--- tags: - transformers - token-classification - ner - bert - peft - lora - conll2003 license: apache-2.0 datasets: - conll2003 language: - en pipeline_tag: token-classification authors: - Karan D Vasa (https://huggingface.co/starkdv123) --- # BERT (base-cased) for CoNLL-2003 NER — LoRA Adapter (PEFT) This repository contains **LoRA adapter weights** trained on **CoNLL-2003** for BERT base cased. ## 📊 Reference result (merged model from same adapter) - **Entity Macro F1**: 0.9052 ## Usage (attach adapter) ```python from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline from peft import PeftModel base = "bert-base-cased" adapter = "starkdv123/conll2003-bert-ner-lora" tok = AutoTokenizer.from_pretrained(base) base_model = AutoModelForTokenClassification.from_pretrained(base, num_labels=9) model = PeftModel.from_pretrained(base_model, adapter) clf = pipeline("token-classification", model=model, tokenizer=tok, aggregation_strategy="simple") clf("Chris Hoiles hit his 22nd homer for Baltimore.") ``` ## Training summary * LoRA: r=8, alpha=16, dropout=0.1 * Targets: [query, key, value, output.dense] * Epochs: 3, LR: 2e-4, warmup 0.1, batch 16/32 ## Confusion Matrix ``` LOC MISC O ORG PER LOC 384 6 35 43 5 MISC 12 2138 80 100 33 O 57 119 38060 58 21 ORG 43 109 36 2304 11 PER 1 27 18 22 2705 ```