
| 38 |
-
demo = gr.ChatInterface(
|
| 39 |
-
fn=respond,
|
| 40 |
-
additional_inputs=[
|
| 41 |
-
gr.Textbox(value="You are a helpful assistant.", label="System message"),
|
| 42 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 43 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 44 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
| 45 |
-
],
|
| 46 |
-
title="🧠 Mistral SFT Chatbot",
|
| 47 |
-
description="Interact with your fine-tuned Mistral model using Hugging Face Inference API.",
|
| 48 |
-
theme="soft",
|
| 49 |
-
examples=[
|
| 50 |
-
["Tell me a story about the Himalayas.", "You are a helpful assistant.", 512, 0.7, 0.95],
|
| 51 |
-
["What is quantum computing?", "Explain like I’m 5.", 512, 0.8, 0.9]
|
| 52 |
-
],
|
| 53 |
-
type="openai", # also removes the warning about 'tuples'
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
if __name__ == "__main__":
|
| 58 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
|
| 5 |
+
model_id = "yuvrajpant56/Mistral_Posttrain_SFT"
|
|
|
|
| 6 |
|
| 7 |
+
# Load model & tokenizer
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
def generate_text(prompt):
|
| 12 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 13 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 14 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
gr.Interface(fn=generate_text,
|
| 17 |
+
inputs="text",
|
| 18 |
+
outputs="text",
|
| 19 |
+
title="Mistral SFT Text Generator",
|
| 20 |
+
description="Type a prompt and let the fine-tuned Mistral model generate the rest."
|
| 21 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|