File size: 7,166 Bytes
4893ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#include "../cuda_utils.h"
#include "attention_cuda_kernel.h"


/*
Kernels
*/

__global__ void attention_relation_step_forward_cuda_kernel(int m, int g, int c,
                                                            const float *query, const float *key, const float *weight,
                                                            const int *index_target, const int *index_refer,
                                                            float *output)
{
    int r_idx = blockIdx.x * blockDim.x + threadIdx.x;
    int g_idx = blockIdx.y;
    int c_idx = blockIdx.z;

    if (r_idx >= m || g_idx >= g || c_idx >= c) return;
    int q_idx = index_target[r_idx] * g * c + g_idx * c + c_idx;
    int k_idx = index_refer[r_idx] * g * c + g_idx * c + c_idx;

    float r = query[q_idx] * key[k_idx] * weight[c_idx];
    atomicAdd(output + r_idx * g + g_idx, r);
}

__global__ void attention_relation_step_backward_cuda_kernel(int m, int g, int c,
                                                             const float *query, float *grad_query,
                                                             const float *key, float *grad_key,
                                                             const float *weight, float *grad_weight,
                                                             const int *index_target, const int *index_refer,
                                                             const float *grad_output)
{
    int r_idx = blockIdx.x * blockDim.x + threadIdx.x;
    int g_idx = blockIdx.y;
    int c_idx = blockIdx.z;

    if (r_idx >= m || g_idx >= g || c_idx >= c) return;

    int q_idx = index_target[r_idx] * g * c + g_idx * c + c_idx;
    int k_idx = index_refer[r_idx] * g * c + g_idx * c + c_idx;
    int o_idx = r_idx * g + g_idx;
    float grad_r = grad_output[o_idx];
    atomicAdd(grad_query + q_idx, grad_r * key[k_idx] * weight[c_idx]);
    atomicAdd(grad_key + k_idx, grad_r * query[q_idx] * weight[c_idx]);
    atomicAdd(grad_weight + c_idx, grad_r * key[k_idx] * query[q_idx]);
}


__global__ void attention_fusion_step_forward_cuda_kernel(int m, int g, int c,
                                                          const float *weight, const float *value,
                                                          const int *index_target, const int *index_refer,
                                                          float *output)
{
    int r_idx = blockIdx.x * blockDim.x + threadIdx.x;
    int g_idx = blockIdx.y;
    int c_idx = blockIdx.z;

    if (r_idx >= m || g_idx >= g || c_idx >= c) return;

    int o_idx = index_target[r_idx] * g * c + g_idx * c + c_idx;
    int v_idx = index_refer[r_idx] * g * c + g_idx * c + c_idx;

    float f = weight[r_idx * g + g_idx] * value[v_idx];
    atomicAdd(output + o_idx, f);
}


__global__ void attention_fusion_step_backward_cuda_kernel(int m, int g, int c,
                                                           const float *weight, float *grad_weight,
                                                           const float *value, float *grad_value,
                                                           const int *index_target, const int *index_refer,
                                                           const float *grad_output)
{
    int r_idx = blockIdx.x * blockDim.x + threadIdx.x;
    int g_idx = blockIdx.y;
    int c_idx = blockIdx.z;

    if (r_idx >= m || g_idx >= g || c_idx >= c) return;

    int o_idx = index_target[r_idx] * g * c + g_idx * c + c_idx;
    int v_idx = index_refer[r_idx] * g * c + g_idx * c + c_idx;
    int w_idx = r_idx * g + g_idx;
    float grad = grad_output[o_idx];
    atomicAdd(grad_weight + w_idx, grad * value[v_idx]);
    atomicAdd(grad_value + v_idx, grad * weight[w_idx]);
}

/*
Launchers
*/


void attention_relation_step_forward_cuda_launcher(int m, int g, int c,
                                                   const float *query, const float *key, const float *weight,
                                                   const int *index_target, const int *index_refer,
                                                   float *output)
{
    dim3 blocks(DIVUP(m, THREADS_PER_BLOCK), g, c);
    dim3 threads(THREADS_PER_BLOCK);
    attention_relation_step_forward_cuda_kernel<<<blocks, threads, 0>>>(m, g, c, query, key, weight,
                                                                        index_target, index_refer, output);
}

void attention_relation_step_backward_cuda_launcher(int m, int g, int c,
                                                    const float *query, float *grad_query,
                                                    const float *key, float *grad_key,
                                                    const float *weight, float *grad_weight,
                                                    const int *index_target, const int *index_refer,
                                                    const float *grad_output)
{
    dim3 blocks(DIVUP(m, THREADS_PER_BLOCK), g, c);
    dim3 threads(THREADS_PER_BLOCK);
    attention_relation_step_backward_cuda_kernel<<<blocks, threads, 0>>>(m, g, c,
                                                                         query, grad_query,
                                                                         key, grad_key,
                                                                         weight, grad_weight,
                                                                         index_target, index_refer,
                                                                         grad_output);
}


void attention_fusion_step_forward_cuda_launcher(int m, int g, int c,
                                                 const float *weight, const float *value,
                                                 const int *index_target, const int *index_refer,
                                                 float *output)
{
    dim3 blocks(DIVUP(m, THREADS_PER_BLOCK), g, c);
    dim3 threads(THREADS_PER_BLOCK);
    attention_fusion_step_forward_cuda_kernel<<<blocks, threads, 0>>>(m, g, c, weight, value,
                                                                      index_target, index_refer, output);
}


void attention_fusion_step_backward_cuda_launcher(int m, int g, int c,
                                                  const float *weight, float *grad_weight,
                                                  const float *value, float *grad_value,
                                                  const int *index_target, const int *index_refer,
                                                  const float *grad_output)
{
    dim3 blocks(DIVUP(m, THREADS_PER_BLOCK), g, c);
    dim3 threads(THREADS_PER_BLOCK);
    attention_fusion_step_backward_cuda_kernel<<<blocks, threads, 0>>>(m, g, c,
                                                                       weight, grad_weight,
                                                                       value, grad_value,
                                                                       index_target, index_refer,
                                                                       grad_output);
}