Spaces:
Runtime error
Runtime error
# Modified from https://github.com/huggingface/transformers/blob/v4.41.0/src/transformers/models/mixtral/modeling_mixtral.py | |
"""PyTorch Mixtral model.""" | |
import inspect | |
import math | |
import os | |
import types | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
from transformers.activations import ACT2FN | |
from transformers.cache_utils import Cache, DynamicCache | |
from transformers.modeling_attn_mask_utils import ( | |
_prepare_4d_causal_attention_mask, | |
_prepare_4d_causal_attention_mask_for_sdpa) | |
from transformers.modeling_outputs import (MoeCausalLMOutputWithPast, | |
MoeModelOutputWithPast, | |
SequenceClassifierOutputWithPast) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13 | |
from transformers.utils import (add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, logging, | |
replace_return_docstrings) | |
from transformers.utils.import_utils import is_torch_fx_available | |
from xtuner.utils import load_state_dict_into_model | |
from .configuration_mixtral import MixtralConfig | |
if is_flash_attn_2_available(): | |
from flash_attn import flash_attn_func, flash_attn_varlen_func | |
from flash_attn.bert_padding import pad_input # noqa | |
from flash_attn.bert_padding import index_first_axis, unpad_input | |
_flash_supports_window_size = 'window_size' in list( | |
inspect.signature(flash_attn_func).parameters) | |
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph. | |
# It means that the function will not be traced through and simply appear as a node in the graph. | |
if is_torch_fx_available(): | |
if not is_torch_greater_or_equal_than_1_13: | |
import torch.fx | |
_prepare_4d_causal_attention_mask = torch.fx.wrap( | |
_prepare_4d_causal_attention_mask) | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = 'MixtralConfig' | |
def load_balancing_loss_func( | |
gate_logits: torch.Tensor, | |
num_experts: torch.Tensor = None, | |
top_k=2, | |
attention_mask: Optional[torch.Tensor] = None) -> float: | |
r""" | |
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. | |
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss | |
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between | |
experts is too unbalanced. | |
Args: | |
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): | |
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of | |
shape [batch_size X sequence_length, num_experts]. | |
attention_mask (`torch.Tensor`, None): | |
The attention_mask used in forward function | |
shape [batch_size X sequence_length] if not None. | |
num_experts (`int`, *optional*): | |
Number of experts | |
Returns: | |
The auxiliary loss. | |
""" | |
if gate_logits is None or not isinstance(gate_logits, tuple): | |
return 0 | |
if isinstance(gate_logits, tuple): | |
compute_device = gate_logits[0].device | |
concatenated_gate_logits = torch.cat( | |
[layer_gate.to(compute_device) for layer_gate in gate_logits], | |
dim=0) | |
routing_weights = torch.nn.functional.softmax( | |
concatenated_gate_logits, dim=-1) | |
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1) | |
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) | |
if attention_mask is None: | |
# Compute the percentage of tokens routed to each experts | |
tokens_per_expert = torch.mean(expert_mask.float(), dim=0) | |
# Compute the average probability of routing to these experts | |
router_prob_per_expert = torch.mean(routing_weights, dim=0) | |
else: | |
batch_size, sequence_length = attention_mask.shape | |
num_hidden_layers = concatenated_gate_logits.shape[0] // ( | |
batch_size * sequence_length) | |
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask | |
expert_attention_mask = ( | |
attention_mask[None, :, :, None, None].expand( | |
(num_hidden_layers, batch_size, sequence_length, top_k, | |
num_experts)).reshape(-1, top_k, | |
num_experts).to(compute_device)) | |
# Compute the percentage of tokens routed to each experts | |
tokens_per_expert = torch.sum( | |
expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( | |
expert_attention_mask, dim=0) | |
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert | |
router_per_expert_attention_mask = ( | |
attention_mask[None, :, :, None].expand( | |
(num_hidden_layers, batch_size, sequence_length, | |
num_experts)).reshape(-1, num_experts).to(compute_device)) | |
# Compute the average probability of routing to these experts | |
router_prob_per_expert = torch.sum( | |
routing_weights * router_per_expert_attention_mask, | |
dim=0) / torch.sum( | |
router_per_expert_attention_mask, dim=0) | |
overall_loss = torch.sum(tokens_per_expert * | |
router_prob_per_expert.unsqueeze(0)) | |
return overall_loss * num_experts | |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad( | |
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mixtral | |
class MixtralRMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
"""MixtralRMSNorm is equivalent to T5LayerNorm.""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + | |
self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Mixtral | |
class MixtralRotaryEmbedding(nn.Module): | |
def __init__(self, | |
dim, | |
max_position_embeddings=2048, | |
base=10000, | |
device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / ( | |
self.base | |
**(torch.arange(0, self.dim, 2, | |
dtype=torch.int64).float().to(device) / self.dim)) | |
self.register_buffer('inv_freq', inv_freq, persistent=False) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, | |
device=self.inv_freq.device, | |
dtype=torch.get_default_dtype()) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange( | |
self.max_seq_len_cached, device=device, | |
dtype=torch.int64).type_as(self.inv_freq) | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer( | |
'cos_cached', emb.cos().to(dtype), persistent=False) | |
self.register_buffer( | |
'sin_cached', emb.sin().to(dtype), persistent=False) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
if seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache( | |
seq_len=seq_len, device=x.device, dtype=x.dtype) | |
return ( | |
self.cos_cached[:seq_len].to(dtype=x.dtype), | |
self.sin_cached[:seq_len].to(dtype=x.dtype), | |
) | |
# Copied from transformers.models.llama.modeling_llama.rotate_half | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., :x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2:] | |
return torch.cat((-x2, x1), dim=-1) | |
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`): | |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be | |
used to pass offsetted position ids when working with a KV-cache. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos[position_ids].unsqueeze(unsqueeze_dim) | |
sin = sin[position_ids].unsqueeze(unsqueeze_dim) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
# Copied from transformers.models.llama.modeling_llama.repeat_kv | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
"""This is the equivalent of torch.repeat_interleave(x, dim=1, | |
repeats=n_rep). | |
The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to | |
(batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, | |
None, :, :].expand(batch, | |
num_key_value_heads, | |
n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, | |
head_dim) | |
# Copied from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Mixtral | |
class MixtralAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper. | |
Modified to use sliding window attention: Longformer and "Generating Long | |
Sequences with Sparse Transformers". | |
""" | |
def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None): | |
super().__init__() | |
self.config = config | |
self.layer_idx = layer_idx | |
if layer_idx is None: | |
logger.warning_once( | |
f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will ' | |
'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` ' | |
'when creating this class.') | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.rope_theta = config.rope_theta | |
self.is_causal = True | |
self.attention_dropout = config.attention_dropout | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}' | |
f' and `num_heads`: {self.num_heads}).') | |
self.q_proj = nn.Linear( | |
self.hidden_size, self.num_heads * self.head_dim, bias=False) | |
self.k_proj = nn.Linear( | |
self.hidden_size, | |
self.num_key_value_heads * self.head_dim, | |
bias=False) | |
self.v_proj = nn.Linear( | |
self.hidden_size, | |
self.num_key_value_heads * self.head_dim, | |
bias=False) | |
self.o_proj = nn.Linear( | |
self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
self.rotary_emb = MixtralRotaryEmbedding( | |
self.head_dim, | |
max_position_embeddings=self.max_position_embeddings, | |
base=self.rope_theta, | |
) | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, | |
self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], | |
Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, | |
self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, | |
self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, | |
self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} ' | |
'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class ' | |
'with a layer index.') | |
kv_seq_len += past_key_value.get_usable_length( | |
kv_seq_len, self.layer_idx) | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb( | |
query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, cache_kwargs) | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul(query_states, key_states.transpose( | |
2, 3)) / math.sqrt(self.head_dim) | |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
raise ValueError( | |
f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is' | |
f' {attn_weights.size()}') | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}' | |
) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax( | |
attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout( | |
attn_weights, p=self.attention_dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is' | |
f' {attn_output.size()}') | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Mixtral | |
class MixtralFlashAttention2(MixtralAttention): | |
"""Mixtral flash attention module. | |
This module inherits from `MixtralAttention` as the weights of the module | |
stays untouched. The only required change would be on the forward pass | |
where it needs to correctly call the public API of flash attention and deal | |
with padding tokens in case the input contains any of them. | |
""" | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10( | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
): | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, | |
self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, | |
self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, | |
self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} ' | |
'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class ' | |
'with a layer index.') | |
kv_seq_len += past_key_value.get_usable_length( | |
kv_seq_len, self.layer_idx) | |
# Because the input can be padded, the absolute sequence length depends on the max position id. | |
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 | |
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) | |
query_states, key_states = apply_rotary_pos_emb( | |
query_states, key_states, cos, sin, position_ids) | |
use_sliding_windows = ( | |
_flash_supports_window_size | |
and getattr(self.config, 'sliding_window', None) is not None | |
and kv_seq_len > self.config.sliding_window) | |
if not _flash_supports_window_size: | |
logger.warning_once( | |
'The current flash attention version does not support sliding window attention, for a more memory efficient implementation' | |
' make sure to upgrade flash-attn library.') | |
if past_key_value is not None: | |
# Activate slicing cache only if the config has a value `sliding_windows` attribute | |
cache_has_contents = past_key_value.get_seq_length( | |
self.layer_idx) > 0 | |
if (getattr(self.config, 'sliding_window', None) is not None | |
and kv_seq_len > self.config.sliding_window | |
and cache_has_contents): | |
slicing_tokens = 1 - self.config.sliding_window | |
past_key = past_key_value[self.layer_idx][0] | |
past_value = past_key_value[self.layer_idx][1] | |
past_key = past_key[:, :, slicing_tokens:, :].contiguous() | |
past_value = past_value[:, :, slicing_tokens:, :].contiguous() | |
if past_key.shape[-2] != self.config.sliding_window - 1: | |
raise ValueError( | |
f'past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got' | |
f' {past_key.shape}') | |
if attention_mask is not None: | |
attention_mask = attention_mask[:, slicing_tokens:] | |
attention_mask = torch.cat([ | |
attention_mask, | |
torch.ones_like(attention_mask[:, -1:]) | |
], | |
dim=-1) | |
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, cache_kwargs) | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
dropout_rate = 0.0 if not self.training else self.attention_dropout | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in float16 just to be sure everything works as expected. | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, '_pre_quantization_dtype'): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f'The input hidden states seems to be silently casted in float32, this might be related to' | |
f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in' | |
f' {target_dtype}.') | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
# Reashape to the expected shape for Flash Attention | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
attn_output = self._flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
q_len, | |
dropout=dropout_rate, | |
use_sliding_windows=use_sliding_windows, | |
) | |
attn_output = attn_output.reshape(bsz, q_len, | |
self.hidden_size).contiguous() | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
def _flash_attention_forward( | |
self, | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
query_length, | |
dropout=0.0, | |
softmax_scale=None, | |
use_sliding_windows=False, | |
): | |
""" | |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
first unpad the input, then computes the attention scores and pad the final attention scores. | |
Args: | |
query_states (`torch.Tensor`): | |
Input query states to be passed to Flash Attention API | |
key_states (`torch.Tensor`): | |
Input key states to be passed to Flash Attention API | |
value_states (`torch.Tensor`): | |
Input value states to be passed to Flash Attention API | |
attention_mask (`torch.Tensor`): | |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
position of padding tokens and 1 for the position of non-padding tokens. | |
dropout (`float`): | |
Attention dropout | |
softmax_scale (`float`, *optional*): | |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
use_sliding_windows (`bool`, *optional*): | |
Whether to activate sliding window attention. | |
""" | |
if not self._flash_attn_uses_top_left_mask: | |
causal = self.is_causal | |
else: | |
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. | |
causal = self.is_causal and query_length != 1 | |
# Contains at least one padding token in the sequence | |
if attention_mask is not None: | |
batch_size = query_states.shape[0] | |
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
query_states, key_states, value_states, attention_mask, | |
query_length) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
if not use_sliding_windows: | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
else: | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
window_size=(self.config.sliding_window, | |
self.config.sliding_window), | |
) | |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, | |
query_length) | |
else: | |
if not use_sliding_windows: | |
attn_output = flash_attn_func( | |
query_states, | |
key_states, | |
value_states, | |
dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
else: | |
attn_output = flash_attn_func( | |
query_states, | |
key_states, | |
value_states, | |
dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
window_size=(self.config.sliding_window, | |
self.config.sliding_window), | |
) | |
return attn_output | |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, | |
query_length): | |
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape | |
# On the first iteration we need to properly re-create the padding mask | |
# by slicing it on the proper place | |
if kv_seq_len != attention_mask.shape[-1]: | |
attention_mask_num_tokens = attention_mask.shape[-1] | |
attention_mask = attention_mask[:, attention_mask_num_tokens - | |
kv_seq_len:] | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data( | |
attention_mask) | |
key_layer = index_first_axis( | |
key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), | |
indices_k) | |
value_layer = index_first_axis( | |
value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), | |
indices_k) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, num_heads, | |
head_dim), indices_k) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( | |
query_layer, attention_mask) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q, | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
# Copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Mixtral | |
class MixtralSdpaAttention(MixtralAttention): | |
"""Mixtral attention module using | |
torch.nn.functional.scaled_dot_product_attention. | |
This module inherits from `MixtralAttention` as the weights of the module | |
stays untouched. The only changes are on the forward pass to adapt to SDPA | |
API. | |
""" | |
# Adapted from MixtralAttention.forward | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], | |
Optional[Tuple[torch.Tensor]]]: | |
if output_attentions: | |
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. | |
logger.warning_once( | |
'MixtralModel is using MixtralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, ' | |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
return super().forward( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, | |
self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, | |
self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, | |
self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value.get_usable_length( | |
kv_seq_len, self.layer_idx) | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
query_states, key_states = apply_rotary_pos_emb( | |
query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}' | |
) | |
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, | |
# Reference: https://github.com/pytorch/pytorch/issues/112577. | |
if query_states.device.type == 'cuda' and attention_mask is not None: | |
query_states = query_states.contiguous() | |
key_states = key_states.contiguous() | |
value_states = value_states.contiguous() | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=attention_mask, | |
dropout_p=self.attention_dropout if self.training else 0.0, | |
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. | |
is_causal=self.is_causal and attention_mask is None and q_len > 1, | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.view(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
return attn_output, None, past_key_value | |
MIXTRAL_ATTENTION_CLASSES = { | |
'eager': MixtralAttention, | |
'flash_attention_2': MixtralFlashAttention2, | |
'sdpa': MixtralSdpaAttention, | |
} | |
class MixtralBlockSparseTop2MLP(nn.Module): | |
def __init__(self, config: MixtralConfig): | |
super().__init__() | |
self.ffn_dim = config.intermediate_size | |
self.hidden_dim = config.hidden_size | |
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) | |
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False) | |
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) | |
self.act_fn = ACT2FN[config.hidden_act] | |
def forward(self, hidden_states): | |
current_hidden_states = self.act_fn( | |
self.w1(hidden_states)) * self.w3(hidden_states) | |
current_hidden_states = self.w2(current_hidden_states) | |
return current_hidden_states | |
class MixtralSparseMoeBlock(nn.Module): | |
"""This implementation is strictly equivalent to standard MoE with full | |
capacity (no dropped tokens). | |
It's faster since it formulates MoE operations in terms of block-sparse | |
operations to accommodate imbalanced assignments of tokens to experts, | |
whereas standard MoE either (1) drop tokens at the cost of reduced | |
performance or (2) set capacity factor to number of experts and thus waste | |
computation and memory on padding. | |
""" | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_dim = config.hidden_size | |
self.ffn_dim = config.intermediate_size | |
self.num_experts = config.num_local_experts | |
self.top_k = config.num_experts_per_tok | |
# gating | |
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False) | |
self.experts = nn.ModuleList([ | |
MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts) | |
]) | |
# Jitter parameters | |
self.jitter_noise = config.router_jitter_noise | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
"""""" | |
batch_size, sequence_length, hidden_dim = hidden_states.shape | |
if self.training and self.jitter_noise > 0: | |
hidden_states *= torch.empty_like(hidden_states).uniform_( | |
1.0 - self.jitter_noise, 1.0 + self.jitter_noise) | |
hidden_states = hidden_states.view(-1, hidden_dim) | |
# router_logits: (batch * sequence_length, n_experts) | |
router_logits = self.gate(hidden_states) | |
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) | |
routing_weights, selected_experts = torch.topk( | |
routing_weights, self.top_k, dim=-1) | |
routing_weights /= routing_weights.sum(dim=-1, keepdim=True) | |
# we cast back to the input dtype | |
routing_weights = routing_weights.to(hidden_states.dtype) | |
final_hidden_states = torch.zeros( | |
(batch_size * sequence_length, hidden_dim), | |
dtype=hidden_states.dtype, | |
device=hidden_states.device) | |
# One hot encode the selected experts to create an expert mask | |
# this will be used to easily index which expert is going to be sollicitated | |
expert_mask = torch.nn.functional.one_hot( | |
selected_experts, num_classes=self.num_experts).permute(2, 1, 0) | |
# Loop over all available experts in the model and perform the computation on each expert | |
for expert_idx in range(self.num_experts): | |
expert_layer = self.experts[expert_idx] | |
idx, top_x = torch.where(expert_mask[expert_idx]) | |
# Index the correct hidden states and compute the expert hidden state for | |
# the current expert. We need to make sure to multiply the output hidden | |
# states by `routing_weights` on the corresponding tokens (top-1 and top-2) | |
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) | |
current_hidden_states = expert_layer( | |
current_state) * routing_weights[top_x, idx, None] | |
# However `index_add_` only support torch tensors for indexing so we'll use | |
# the `top_x` tensor here. | |
final_hidden_states.index_add_( | |
0, top_x, current_hidden_states.to(hidden_states.dtype)) | |
final_hidden_states = final_hidden_states.reshape( | |
batch_size, sequence_length, hidden_dim) | |
return final_hidden_states, router_logits | |
class ExpertShard(nn.Module): | |
def __init__(self, config, expert_in_one_shard=1): | |
super().__init__() | |
self.w1w3 = nn.Parameter( | |
torch.empty(expert_in_one_shard, config.intermediate_size * 2, | |
config.hidden_size)) | |
self.w2 = nn.Parameter( | |
torch.empty(expert_in_one_shard, config.hidden_size, | |
config.intermediate_size)) | |
self.act = ACT2FN[config.hidden_act] | |
self.expert_in_one_shard = expert_in_one_shard | |
def forward(self, hidden_states, expert_mask, routing_weights, | |
final_hidden_states): | |
hidden_dim = hidden_states.shape[-1] | |
for expert_idx in range(self.expert_in_one_shard): | |
idx, top_x = torch.where(expert_mask[expert_idx]) | |
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) | |
w1w3 = self.w1w3[expert_idx] | |
w2 = self.w2[expert_idx] | |
gate_up_out = torch.matmul(current_state, w1w3.T) | |
gate_out, up_out = gate_up_out.chunk(2, dim=-1) | |
gate_out = self.act(gate_out) | |
out = gate_out * up_out | |
out = torch.matmul(out, w2.T) | |
current_hidden_states = out * routing_weights[top_x, idx, None] | |
final_hidden_states.index_add_( | |
0, top_x, current_hidden_states.to(hidden_states.dtype)) | |
return final_hidden_states | |
class MixtralSparseShardMoeBlock(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.hidden_dim = config.hidden_size | |
self.ffn_dim = config.intermediate_size | |
self.num_experts = config.num_local_experts | |
self.top_k = config.num_experts_per_tok | |
# gating | |
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False) | |
expert_in_one_shard = config.expert_in_one_shard | |
assert config.num_local_experts % expert_in_one_shard == 0, \ | |
('num_local_experts should be divisible by expert_in_one_shard, but got ' | |
f'num_local_experts = {config.num_local_experts} and expert_in_one_shard = {expert_in_one_shard}') | |
self.shard_num = config.num_local_experts // expert_in_one_shard | |
self.expert_in_one_shard = expert_in_one_shard | |
self.experts = nn.ModuleList([ | |
ExpertShard(config, self.expert_in_one_shard) | |
for i in range(self.shard_num) | |
]) | |
# Jitter parameters | |
self.jitter_noise = config.router_jitter_noise | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
"""""" | |
batch_size, sequence_length, hidden_dim = hidden_states.shape | |
if self.training and self.jitter_noise > 0: | |
hidden_states *= torch.empty_like(hidden_states).uniform_( | |
1.0 - self.jitter_noise, 1.0 + self.jitter_noise) | |
hidden_states = hidden_states.view(-1, hidden_dim) | |
# router_logits: (batch * sequence_length, n_experts) | |
router_logits = self.gate(hidden_states) | |
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) | |
routing_weights, selected_experts = torch.topk( | |
routing_weights, self.top_k, dim=-1) | |
routing_weights /= routing_weights.sum(dim=-1, keepdim=True) | |
# we cast back to the input dtype | |
routing_weights = routing_weights.to(hidden_states.dtype) | |
final_hidden_states = torch.zeros( | |
(batch_size * sequence_length, hidden_dim), | |
dtype=hidden_states.dtype, | |
device=hidden_states.device) | |
# One hot encode the selected experts to create an expert mask | |
# this will be used to easily index which expert is going to be sollicitated | |
expert_mask = torch.nn.functional.one_hot( | |
selected_experts, num_classes=self.num_experts).permute(2, 1, 0) | |
# Loop over all available experts in the model and perform the computation on each expert | |
for shard_index in range(self.shard_num): | |
mask = expert_mask[shard_index * | |
self.expert_in_one_shard:(shard_index + 1) * | |
self.expert_in_one_shard] | |
final_hidden_states = self.experts[shard_index]( | |
hidden_states, mask, routing_weights, final_hidden_states) | |
final_hidden_states = final_hidden_states.reshape( | |
batch_size, sequence_length, hidden_dim) | |
return final_hidden_states, router_logits | |
class MixtralDecoderLayer(nn.Module): | |
def __init__(self, config: MixtralConfig, layer_idx: int): | |
super().__init__() | |
self.hidden_size = config.hidden_size | |
self.self_attn = MIXTRAL_ATTENTION_CLASSES[ | |
config._attn_implementation](config, layer_idx) | |
moe_implementation = config.moe_implementation | |
if moe_implementation == 'origin': | |
block = MixtralSparseMoeBlock | |
elif moe_implementation == 'shard': | |
block = MixtralSparseShardMoeBlock | |
else: | |
raise NotImplementedError | |
self.block_sparse_moe = block(config) | |
self.input_layernorm = MixtralRMSNorm( | |
config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = MixtralRMSNorm( | |
config.hidden_size, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
output_router_logits: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, | |
torch.FloatTensor]]]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, sequence_length)` where padding elements are indicated by 0. | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_router_logits (`bool`, *optional*): | |
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and | |
should not be returned during inference. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
""" | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = residual + hidden_states | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.post_attention_layernorm(hidden_states) | |
hidden_states, router_logits = self.block_sparse_moe(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states, ) | |
if output_attentions: | |
outputs += (self_attn_weights, ) | |
if use_cache: | |
outputs += (present_key_value, ) | |
if output_router_logits: | |
outputs += (router_logits, ) | |
return outputs | |
def _load_pretrained_model( | |
cls, | |
model, | |
state_dict, | |
loaded_keys, | |
resolved_archive_file, | |
pretrained_model_name_or_path, | |
ignore_mismatched_sizes=False, | |
sharded_metadata=None, | |
_fast_init=True, | |
low_cpu_mem_usage=False, | |
device_map=None, | |
offload_folder=None, | |
offload_state_dict=None, | |
dtype=None, | |
hf_quantizer=None, | |
keep_in_fp32_modules=None, | |
gguf_path=None, | |
): | |
if ((state_dict is not None) or (resolved_archive_file is None) | |
or (low_cpu_mem_usage) or (device_map is not None) | |
or (offload_folder is not None) or | |
(not (offload_state_dict is None or offload_state_dict is False)) | |
or (hf_quantizer is not None) or | |
(keep_in_fp32_modules is not None and len(keep_in_fp32_modules) > 0) | |
or (gguf_path is not None)): | |
raise NotImplementedError | |
folder = os.path.sep.join(resolved_archive_file[0].split(os.path.sep)[:-1]) | |
error_msgs = load_state_dict_into_model(model, folder) | |
return model, [], [], [], None, error_msgs | |
MIXTRAL_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`MixtralConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
# Copied from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->Mixtral | |
class MixtralPreTrainedModel(PreTrainedModel): | |
config_class = MixtralConfig | |
base_model_prefix = 'model' | |
supports_gradient_checkpointing = True | |
_no_split_modules = ['MixtralDecoderLayer'] | |
_skip_keys_device_placement = 'past_key_values' | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
_supports_cache_class = True | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs): | |
moe_implementation = kwargs.get('moe_implementation', 'origin') | |
if moe_implementation == 'origin': | |
return super().from_pretrained(pretrained_model_name_or_path, | |
*args, **kwargs) | |
cls._load_pretrained_model = types.MethodType(_load_pretrained_model, | |
cls) | |
return super().from_pretrained(pretrained_model_name_or_path, *args, | |
**kwargs) | |
MIXTRAL_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
output_router_logits (`bool`, *optional*): | |
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and | |
should not be returned during inference. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
# Copied from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->MIXTRAL,Mistral->Mixtral | |
class MixtralModel(MixtralPreTrainedModel): | |
"""Transformer decoder consisting of *config.num_hidden_layers* layers. | |
Each layer is a [`MixtralDecoderLayer`] | |
Args: | |
config: MixtralConfig | |
""" | |
def __init__(self, config: MixtralConfig): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, | |
self.padding_idx) | |
self.layers = nn.ModuleList([ | |
MixtralDecoderLayer(config, layer_idx) | |
for layer_idx in range(config.num_hidden_layers) | |
]) | |
self._attn_implementation = config._attn_implementation | |
self.norm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
# Ignore copy | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_router_logits: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MoeModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_router_logits = ( | |
output_router_logits if output_router_logits is not None else | |
self.config.output_router_logits) | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else | |
self.config.output_hidden_states) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError( | |
'You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time' | |
) | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape | |
elif inputs_embeds is not None: | |
batch_size, seq_length, _ = inputs_embeds.shape | |
else: | |
raise ValueError( | |
'You have to specify either decoder_input_ids or decoder_inputs_embeds' | |
) | |
past_key_values_length = 0 | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...' | |
) | |
use_cache = False | |
if use_cache: | |
use_legacy_cache = not isinstance(past_key_values, Cache) | |
if use_legacy_cache: | |
past_key_values = DynamicCache.from_legacy_cache( | |
past_key_values) | |
past_key_values_length = past_key_values.get_usable_length( | |
seq_length) | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, | |
seq_length + past_key_values_length, | |
dtype=torch.long, | |
device=device) | |
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | |
else: | |
position_ids = position_ids.view(-1, seq_length).long() | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
if attention_mask is not None and self._attn_implementation == 'flash_attention_2' and use_cache: | |
is_padding_right = attention_mask[:, -1].sum().item() != batch_size | |
if is_padding_right: | |
raise ValueError( | |
"You are attempting to perform batched generation with padding_side='right'" | |
' this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to ' | |
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " | |
) | |
if self._attn_implementation == 'flash_attention_2': | |
# 2d mask is passed through the layers | |
attention_mask = attention_mask if ( | |
attention_mask is not None and 0 in attention_mask) else None | |
elif self._attn_implementation == 'sdpa' and not output_attentions: | |
# output_attentions=True can not be supported when using SDPA, and we fall back on | |
# the manual implementation that requires a 4D causal mask in all cases. | |
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | |
attention_mask, | |
(batch_size, seq_length), | |
inputs_embeds, | |
past_key_values_length, | |
sliding_window=self.config.sliding_window, | |
) | |
else: | |
# 4d mask is passed through the layers | |
attention_mask = _prepare_4d_causal_attention_mask( | |
attention_mask, | |
(batch_size, seq_length), | |
inputs_embeds, | |
past_key_values_length, | |
sliding_window=self.config.sliding_window, | |
) | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_router_logits = () if output_router_logits else None | |
next_decoder_cache = None | |
for decoder_layer in self.layers: | |
if output_hidden_states: | |
all_hidden_states += (hidden_states, ) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_values, | |
output_attentions, | |
output_router_logits, | |
use_cache, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
output_router_logits=output_router_logits, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache = layer_outputs[ | |
2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1], ) | |
if output_router_logits: | |
all_router_logits += (layer_outputs[-1], ) | |
hidden_states = self.norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states, ) | |
next_cache = None | |
if use_cache: | |
next_cache = next_decoder_cache.to_legacy_cache( | |
) if use_legacy_cache else next_decoder_cache | |
if not return_dict: | |
return tuple(v for v in [ | |
hidden_states, next_cache, all_hidden_states, all_self_attns, | |
all_router_logits | |
] if v is not None) | |
return MoeModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
router_logits=all_router_logits, | |
) | |
class MixtralForCausalLM(MixtralPreTrainedModel): | |
_tied_weights_keys = ['lm_head.weight'] | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = MixtralModel(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear( | |
config.hidden_size, config.vocab_size, bias=False) | |
self.router_aux_loss_coef = config.router_aux_loss_coef | |
self.num_experts = config.num_local_experts | |
self.num_experts_per_tok = config.num_experts_per_tok | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def get_decoder(self): | |
return self.model | |
# Ignore copy | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
output_router_logits: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, MoeCausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, MixtralForCausalLM | |
>>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1") | |
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1") | |
>>> prompt = "Hey, are you conscious? Can you talk to me?" | |
>>> inputs = tokenizer(prompt, return_tensors="pt") | |
>>> # Generate | |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_router_logits = ( | |
output_router_logits if output_router_logits is not None else | |
self.config.output_router_logits) | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else | |
self.config.output_hidden_states) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
output_router_logits=output_router_logits, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
logits = logits.float() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
aux_loss = None | |
if output_router_logits: | |
aux_loss = load_balancing_loss_func( | |
outputs.router_logits if return_dict else outputs[-1], | |
self.num_experts, | |
self.num_experts_per_tok, | |
attention_mask, | |
) | |
if labels is not None: | |
loss += self.router_aux_loss_coef * aux_loss.to( | |
loss.device) # make sure to reside in the same device | |
if not return_dict: | |
output = (logits, ) + outputs[1:] | |
if output_router_logits: | |
output = (aux_loss, ) + output | |
return (loss, ) + output if loss is not None else output | |
return MoeCausalLMOutputWithPast( | |
loss=loss, | |
aux_loss=aux_loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
router_logits=outputs.router_logits, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
inputs_embeds=None, | |
output_router_logits=False, | |
**kwargs, | |
): | |
# Omit tokens covered by past_key_values | |
if past_key_values is not None: | |
if isinstance(past_key_values, Cache): | |
cache_length = past_key_values.get_seq_length() | |
past_length = past_key_values.seen_tokens | |
max_cache_length = past_key_values.get_max_length() | |
else: | |
cache_length = past_length = past_key_values[0][0].shape[2] | |
max_cache_length = None | |
# Keep only the unprocessed tokens: | |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where | |
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as | |
# input) | |
if attention_mask is not None and attention_mask.shape[ | |
1] > input_ids.shape[1]: | |
input_ids = input_ids[:, -(attention_mask.shape[1] - | |
past_length):] | |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard | |
# input_ids based on the past_length. | |
elif past_length < input_ids.shape[1]: | |
input_ids = input_ids[:, past_length:] | |
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. | |
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask. | |
if (max_cache_length is not None and attention_mask is not None | |
and cache_length + input_ids.shape[1] > max_cache_length): | |
attention_mask = attention_mask[:, -max_cache_length:] | |
position_ids = kwargs.get('position_ids', None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -input_ids.shape[1]:] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {'inputs_embeds': inputs_embeds} | |
else: | |
model_inputs = {'input_ids': input_ids} | |
model_inputs.update({ | |
'position_ids': position_ids, | |
'past_key_values': past_key_values, | |
'use_cache': kwargs.get('use_cache'), | |
'attention_mask': attention_mask, | |
'output_router_logits': output_router_logits, | |
}) | |
return model_inputs | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += (tuple( | |
past_state.index_select(0, beam_idx.to(past_state.device)) | |
for past_state in layer_past), ) | |
return reordered_past | |
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mixtral, LLAMA->MIXTRAL | |
class MixtralForSequenceClassification(MixtralPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.model = MixtralModel(config) | |
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Union[Cache, | |
List[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, SequenceClassifierOutputWithPast]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
transformer_outputs = self.model( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = transformer_outputs[0] | |
logits = self.score(hidden_states) | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
if self.config.pad_token_id is None and batch_size != 1: | |
raise ValueError( | |
'Cannot handle batch sizes > 1 if no padding token is defined.' | |
) | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility | |
sequence_lengths = torch.eq( | |
input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | |
sequence_lengths = sequence_lengths % input_ids.shape[-1] | |
sequence_lengths = sequence_lengths.to(logits.device) | |
else: | |
sequence_lengths = -1 | |
pooled_logits = logits[torch.arange(batch_size, device=logits.device), | |
sequence_lengths] | |
loss = None | |
if labels is not None: | |
labels = labels.to(logits.device) | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = 'regression' | |
elif self.num_labels > 1 and (labels.dtype == torch.long | |
or labels.dtype == torch.int): | |
self.config.problem_type = 'single_label_classification' | |
else: | |
self.config.problem_type = 'multi_label_classification' | |
if self.config.problem_type == 'regression': | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(pooled_logits, labels) | |
elif self.config.problem_type == 'single_label_classification': | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct( | |
pooled_logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == 'multi_label_classification': | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(pooled_logits, labels) | |
if not return_dict: | |
output = (pooled_logits, ) + transformer_outputs[1:] | |
return ((loss, ) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=pooled_logits, | |
past_key_values=transformer_outputs.past_key_values, | |
hidden_states=transformer_outputs.hidden_states, | |
attentions=transformer_outputs.attentions, | |
) | |