Adapt to Gemini
Browse files- .gitignore +2 -1
- json_str/gemini/request.json +52 -0
- main.py +43 -113
- models.py +48 -0
- request.py +163 -0
- response.py +135 -0
.gitignore
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
api.json
|
2 |
api.yaml
|
3 |
-
.env
|
|
|
|
1 |
api.json
|
2 |
api.yaml
|
3 |
+
.env
|
4 |
+
__pycache__
|
json_str/gemini/request.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"contents": [
|
3 |
+
{
|
4 |
+
"role": "user",
|
5 |
+
"parts": [
|
6 |
+
{
|
7 |
+
"text": "hi"
|
8 |
+
}
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"role": "model",
|
13 |
+
"parts": [
|
14 |
+
{
|
15 |
+
"text": "Hi! \n\nHow are you today? What can I do for you? \n"
|
16 |
+
}
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"role": "user",
|
21 |
+
"parts": [
|
22 |
+
{
|
23 |
+
"text": "怎么解决"
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"inlineData": {
|
27 |
+
"mimeType": "image/jpeg",
|
28 |
+
"data": "/9j/***"
|
29 |
+
}
|
30 |
+
}
|
31 |
+
]
|
32 |
+
}
|
33 |
+
],
|
34 |
+
"safetySettings": [
|
35 |
+
{
|
36 |
+
"category": "HARM_CATEGORY_HARASSMENT",
|
37 |
+
"threshold": "BLOCK_NONE"
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"category": "HARM_CATEGORY_HATE_SPEECH",
|
41 |
+
"threshold": "BLOCK_NONE"
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
45 |
+
"threshold": "BLOCK_NONE"
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
49 |
+
"threshold": "BLOCK_NONE"
|
50 |
+
}
|
51 |
+
]
|
52 |
+
}
|
main.py
CHANGED
@@ -2,29 +2,19 @@ import os
|
|
2 |
import json
|
3 |
import httpx
|
4 |
import yaml
|
|
|
5 |
from contextlib import asynccontextmanager
|
6 |
|
7 |
from fastapi import FastAPI, HTTPException, Depends
|
8 |
from fastapi.responses import StreamingResponse
|
9 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
10 |
|
11 |
-
from
|
12 |
-
from
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
"sk-KjjI60Yf0JFcsvgRmXqFwgGmWUd9GZnmi3KlvowmRWpWpQRo": "user1",
|
17 |
-
# 可以添加更多的API Key
|
18 |
-
}
|
19 |
-
|
20 |
-
# 安全性依赖
|
21 |
-
security = HTTPBearer()
|
22 |
-
|
23 |
-
def verify_api_key(credentials: HTTPAuthorizationCredentials = Depends(security)):
|
24 |
-
token = credentials.credentials
|
25 |
-
if token not in api_keys_db:
|
26 |
-
raise HTTPException(status_code=403, detail="Invalid or missing API Key")
|
27 |
-
return token
|
28 |
|
29 |
@asynccontextmanager
|
30 |
async def lifespan(app: FastAPI):
|
@@ -36,6 +26,15 @@ async def lifespan(app: FastAPI):
|
|
36 |
|
37 |
app = FastAPI(lifespan=lifespan)
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# 读取YAML配置文件
|
40 |
def load_config():
|
41 |
try:
|
@@ -51,107 +50,29 @@ def load_config():
|
|
51 |
config = load_config()
|
52 |
# print(config)
|
53 |
|
54 |
-
# 定义 Function 参数模型
|
55 |
-
class FunctionParameter(BaseModel):
|
56 |
-
type: str
|
57 |
-
properties: Dict[str, Dict[str, str]]
|
58 |
-
required: List[str]
|
59 |
-
|
60 |
-
# 定义 Function 模型
|
61 |
-
class Function(BaseModel):
|
62 |
-
name: str
|
63 |
-
description: str
|
64 |
-
parameters: FunctionParameter
|
65 |
-
|
66 |
-
# 定义 Tool 模型
|
67 |
-
class Tool(BaseModel):
|
68 |
-
type: str
|
69 |
-
function: Function
|
70 |
-
|
71 |
-
class ImageUrl(BaseModel):
|
72 |
-
url: str
|
73 |
-
|
74 |
-
class ContentItem(BaseModel):
|
75 |
-
type: str
|
76 |
-
text: Optional[str] = None
|
77 |
-
image_url: Optional[ImageUrl] = None
|
78 |
-
|
79 |
-
class Message(BaseModel):
|
80 |
-
role: str
|
81 |
-
name: Optional[str] = None
|
82 |
-
content: Union[str, List[ContentItem]]
|
83 |
-
|
84 |
-
class RequestModel(BaseModel):
|
85 |
-
model: str
|
86 |
-
messages: List[Message]
|
87 |
-
logprobs: Optional[bool] = None
|
88 |
-
top_logprobs: Optional[int] = None
|
89 |
-
stream: Optional[bool] = None
|
90 |
-
include_usage: Optional[bool] = None
|
91 |
-
temperature: Optional[float] = 0.5
|
92 |
-
top_p: Optional[float] = 1.0
|
93 |
-
max_tokens: Optional[int] = None
|
94 |
-
presence_penalty: Optional[float] = 0.0
|
95 |
-
frequency_penalty: Optional[float] = 0.0
|
96 |
-
n: Optional[int] = 1
|
97 |
-
user: Optional[str] = None
|
98 |
-
tool_choice: Optional[str] = None
|
99 |
-
tools: Optional[List[Tool]] = None
|
100 |
-
|
101 |
-
async def fetch_response_stream(client, url, headers, payload):
|
102 |
-
async with client.stream('POST', url, headers=headers, json=payload) as response:
|
103 |
-
async for chunk in response.aiter_bytes():
|
104 |
-
print(chunk.decode('utf-8'))
|
105 |
-
yield chunk
|
106 |
-
|
107 |
-
async def fetch_response(client, url, headers, payload):
|
108 |
-
response = await client.post(url, headers=headers, json=payload)
|
109 |
-
return response.json()
|
110 |
-
|
111 |
async def process_request(request: RequestModel, provider: Dict):
|
112 |
print("provider: ", provider['provider'])
|
113 |
url = provider['base_url']
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
if name:
|
133 |
-
messages.append({"role": msg.role, "name": name, "content": content})
|
134 |
-
else:
|
135 |
-
messages.append({"role": msg.role, "content": content})
|
136 |
-
|
137 |
-
|
138 |
-
payload = {
|
139 |
-
"model": request.model,
|
140 |
-
"messages": messages
|
141 |
-
}
|
142 |
-
|
143 |
-
for field, value in request.dict(exclude_unset=True).items():
|
144 |
-
if field not in ['model', 'messages'] and value is not None:
|
145 |
-
payload[field] = value
|
146 |
-
|
147 |
-
request_info = {
|
148 |
-
"url": url,
|
149 |
-
"headers": headers,
|
150 |
-
"payload": payload
|
151 |
-
}
|
152 |
-
print(f"Request details: {json.dumps(request_info, indent=2, ensure_ascii=False)}")
|
153 |
if request.stream:
|
154 |
-
return StreamingResponse(fetch_response_stream(app.state.client, url, headers, payload), media_type="text/event-stream")
|
155 |
else:
|
156 |
return await fetch_response(app.state.client, url, headers, payload)
|
157 |
|
@@ -191,13 +112,22 @@ class ModelRequestHandler:
|
|
191 |
response = await process_request(request, provider)
|
192 |
return response
|
193 |
except Exception as e:
|
|
|
194 |
print(f"Error with provider {provider['provider']}: {str(e)}")
|
|
|
|
|
195 |
continue
|
196 |
|
197 |
raise HTTPException(status_code=500, detail="All providers failed")
|
198 |
|
199 |
model_handler = ModelRequestHandler()
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
@app.post("/v1/chat/completions")
|
202 |
async def request_model(request: RequestModel, token: str = Depends(verify_api_key)):
|
203 |
return await model_handler.request_model(request, token)
|
|
|
2 |
import json
|
3 |
import httpx
|
4 |
import yaml
|
5 |
+
import traceback
|
6 |
from contextlib import asynccontextmanager
|
7 |
|
8 |
from fastapi import FastAPI, HTTPException, Depends
|
9 |
from fastapi.responses import StreamingResponse
|
10 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
11 |
|
12 |
+
from models import RequestModel
|
13 |
+
from request import get_payload
|
14 |
+
from response import fetch_response, fetch_response_stream
|
15 |
|
16 |
+
from typing import List, Dict
|
17 |
+
from urllib.parse import urlparse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
@asynccontextmanager
|
20 |
async def lifespan(app: FastAPI):
|
|
|
26 |
|
27 |
app = FastAPI(lifespan=lifespan)
|
28 |
|
29 |
+
# 模拟存储API Key的数据库
|
30 |
+
api_keys_db = {
|
31 |
+
"sk-KjjI60Yf0JFcsvgRmXqFwgGmWUd9GZnmi3KlvowmRWpWpQRo": "user1",
|
32 |
+
# 可以添加更多的API Key
|
33 |
+
}
|
34 |
+
|
35 |
+
# 安全性依赖
|
36 |
+
security = HTTPBearer()
|
37 |
+
|
38 |
# 读取YAML配置文件
|
39 |
def load_config():
|
40 |
try:
|
|
|
50 |
config = load_config()
|
51 |
# print(config)
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
async def process_request(request: RequestModel, provider: Dict):
|
54 |
print("provider: ", provider['provider'])
|
55 |
url = provider['base_url']
|
56 |
+
parsed_url = urlparse(url)
|
57 |
+
engine = None
|
58 |
+
if parsed_url.netloc == 'generativelanguage.googleapis.com':
|
59 |
+
engine = "gemini"
|
60 |
+
elif parsed_url.netloc == 'api.anthropic.com':
|
61 |
+
engine = "claude"
|
62 |
+
else:
|
63 |
+
engine = "gpt"
|
64 |
+
|
65 |
+
url, headers, payload = await get_payload(request, engine, provider)
|
66 |
+
|
67 |
+
# request_info = {
|
68 |
+
# "url": url,
|
69 |
+
# "headers": headers,
|
70 |
+
# "payload": payload
|
71 |
+
# }
|
72 |
+
# print(f"Request details: {json.dumps(request_info, indent=2, ensure_ascii=False)}")
|
73 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
if request.stream:
|
75 |
+
return StreamingResponse(fetch_response_stream(app.state.client, url, headers, payload, engine, request.model), media_type="text/event-stream")
|
76 |
else:
|
77 |
return await fetch_response(app.state.client, url, headers, payload)
|
78 |
|
|
|
112 |
response = await process_request(request, provider)
|
113 |
return response
|
114 |
except Exception as e:
|
115 |
+
print('\033[31m')
|
116 |
print(f"Error with provider {provider['provider']}: {str(e)}")
|
117 |
+
traceback.print_exc()
|
118 |
+
print('\033[0m')
|
119 |
continue
|
120 |
|
121 |
raise HTTPException(status_code=500, detail="All providers failed")
|
122 |
|
123 |
model_handler = ModelRequestHandler()
|
124 |
|
125 |
+
def verify_api_key(credentials: HTTPAuthorizationCredentials = Depends(security)):
|
126 |
+
token = credentials.credentials
|
127 |
+
if token not in api_keys_db:
|
128 |
+
raise HTTPException(status_code=403, detail="Invalid or missing API Key")
|
129 |
+
return token
|
130 |
+
|
131 |
@app.post("/v1/chat/completions")
|
132 |
async def request_model(request: RequestModel, token: str = Depends(verify_api_key)):
|
133 |
return await model_handler.request_model(request, token)
|
models.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from typing import List, Dict, Optional, Union
|
3 |
+
|
4 |
+
class FunctionParameter(BaseModel):
|
5 |
+
type: str
|
6 |
+
properties: Dict[str, Dict[str, str]]
|
7 |
+
required: List[str]
|
8 |
+
|
9 |
+
# 定义 Function 模型
|
10 |
+
class Function(BaseModel):
|
11 |
+
name: str
|
12 |
+
description: str
|
13 |
+
parameters: FunctionParameter
|
14 |
+
|
15 |
+
# 定义 Tool 模型
|
16 |
+
class Tool(BaseModel):
|
17 |
+
type: str
|
18 |
+
function: Function
|
19 |
+
|
20 |
+
class ImageUrl(BaseModel):
|
21 |
+
url: str
|
22 |
+
|
23 |
+
class ContentItem(BaseModel):
|
24 |
+
type: str
|
25 |
+
text: Optional[str] = None
|
26 |
+
image_url: Optional[ImageUrl] = None
|
27 |
+
|
28 |
+
class Message(BaseModel):
|
29 |
+
role: str
|
30 |
+
name: Optional[str] = None
|
31 |
+
content: Union[str, List[ContentItem]]
|
32 |
+
|
33 |
+
class RequestModel(BaseModel):
|
34 |
+
model: str
|
35 |
+
messages: List[Message]
|
36 |
+
logprobs: Optional[bool] = None
|
37 |
+
top_logprobs: Optional[int] = None
|
38 |
+
stream: Optional[bool] = None
|
39 |
+
include_usage: Optional[bool] = None
|
40 |
+
temperature: Optional[float] = 0.5
|
41 |
+
top_p: Optional[float] = 1.0
|
42 |
+
max_tokens: Optional[int] = None
|
43 |
+
presence_penalty: Optional[float] = 0.0
|
44 |
+
frequency_penalty: Optional[float] = 0.0
|
45 |
+
n: Optional[int] = 1
|
46 |
+
user: Optional[str] = None
|
47 |
+
tool_choice: Optional[str] = None
|
48 |
+
tools: Optional[List[Tool]] = None
|
request.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from models import RequestModel
|
2 |
+
|
3 |
+
async def get_image_message(base64_image, engine = None):
|
4 |
+
if "gpt" == engine:
|
5 |
+
return {
|
6 |
+
"type": "image_url",
|
7 |
+
"image_url": {
|
8 |
+
"url": base64_image,
|
9 |
+
}
|
10 |
+
}
|
11 |
+
if "claude" == engine:
|
12 |
+
return {
|
13 |
+
"type": "image",
|
14 |
+
"source": {
|
15 |
+
"type": "base64",
|
16 |
+
"media_type": "image/jpeg",
|
17 |
+
"data": base64_image.split(",")[1],
|
18 |
+
}
|
19 |
+
}
|
20 |
+
if "gemini" == engine:
|
21 |
+
return {
|
22 |
+
"inlineData": {
|
23 |
+
"mimeType": "image/jpeg",
|
24 |
+
"data": base64_image.split(",")[1],
|
25 |
+
}
|
26 |
+
}
|
27 |
+
raise ValueError("Unknown engine")
|
28 |
+
|
29 |
+
async def get_text_message(role, message, engine = None):
|
30 |
+
if "gpt" == engine or "claude" == engine:
|
31 |
+
return {"type": "text", "text": message}
|
32 |
+
if "gemini" == engine:
|
33 |
+
return {"text": message}
|
34 |
+
raise ValueError("Unknown engine")
|
35 |
+
|
36 |
+
async def get_gemini_payload(request, engine, provider):
|
37 |
+
headers = {
|
38 |
+
'Content-Type': 'application/json'
|
39 |
+
}
|
40 |
+
url = provider['base_url']
|
41 |
+
if request.stream:
|
42 |
+
gemini_stream = "streamGenerateContent"
|
43 |
+
url = url.format(model=request.model, stream=gemini_stream, api_key=provider['api'])
|
44 |
+
|
45 |
+
messages = []
|
46 |
+
for msg in request.messages:
|
47 |
+
if isinstance(msg.content, list):
|
48 |
+
content = []
|
49 |
+
for item in msg.content:
|
50 |
+
if item.type == "text":
|
51 |
+
text_message = await get_text_message(msg.role, item.text, engine)
|
52 |
+
# print("text_message", text_message)
|
53 |
+
content.append(text_message)
|
54 |
+
elif item.type == "image_url":
|
55 |
+
image_message = await get_image_message(item.image_url.url, engine)
|
56 |
+
content.append(image_message)
|
57 |
+
else:
|
58 |
+
content = msg.content
|
59 |
+
if msg.role != "system":
|
60 |
+
messages.append({"role": msg.role, "parts": content})
|
61 |
+
|
62 |
+
|
63 |
+
payload = {
|
64 |
+
"contents": messages,
|
65 |
+
"safetySettings": [
|
66 |
+
{
|
67 |
+
"category": "HARM_CATEGORY_HARASSMENT",
|
68 |
+
"threshold": "BLOCK_NONE"
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"category": "HARM_CATEGORY_HATE_SPEECH",
|
72 |
+
"threshold": "BLOCK_NONE"
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
76 |
+
"threshold": "BLOCK_NONE"
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
80 |
+
"threshold": "BLOCK_NONE"
|
81 |
+
}
|
82 |
+
]
|
83 |
+
}
|
84 |
+
|
85 |
+
miss_fields = [
|
86 |
+
'model',
|
87 |
+
'messages',
|
88 |
+
'stream',
|
89 |
+
'tools',
|
90 |
+
'tool_choice',
|
91 |
+
'temperature',
|
92 |
+
'top_p',
|
93 |
+
'max_tokens',
|
94 |
+
'presence_penalty',
|
95 |
+
'frequency_penalty',
|
96 |
+
'n',
|
97 |
+
'user',
|
98 |
+
'include_usage',
|
99 |
+
'logprobs',
|
100 |
+
'top_logprobs'
|
101 |
+
]
|
102 |
+
|
103 |
+
for field, value in request.model_dump(exclude_unset=True).items():
|
104 |
+
if field not in miss_fields and value is not None:
|
105 |
+
payload[field] = value
|
106 |
+
|
107 |
+
return url, headers, payload
|
108 |
+
|
109 |
+
async def get_gpt_payload(request, engine, provider):
|
110 |
+
headers = {
|
111 |
+
'Authorization': f"Bearer {provider['api']}",
|
112 |
+
'Content-Type': 'application/json'
|
113 |
+
}
|
114 |
+
url = provider['base_url']
|
115 |
+
url = url.format(model=request.model, stream=request.stream, api_key=provider['api'])
|
116 |
+
|
117 |
+
messages = []
|
118 |
+
for msg in request.messages:
|
119 |
+
if isinstance(msg.content, list):
|
120 |
+
content = []
|
121 |
+
for item in msg.content:
|
122 |
+
if item.type == "text":
|
123 |
+
text_message = await get_text_message(msg.role, item.text, engine)
|
124 |
+
content.append(text_message)
|
125 |
+
elif item.type == "image_url":
|
126 |
+
image_message = await get_image_message(item.image_url.url, engine)
|
127 |
+
content.append(image_message)
|
128 |
+
else:
|
129 |
+
content = msg.content
|
130 |
+
name = msg.name
|
131 |
+
if name:
|
132 |
+
messages.append({"role": msg.role, "name": name, "content": content})
|
133 |
+
else:
|
134 |
+
messages.append({"role": msg.role, "content": content})
|
135 |
+
|
136 |
+
payload = {
|
137 |
+
"model": request.model,
|
138 |
+
"messages": messages,
|
139 |
+
}
|
140 |
+
|
141 |
+
miss_fields = [
|
142 |
+
'model',
|
143 |
+
'messages'
|
144 |
+
]
|
145 |
+
|
146 |
+
for field, value in request.model_dump(exclude_unset=True).items():
|
147 |
+
if field not in miss_fields and value is not None:
|
148 |
+
payload[field] = value
|
149 |
+
|
150 |
+
return url, headers, payload
|
151 |
+
|
152 |
+
async def get_claude_payload(request, engine, provider):
|
153 |
+
pass
|
154 |
+
|
155 |
+
async def get_payload(request: RequestModel, engine, provider):
|
156 |
+
if engine == "gemini":
|
157 |
+
return await get_gemini_payload(request, engine, provider)
|
158 |
+
elif engine == "claude":
|
159 |
+
return await get_claude_payload(request, engine, provider)
|
160 |
+
elif engine == "gpt":
|
161 |
+
return await get_gpt_payload(request, engine, provider)
|
162 |
+
else:
|
163 |
+
raise ValueError("Unknown payload")
|
response.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
import json
|
3 |
+
import httpx
|
4 |
+
|
5 |
+
async def generate_sse_response(timestamp, model, content):
|
6 |
+
sample_data = {
|
7 |
+
"id": "chatcmpl-9ijPeRHa0wtyA2G8wq5z8FC3wGMzc",
|
8 |
+
"object": "chat.completion.chunk",
|
9 |
+
"created": timestamp,
|
10 |
+
"model": model,
|
11 |
+
"system_fingerprint": "fp_d576307f90",
|
12 |
+
"choices": [
|
13 |
+
{
|
14 |
+
"index": 0,
|
15 |
+
"delta": {"content": content},
|
16 |
+
"logprobs": None,
|
17 |
+
"finish_reason": None
|
18 |
+
}
|
19 |
+
],
|
20 |
+
"usage": None
|
21 |
+
}
|
22 |
+
json_data = json.dumps(sample_data, ensure_ascii=False)
|
23 |
+
|
24 |
+
# 构建SSE响应
|
25 |
+
sse_response = f"data: {json_data}\n\n"
|
26 |
+
|
27 |
+
return sse_response
|
28 |
+
|
29 |
+
async def fetch_gemini_response_stream(client, url, headers, payload, model):
|
30 |
+
try:
|
31 |
+
timestamp = datetime.timestamp(datetime.now())
|
32 |
+
async with client.stream('POST', url, headers=headers, json=payload) as response:
|
33 |
+
buffer = ""
|
34 |
+
async for chunk in response.aiter_text():
|
35 |
+
buffer += chunk
|
36 |
+
while "\n" in buffer:
|
37 |
+
line, buffer = buffer.split("\n", 1)
|
38 |
+
print(line)
|
39 |
+
if line and '\"text\": \"' in line:
|
40 |
+
try:
|
41 |
+
json_data = json.loads( "{" + line + "}")
|
42 |
+
content = json_data.get('text', '')
|
43 |
+
content = "\n".join(content.split("\\n"))
|
44 |
+
sse_string = await generate_sse_response(timestamp, model, content)
|
45 |
+
yield sse_string
|
46 |
+
except json.JSONDecodeError:
|
47 |
+
print(f"无法解析JSON: {line}")
|
48 |
+
|
49 |
+
# 处理缓冲区中剩余的内容
|
50 |
+
if buffer:
|
51 |
+
# print(buffer)
|
52 |
+
if '\"text\": \"' in buffer:
|
53 |
+
try:
|
54 |
+
json_data = json.loads(buffer)
|
55 |
+
content = json_data.get('text', '')
|
56 |
+
content = "\n".join(content.split("\\n"))
|
57 |
+
sse_string = await generate_sse_response(timestamp, model, content)
|
58 |
+
yield sse_string
|
59 |
+
except json.JSONDecodeError:
|
60 |
+
print(f"无法解析JSON: {buffer}")
|
61 |
+
|
62 |
+
yield "data: [DONE]\n\n"
|
63 |
+
except httpx.ConnectError as e:
|
64 |
+
print(f"连接错误: {e}")
|
65 |
+
|
66 |
+
async def fetch_gpt_response_stream(client, url, headers, payload):
|
67 |
+
try:
|
68 |
+
async with client.stream('POST', url, headers=headers, json=payload) as response:
|
69 |
+
async for chunk in response.aiter_bytes():
|
70 |
+
print(chunk.decode('utf-8'))
|
71 |
+
yield chunk
|
72 |
+
except httpx.ConnectError as e:
|
73 |
+
print(f"连接错误: {e}")
|
74 |
+
|
75 |
+
async def fetch_claude_response_stream(client, url, headers, payload, engine, model):
|
76 |
+
try:
|
77 |
+
timestamp = datetime.timestamp(datetime.now())
|
78 |
+
async with client.stream('POST', url, headers=headers, json=payload) as response:
|
79 |
+
buffer = ""
|
80 |
+
async for chunk in response.aiter_text():
|
81 |
+
buffer += chunk
|
82 |
+
while "\n" in buffer:
|
83 |
+
line, buffer = buffer.split("\n", 1)
|
84 |
+
# print(line)
|
85 |
+
if engine == "gemini":
|
86 |
+
if line and '\"text\": \"' in line:
|
87 |
+
try:
|
88 |
+
json_data = json.loads( "{" + line + "}")
|
89 |
+
content = json_data.get('text', '')
|
90 |
+
content = "\n".join(content.split("\\n"))
|
91 |
+
sse_string = await generate_sse_response(timestamp, model, content)
|
92 |
+
yield sse_string
|
93 |
+
except json.JSONDecodeError:
|
94 |
+
print(f"无法解析JSON: {line}")
|
95 |
+
else:
|
96 |
+
yield line + "\n"
|
97 |
+
|
98 |
+
# 处理缓冲区中剩余的内容
|
99 |
+
if buffer:
|
100 |
+
# print(buffer)
|
101 |
+
if engine == "gemini":
|
102 |
+
if '\"text\": \"' in buffer:
|
103 |
+
try:
|
104 |
+
json_data = json.loads(buffer)
|
105 |
+
content = json_data.get('text', '')
|
106 |
+
content = "\n".join(content.split("\\n"))
|
107 |
+
sse_string = await generate_sse_response(timestamp, model, content)
|
108 |
+
yield sse_string
|
109 |
+
except json.JSONDecodeError:
|
110 |
+
print(f"无法解析JSON: {buffer}")
|
111 |
+
else:
|
112 |
+
yield buffer
|
113 |
+
|
114 |
+
if engine == "gemini":
|
115 |
+
yield "data: [DONE]\n\n"
|
116 |
+
except httpx.ConnectError as e:
|
117 |
+
print(f"连接错误: {e}")
|
118 |
+
|
119 |
+
async def fetch_response(client, url, headers, payload):
|
120 |
+
response = await client.post(url, headers=headers, json=payload)
|
121 |
+
return response.json()
|
122 |
+
|
123 |
+
async def fetch_response_stream(client, url, headers, payload, engine, model):
|
124 |
+
print(f"Engine: {engine}")
|
125 |
+
if engine == "gemini":
|
126 |
+
async for chunk in fetch_gemini_response_stream(client, url, headers, payload, model):
|
127 |
+
yield chunk
|
128 |
+
elif engine == "claude":
|
129 |
+
async for chunk in fetch_claude_response_stream(client, url, headers, payload, engine, model):
|
130 |
+
yield chunk
|
131 |
+
elif engine == "gpt":
|
132 |
+
async for chunk in fetch_gpt_response_stream(client, url, headers, payload):
|
133 |
+
yield chunk
|
134 |
+
else:
|
135 |
+
raise ValueError("Unknown response")
|