""" Adapted from https://github.com/huggingface/flux-fast/blob/156281514e2725782ffab9431d4004840f7e3b4d/utils/pipeline_utils.py#L87 """ import torch from typing import List, Optional import inspect import torch from kernels import get_kernel _flash_attn_func = get_kernel("kernels-community/vllm-flash-attn3").flash_attn_func @torch.library.custom_op("flash::flash_attn_func", mutates_args=()) def flash_attn_func( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, softmax_scale: Optional[float] = None, causal: bool = False, # probably wrong type for these 4 qv: Optional[float] = None, q_descale: Optional[float] = None, k_descale: Optional[float] = None, v_descale: Optional[float] = None, window_size: Optional[List[int]] = None, sink_token_length: int = 0, softcap: float = 0.0, num_splits: int = 1, # probably wrong type for this too pack_gqa: Optional[float] = None, deterministic: bool = False, sm_margin: int = 0, ) -> torch.Tensor: # Tuple[torch.Tensor, torch.Tensor]: if window_size is None: window_size = (-1, -1) else: window_size = tuple(window_size) sig = inspect.signature(_flash_attn_func) accepted = set(sig.parameters) all_kwargs = { "softmax_scale": softmax_scale, "causal": causal, "qv": qv, "q_descale": q_descale, "k_descale": k_descale, "v_descale": v_descale, "window_size": window_size, "sink_token_length": sink_token_length, "softcap": softcap, "num_splits": num_splits, "pack_gqa": pack_gqa, "deterministic": deterministic, "sm_margin": sm_margin, } kwargs = {k: v for k, v in all_kwargs.items() if k in accepted} outputs = _flash_attn_func(q, k, v, **kwargs) return outputs[0] @flash_attn_func.register_fake def _(q, k, v, **kwargs): # two outputs: # 1. output: (batch, seq_len, num_heads, head_dim) # 2. softmax_lse: (batch, num_heads, seq_len) with dtype=torch.float32 meta_q = torch.empty_like(q).contiguous() return meta_q # , q.new_empty((q.size(0), q.size(2), q.size(1)), dtype=torch.float32) class FlashFluxAttnProcessor3_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __call__( self, attn, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` # `context` projections. if encoder_hidden_states is not None: encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) # NB: transposes are necessary to match expected SDPA input shape hidden_states = flash_attn_func(query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2))[ 0 ].transpose(1, 2) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states