Upload 2 files
Browse files
ade20k_upernet_vmamba_small_160k_640_iter160000_508.log
ADDED
|
@@ -0,0 +1,775 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2024/01/18 13:41:34 - mmengine - INFO -
|
| 2 |
+
------------------------------------------------------------
|
| 3 |
+
System environment:
|
| 4 |
+
sys.platform: linux
|
| 5 |
+
Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]
|
| 6 |
+
CUDA available: True
|
| 7 |
+
numpy_random_seed: 1142582054
|
| 8 |
+
GPU 0,1,2,3,4,5,6: NVIDIA A100-SXM4-80GB
|
| 9 |
+
CUDA_HOME: /usr/local/cuda-11.7
|
| 10 |
+
NVCC: Cuda compilation tools, release 11.7, V11.7.64
|
| 11 |
+
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.3) 9.4.0
|
| 12 |
+
PyTorch: 1.13.0
|
| 13 |
+
PyTorch compiling details: PyTorch built with:
|
| 14 |
+
- GCC 9.3
|
| 15 |
+
- C++ Version: 201402
|
| 16 |
+
- Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications
|
| 17 |
+
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
|
| 18 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
| 19 |
+
- LAPACK is enabled (usually provided by MKL)
|
| 20 |
+
- NNPACK is enabled
|
| 21 |
+
- CPU capability usage: AVX2
|
| 22 |
+
- CUDA Runtime 11.7
|
| 23 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
|
| 24 |
+
- CuDNN 8.5
|
| 25 |
+
- Magma 2.6.1
|
| 26 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.5.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
| 27 |
+
|
| 28 |
+
TorchVision: 0.14.0
|
| 29 |
+
OpenCV: 4.8.1
|
| 30 |
+
MMEngine: 0.10.1
|
| 31 |
+
|
| 32 |
+
Runtime environment:
|
| 33 |
+
cudnn_benchmark: True
|
| 34 |
+
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
|
| 35 |
+
dist_cfg: {'backend': 'nccl'}
|
| 36 |
+
seed: 1142582054
|
| 37 |
+
Distributed launcher: pytorch
|
| 38 |
+
Distributed training: True
|
| 39 |
+
GPU number: 4
|
| 40 |
+
------------------------------------------------------------
|
| 41 |
+
|
| 42 |
+
2024/01/18 13:41:36 - mmengine - INFO - Config:
|
| 43 |
+
backbone_norm_cfg = dict(requires_grad=True, type='LN')
|
| 44 |
+
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_small_patch4_window7_224_20220317-7ba6d6dd.pth'
|
| 45 |
+
crop_size = (
|
| 46 |
+
640,
|
| 47 |
+
640,
|
| 48 |
+
)
|
| 49 |
+
data_preprocessor = dict(
|
| 50 |
+
bgr_to_rgb=True,
|
| 51 |
+
mean=[
|
| 52 |
+
123.675,
|
| 53 |
+
116.28,
|
| 54 |
+
103.53,
|
| 55 |
+
],
|
| 56 |
+
pad_val=0,
|
| 57 |
+
seg_pad_val=255,
|
| 58 |
+
size=(
|
| 59 |
+
640,
|
| 60 |
+
640,
|
| 61 |
+
),
|
| 62 |
+
std=[
|
| 63 |
+
58.395,
|
| 64 |
+
57.12,
|
| 65 |
+
57.375,
|
| 66 |
+
],
|
| 67 |
+
type='SegDataPreProcessor')
|
| 68 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
| 69 |
+
dataset_type = 'ADE20KDataset'
|
| 70 |
+
default_hooks = dict(
|
| 71 |
+
checkpoint=dict(by_epoch=False, interval=16000, type='CheckpointHook'),
|
| 72 |
+
logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'),
|
| 73 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 74 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 75 |
+
timer=dict(type='IterTimerHook'),
|
| 76 |
+
visualization=dict(type='SegVisualizationHook'))
|
| 77 |
+
default_scope = 'mmseg'
|
| 78 |
+
env_cfg = dict(
|
| 79 |
+
cudnn_benchmark=True,
|
| 80 |
+
dist_cfg=dict(backend='nccl'),
|
| 81 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 82 |
+
img_ratios = [
|
| 83 |
+
0.5,
|
| 84 |
+
0.75,
|
| 85 |
+
1.0,
|
| 86 |
+
1.25,
|
| 87 |
+
1.5,
|
| 88 |
+
1.75,
|
| 89 |
+
]
|
| 90 |
+
launcher = 'pytorch'
|
| 91 |
+
load_from = '/home/LiuYue/Workspace3/ckpts/segmentation/work_dirs/upernet_vssm_4xb4-160k_ade20k-640x640_small/iter_160000.pth'
|
| 92 |
+
log_level = 'INFO'
|
| 93 |
+
log_processor = dict(by_epoch=False)
|
| 94 |
+
model = dict(
|
| 95 |
+
module=dict(
|
| 96 |
+
auxiliary_head=dict(
|
| 97 |
+
align_corners=False,
|
| 98 |
+
channels=256,
|
| 99 |
+
concat_input=False,
|
| 100 |
+
dropout_ratio=0.1,
|
| 101 |
+
in_channels=384,
|
| 102 |
+
in_index=2,
|
| 103 |
+
loss_decode=dict(
|
| 104 |
+
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
|
| 105 |
+
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
| 106 |
+
num_classes=150,
|
| 107 |
+
num_convs=1,
|
| 108 |
+
type='FCNHead'),
|
| 109 |
+
backbone=dict(
|
| 110 |
+
act_cfg=dict(type='GELU'),
|
| 111 |
+
attn_drop_rate=0.0,
|
| 112 |
+
depths=(
|
| 113 |
+
2,
|
| 114 |
+
2,
|
| 115 |
+
27,
|
| 116 |
+
2,
|
| 117 |
+
),
|
| 118 |
+
dims=96,
|
| 119 |
+
drop_path_rate=0.3,
|
| 120 |
+
drop_rate=0.0,
|
| 121 |
+
embed_dims=96,
|
| 122 |
+
init_cfg=dict(
|
| 123 |
+
checkpoint=
|
| 124 |
+
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_small_patch4_window7_224_20220317-7ba6d6dd.pth',
|
| 125 |
+
type='Pretrained'),
|
| 126 |
+
mlp_ratio=4,
|
| 127 |
+
norm_cfg=dict(requires_grad=True, type='LN'),
|
| 128 |
+
num_heads=[
|
| 129 |
+
3,
|
| 130 |
+
6,
|
| 131 |
+
12,
|
| 132 |
+
24,
|
| 133 |
+
],
|
| 134 |
+
out_indices=(
|
| 135 |
+
0,
|
| 136 |
+
1,
|
| 137 |
+
2,
|
| 138 |
+
3,
|
| 139 |
+
),
|
| 140 |
+
patch_norm=True,
|
| 141 |
+
patch_size=4,
|
| 142 |
+
pretrain_img_size=224,
|
| 143 |
+
pretrained='../../ckpts/vssmsmall/ckpt_epoch_238.pth',
|
| 144 |
+
qk_scale=None,
|
| 145 |
+
qkv_bias=True,
|
| 146 |
+
strides=(
|
| 147 |
+
4,
|
| 148 |
+
2,
|
| 149 |
+
2,
|
| 150 |
+
2,
|
| 151 |
+
),
|
| 152 |
+
type='MMSEG_VSSM',
|
| 153 |
+
use_abs_pos_embed=False,
|
| 154 |
+
window_size=7),
|
| 155 |
+
data_preprocessor=dict(
|
| 156 |
+
bgr_to_rgb=True,
|
| 157 |
+
mean=[
|
| 158 |
+
123.675,
|
| 159 |
+
116.28,
|
| 160 |
+
103.53,
|
| 161 |
+
],
|
| 162 |
+
pad_val=0,
|
| 163 |
+
seg_pad_val=255,
|
| 164 |
+
size=(
|
| 165 |
+
640,
|
| 166 |
+
640,
|
| 167 |
+
),
|
| 168 |
+
std=[
|
| 169 |
+
58.395,
|
| 170 |
+
57.12,
|
| 171 |
+
57.375,
|
| 172 |
+
],
|
| 173 |
+
type='SegDataPreProcessor'),
|
| 174 |
+
decode_head=dict(
|
| 175 |
+
align_corners=False,
|
| 176 |
+
channels=512,
|
| 177 |
+
dropout_ratio=0.1,
|
| 178 |
+
in_channels=[
|
| 179 |
+
96,
|
| 180 |
+
192,
|
| 181 |
+
384,
|
| 182 |
+
768,
|
| 183 |
+
],
|
| 184 |
+
in_index=[
|
| 185 |
+
0,
|
| 186 |
+
1,
|
| 187 |
+
2,
|
| 188 |
+
3,
|
| 189 |
+
],
|
| 190 |
+
loss_decode=dict(
|
| 191 |
+
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
|
| 192 |
+
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
| 193 |
+
num_classes=150,
|
| 194 |
+
pool_scales=(
|
| 195 |
+
1,
|
| 196 |
+
2,
|
| 197 |
+
3,
|
| 198 |
+
6,
|
| 199 |
+
),
|
| 200 |
+
type='UPerHead'),
|
| 201 |
+
pretrained=None,
|
| 202 |
+
test_cfg=dict(mode='whole'),
|
| 203 |
+
train_cfg=dict(),
|
| 204 |
+
type='EncoderDecoder'),
|
| 205 |
+
type='SegTTAModel')
|
| 206 |
+
norm_cfg = dict(requires_grad=True, type='SyncBN')
|
| 207 |
+
optim_wrapper = dict(
|
| 208 |
+
optimizer=dict(
|
| 209 |
+
betas=(
|
| 210 |
+
0.9,
|
| 211 |
+
0.999,
|
| 212 |
+
), lr=6e-05, type='AdamW', weight_decay=0.01),
|
| 213 |
+
paramwise_cfg=dict(
|
| 214 |
+
custom_keys=dict(
|
| 215 |
+
absolute_pos_embed=dict(decay_mult=0.0),
|
| 216 |
+
norm=dict(decay_mult=0.0),
|
| 217 |
+
relative_position_bias_table=dict(decay_mult=0.0))),
|
| 218 |
+
type='OptimWrapper')
|
| 219 |
+
optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
|
| 220 |
+
param_scheduler = [
|
| 221 |
+
dict(
|
| 222 |
+
begin=0, by_epoch=False, end=1500, start_factor=1e-06,
|
| 223 |
+
type='LinearLR'),
|
| 224 |
+
dict(
|
| 225 |
+
begin=1500,
|
| 226 |
+
by_epoch=False,
|
| 227 |
+
end=160000,
|
| 228 |
+
eta_min=0.0,
|
| 229 |
+
power=1.0,
|
| 230 |
+
type='PolyLR'),
|
| 231 |
+
]
|
| 232 |
+
resume = False
|
| 233 |
+
test_cfg = dict(type='TestLoop')
|
| 234 |
+
test_dataloader = dict(
|
| 235 |
+
batch_size=1,
|
| 236 |
+
dataset=dict(
|
| 237 |
+
data_prefix=dict(
|
| 238 |
+
img_path='images/validation',
|
| 239 |
+
seg_map_path='annotations/validation'),
|
| 240 |
+
data_root='data/ade/ADEChallengeData2016',
|
| 241 |
+
pipeline=[
|
| 242 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
| 243 |
+
dict(
|
| 244 |
+
transforms=[
|
| 245 |
+
[
|
| 246 |
+
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
|
| 247 |
+
dict(
|
| 248 |
+
keep_ratio=True, scale_factor=0.75, type='Resize'),
|
| 249 |
+
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
|
| 250 |
+
dict(
|
| 251 |
+
keep_ratio=True, scale_factor=1.25, type='Resize'),
|
| 252 |
+
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
|
| 253 |
+
dict(
|
| 254 |
+
keep_ratio=True, scale_factor=1.75, type='Resize'),
|
| 255 |
+
],
|
| 256 |
+
[
|
| 257 |
+
dict(
|
| 258 |
+
direction='horizontal',
|
| 259 |
+
prob=0.0,
|
| 260 |
+
type='RandomFlip'),
|
| 261 |
+
dict(
|
| 262 |
+
direction='horizontal',
|
| 263 |
+
prob=1.0,
|
| 264 |
+
type='RandomFlip'),
|
| 265 |
+
],
|
| 266 |
+
[
|
| 267 |
+
dict(type='LoadAnnotations'),
|
| 268 |
+
],
|
| 269 |
+
[
|
| 270 |
+
dict(type='PackSegInputs'),
|
| 271 |
+
],
|
| 272 |
+
],
|
| 273 |
+
type='TestTimeAug'),
|
| 274 |
+
],
|
| 275 |
+
type='ADE20KDataset'),
|
| 276 |
+
num_workers=4,
|
| 277 |
+
persistent_workers=True,
|
| 278 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
| 279 |
+
test_evaluator = dict(
|
| 280 |
+
iou_metrics=[
|
| 281 |
+
'mIoU',
|
| 282 |
+
], type='IoUMetric')
|
| 283 |
+
test_pipeline = [
|
| 284 |
+
dict(type='LoadImageFromFile'),
|
| 285 |
+
dict(keep_ratio=True, scale=(
|
| 286 |
+
2560,
|
| 287 |
+
640,
|
| 288 |
+
), type='Resize'),
|
| 289 |
+
dict(reduce_zero_label=True, type='LoadAnnotations'),
|
| 290 |
+
dict(type='PackSegInputs'),
|
| 291 |
+
]
|
| 292 |
+
train_cfg = dict(
|
| 293 |
+
max_iters=160000, type='IterBasedTrainLoop', val_interval=16000)
|
| 294 |
+
train_dataloader = dict(
|
| 295 |
+
batch_size=2,
|
| 296 |
+
dataset=dict(
|
| 297 |
+
data_prefix=dict(
|
| 298 |
+
img_path='images/training', seg_map_path='annotations/training'),
|
| 299 |
+
data_root='data/ade/ADEChallengeData2016',
|
| 300 |
+
pipeline=[
|
| 301 |
+
dict(type='LoadImageFromFile'),
|
| 302 |
+
dict(reduce_zero_label=True, type='LoadAnnotations'),
|
| 303 |
+
dict(
|
| 304 |
+
keep_ratio=True,
|
| 305 |
+
ratio_range=(
|
| 306 |
+
0.5,
|
| 307 |
+
2.0,
|
| 308 |
+
),
|
| 309 |
+
scale=(
|
| 310 |
+
2560,
|
| 311 |
+
640,
|
| 312 |
+
),
|
| 313 |
+
type='RandomResize'),
|
| 314 |
+
dict(
|
| 315 |
+
cat_max_ratio=0.75, crop_size=(
|
| 316 |
+
640,
|
| 317 |
+
640,
|
| 318 |
+
), type='RandomCrop'),
|
| 319 |
+
dict(prob=0.5, type='RandomFlip'),
|
| 320 |
+
dict(type='PhotoMetricDistortion'),
|
| 321 |
+
dict(type='PackSegInputs'),
|
| 322 |
+
],
|
| 323 |
+
type='ADE20KDataset'),
|
| 324 |
+
num_workers=4,
|
| 325 |
+
persistent_workers=True,
|
| 326 |
+
sampler=dict(shuffle=True, type='InfiniteSampler'))
|
| 327 |
+
train_pipeline = [
|
| 328 |
+
dict(type='LoadImageFromFile'),
|
| 329 |
+
dict(reduce_zero_label=True, type='LoadAnnotations'),
|
| 330 |
+
dict(
|
| 331 |
+
keep_ratio=True,
|
| 332 |
+
ratio_range=(
|
| 333 |
+
0.5,
|
| 334 |
+
2.0,
|
| 335 |
+
),
|
| 336 |
+
scale=(
|
| 337 |
+
2560,
|
| 338 |
+
640,
|
| 339 |
+
),
|
| 340 |
+
type='RandomResize'),
|
| 341 |
+
dict(cat_max_ratio=0.75, crop_size=(
|
| 342 |
+
640,
|
| 343 |
+
640,
|
| 344 |
+
), type='RandomCrop'),
|
| 345 |
+
dict(prob=0.5, type='RandomFlip'),
|
| 346 |
+
dict(type='PhotoMetricDistortion'),
|
| 347 |
+
dict(type='PackSegInputs'),
|
| 348 |
+
]
|
| 349 |
+
tta_model = dict(
|
| 350 |
+
module=dict(
|
| 351 |
+
auxiliary_head=dict(
|
| 352 |
+
align_corners=False,
|
| 353 |
+
channels=256,
|
| 354 |
+
concat_input=False,
|
| 355 |
+
dropout_ratio=0.1,
|
| 356 |
+
in_channels=384,
|
| 357 |
+
in_index=2,
|
| 358 |
+
loss_decode=dict(
|
| 359 |
+
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
|
| 360 |
+
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
| 361 |
+
num_classes=150,
|
| 362 |
+
num_convs=1,
|
| 363 |
+
type='FCNHead'),
|
| 364 |
+
backbone=dict(
|
| 365 |
+
act_cfg=dict(type='GELU'),
|
| 366 |
+
attn_drop_rate=0.0,
|
| 367 |
+
depths=(
|
| 368 |
+
2,
|
| 369 |
+
2,
|
| 370 |
+
27,
|
| 371 |
+
2,
|
| 372 |
+
),
|
| 373 |
+
dims=96,
|
| 374 |
+
drop_path_rate=0.3,
|
| 375 |
+
drop_rate=0.0,
|
| 376 |
+
embed_dims=96,
|
| 377 |
+
init_cfg=dict(
|
| 378 |
+
checkpoint=
|
| 379 |
+
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_small_patch4_window7_224_20220317-7ba6d6dd.pth',
|
| 380 |
+
type='Pretrained'),
|
| 381 |
+
mlp_ratio=4,
|
| 382 |
+
norm_cfg=dict(requires_grad=True, type='LN'),
|
| 383 |
+
num_heads=[
|
| 384 |
+
3,
|
| 385 |
+
6,
|
| 386 |
+
12,
|
| 387 |
+
24,
|
| 388 |
+
],
|
| 389 |
+
out_indices=(
|
| 390 |
+
0,
|
| 391 |
+
1,
|
| 392 |
+
2,
|
| 393 |
+
3,
|
| 394 |
+
),
|
| 395 |
+
patch_norm=True,
|
| 396 |
+
patch_size=4,
|
| 397 |
+
pretrain_img_size=224,
|
| 398 |
+
pretrained='../../ckpts/vssmsmall/ckpt_epoch_238.pth',
|
| 399 |
+
qk_scale=None,
|
| 400 |
+
qkv_bias=True,
|
| 401 |
+
strides=(
|
| 402 |
+
4,
|
| 403 |
+
2,
|
| 404 |
+
2,
|
| 405 |
+
2,
|
| 406 |
+
),
|
| 407 |
+
type='MMSEG_VSSM',
|
| 408 |
+
use_abs_pos_embed=False,
|
| 409 |
+
window_size=7),
|
| 410 |
+
data_preprocessor=dict(
|
| 411 |
+
bgr_to_rgb=True,
|
| 412 |
+
mean=[
|
| 413 |
+
123.675,
|
| 414 |
+
116.28,
|
| 415 |
+
103.53,
|
| 416 |
+
],
|
| 417 |
+
pad_val=0,
|
| 418 |
+
seg_pad_val=255,
|
| 419 |
+
size=(
|
| 420 |
+
640,
|
| 421 |
+
640,
|
| 422 |
+
),
|
| 423 |
+
std=[
|
| 424 |
+
58.395,
|
| 425 |
+
57.12,
|
| 426 |
+
57.375,
|
| 427 |
+
],
|
| 428 |
+
type='SegDataPreProcessor'),
|
| 429 |
+
decode_head=dict(
|
| 430 |
+
align_corners=False,
|
| 431 |
+
channels=512,
|
| 432 |
+
dropout_ratio=0.1,
|
| 433 |
+
in_channels=[
|
| 434 |
+
96,
|
| 435 |
+
192,
|
| 436 |
+
384,
|
| 437 |
+
768,
|
| 438 |
+
],
|
| 439 |
+
in_index=[
|
| 440 |
+
0,
|
| 441 |
+
1,
|
| 442 |
+
2,
|
| 443 |
+
3,
|
| 444 |
+
],
|
| 445 |
+
loss_decode=dict(
|
| 446 |
+
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
|
| 447 |
+
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
| 448 |
+
num_classes=150,
|
| 449 |
+
pool_scales=(
|
| 450 |
+
1,
|
| 451 |
+
2,
|
| 452 |
+
3,
|
| 453 |
+
6,
|
| 454 |
+
),
|
| 455 |
+
type='UPerHead'),
|
| 456 |
+
pretrained=None,
|
| 457 |
+
test_cfg=dict(mode='whole'),
|
| 458 |
+
train_cfg=dict(),
|
| 459 |
+
type='EncoderDecoder'),
|
| 460 |
+
type='SegTTAModel')
|
| 461 |
+
tta_pipeline = [
|
| 462 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
| 463 |
+
dict(
|
| 464 |
+
transforms=[
|
| 465 |
+
[
|
| 466 |
+
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
|
| 467 |
+
dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
|
| 468 |
+
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
|
| 469 |
+
dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
|
| 470 |
+
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
|
| 471 |
+
dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
|
| 472 |
+
],
|
| 473 |
+
[
|
| 474 |
+
dict(direction='horizontal', prob=0.0, type='RandomFlip'),
|
| 475 |
+
dict(direction='horizontal', prob=1.0, type='RandomFlip'),
|
| 476 |
+
],
|
| 477 |
+
[
|
| 478 |
+
dict(type='LoadAnnotations'),
|
| 479 |
+
],
|
| 480 |
+
[
|
| 481 |
+
dict(type='PackSegInputs'),
|
| 482 |
+
],
|
| 483 |
+
],
|
| 484 |
+
type='TestTimeAug'),
|
| 485 |
+
]
|
| 486 |
+
val_cfg = dict(type='ValLoop')
|
| 487 |
+
val_dataloader = dict(
|
| 488 |
+
batch_size=1,
|
| 489 |
+
dataset=dict(
|
| 490 |
+
data_prefix=dict(
|
| 491 |
+
img_path='images/validation',
|
| 492 |
+
seg_map_path='annotations/validation'),
|
| 493 |
+
data_root='data/ade/ADEChallengeData2016',
|
| 494 |
+
pipeline=[
|
| 495 |
+
dict(type='LoadImageFromFile'),
|
| 496 |
+
dict(keep_ratio=True, scale=(
|
| 497 |
+
2560,
|
| 498 |
+
640,
|
| 499 |
+
), type='Resize'),
|
| 500 |
+
dict(reduce_zero_label=True, type='LoadAnnotations'),
|
| 501 |
+
dict(type='PackSegInputs'),
|
| 502 |
+
],
|
| 503 |
+
type='ADE20KDataset'),
|
| 504 |
+
num_workers=4,
|
| 505 |
+
persistent_workers=True,
|
| 506 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
| 507 |
+
val_evaluator = dict(
|
| 508 |
+
iou_metrics=[
|
| 509 |
+
'mIoU',
|
| 510 |
+
], type='IoUMetric')
|
| 511 |
+
vis_backends = [
|
| 512 |
+
dict(type='LocalVisBackend'),
|
| 513 |
+
]
|
| 514 |
+
visualizer = dict(
|
| 515 |
+
name='visualizer',
|
| 516 |
+
type='SegLocalVisualizer',
|
| 517 |
+
vis_backends=[
|
| 518 |
+
dict(type='LocalVisBackend'),
|
| 519 |
+
])
|
| 520 |
+
work_dir = './work_dirs/upernet_vssm_4xb4-160k_ade20k-640x640_small'
|
| 521 |
+
|
| 522 |
+
2024/01/18 13:41:39 - mmengine - INFO - Hooks will be executed in the following order:
|
| 523 |
+
before_run:
|
| 524 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 525 |
+
(BELOW_NORMAL) LoggerHook
|
| 526 |
+
--------------------
|
| 527 |
+
before_train:
|
| 528 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 529 |
+
(NORMAL ) IterTimerHook
|
| 530 |
+
(VERY_LOW ) CheckpointHook
|
| 531 |
+
--------------------
|
| 532 |
+
before_train_epoch:
|
| 533 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 534 |
+
(NORMAL ) IterTimerHook
|
| 535 |
+
(NORMAL ) DistSamplerSeedHook
|
| 536 |
+
--------------------
|
| 537 |
+
before_train_iter:
|
| 538 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 539 |
+
(NORMAL ) IterTimerHook
|
| 540 |
+
--------------------
|
| 541 |
+
after_train_iter:
|
| 542 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 543 |
+
(NORMAL ) IterTimerHook
|
| 544 |
+
(NORMAL ) SegVisualizationHook
|
| 545 |
+
(BELOW_NORMAL) LoggerHook
|
| 546 |
+
(LOW ) ParamSchedulerHook
|
| 547 |
+
(VERY_LOW ) CheckpointHook
|
| 548 |
+
--------------------
|
| 549 |
+
after_train_epoch:
|
| 550 |
+
(NORMAL ) IterTimerHook
|
| 551 |
+
(LOW ) ParamSchedulerHook
|
| 552 |
+
(VERY_LOW ) CheckpointHook
|
| 553 |
+
--------------------
|
| 554 |
+
before_val:
|
| 555 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 556 |
+
--------------------
|
| 557 |
+
before_val_epoch:
|
| 558 |
+
(NORMAL ) IterTimerHook
|
| 559 |
+
--------------------
|
| 560 |
+
before_val_iter:
|
| 561 |
+
(NORMAL ) IterTimerHook
|
| 562 |
+
--------------------
|
| 563 |
+
after_val_iter:
|
| 564 |
+
(NORMAL ) IterTimerHook
|
| 565 |
+
(NORMAL ) SegVisualizationHook
|
| 566 |
+
(BELOW_NORMAL) LoggerHook
|
| 567 |
+
--------------------
|
| 568 |
+
after_val_epoch:
|
| 569 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 570 |
+
(NORMAL ) IterTimerHook
|
| 571 |
+
(BELOW_NORMAL) LoggerHook
|
| 572 |
+
(LOW ) ParamSchedulerHook
|
| 573 |
+
(VERY_LOW ) CheckpointHook
|
| 574 |
+
--------------------
|
| 575 |
+
after_val:
|
| 576 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 577 |
+
--------------------
|
| 578 |
+
after_train:
|
| 579 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 580 |
+
(VERY_LOW ) CheckpointHook
|
| 581 |
+
--------------------
|
| 582 |
+
before_test:
|
| 583 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 584 |
+
--------------------
|
| 585 |
+
before_test_epoch:
|
| 586 |
+
(NORMAL ) IterTimerHook
|
| 587 |
+
--------------------
|
| 588 |
+
before_test_iter:
|
| 589 |
+
(NORMAL ) IterTimerHook
|
| 590 |
+
--------------------
|
| 591 |
+
after_test_iter:
|
| 592 |
+
(NORMAL ) IterTimerHook
|
| 593 |
+
(NORMAL ) SegVisualizationHook
|
| 594 |
+
(BELOW_NORMAL) LoggerHook
|
| 595 |
+
--------------------
|
| 596 |
+
after_test_epoch:
|
| 597 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 598 |
+
(NORMAL ) IterTimerHook
|
| 599 |
+
(BELOW_NORMAL) LoggerHook
|
| 600 |
+
--------------------
|
| 601 |
+
after_test:
|
| 602 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 603 |
+
--------------------
|
| 604 |
+
after_run:
|
| 605 |
+
(BELOW_NORMAL) LoggerHook
|
| 606 |
+
--------------------
|
| 607 |
+
2024/01/18 13:41:41 - mmengine - WARNING - The prefix is not set in metric class IoUMetric.
|
| 608 |
+
2024/01/18 13:41:42 - mmengine - INFO - Load checkpoint from /home/LiuYue/Workspace3/ckpts/segmentation/work_dirs/upernet_vssm_4xb4-160k_ade20k-640x640_small/iter_160000.pth
|
| 609 |
+
2024/01/18 13:53:00 - mmengine - INFO - Iter(test) [ 50/500] eta: 1:41:38 time: 9.2342 data_time: 0.0153 memory: 53982
|
| 610 |
+
2024/01/18 14:00:40 - mmengine - INFO - Iter(test) [100/500] eta: 1:15:51 time: 3.6223 data_time: 0.0136 memory: 52867
|
| 611 |
+
2024/01/18 14:04:27 - mmengine - INFO - Iter(test) [150/500] eta: 0:53:03 time: 1.3106 data_time: 0.0160 memory: 52745
|
| 612 |
+
2024/01/18 14:11:51 - mmengine - INFO - Iter(test) [200/500] eta: 0:45:12 time: 3.2742 data_time: 0.0150 memory: 52971
|
| 613 |
+
2024/01/18 14:15:23 - mmengine - INFO - Iter(test) [250/500] eta: 0:33:40 time: 4.4249 data_time: 0.0168 memory: 53191
|
| 614 |
+
2024/01/18 14:20:45 - mmengine - INFO - Iter(test) [300/500] eta: 0:26:01 time: 6.0236 data_time: 0.0202 memory: 56580
|
| 615 |
+
2024/01/18 14:24:59 - mmengine - INFO - Iter(test) [350/500] eta: 0:18:32 time: 7.2593 data_time: 0.0146 memory: 52298
|
| 616 |
+
2024/01/18 14:28:39 - mmengine - INFO - Iter(test) [400/500] eta: 0:11:44 time: 2.0090 data_time: 0.0136 memory: 53112
|
| 617 |
+
2024/01/18 14:32:55 - mmengine - INFO - Iter(test) [450/500] eta: 0:05:41 time: 0.9588 data_time: 0.0158 memory: 52817
|
| 618 |
+
2024/01/18 14:36:26 - mmengine - INFO - Iter(test) [500/500] eta: 0:00:00 time: 7.8064 data_time: 0.0142 memory: 52995
|
| 619 |
+
2024/01/18 14:38:02 - mmengine - INFO - per class results:
|
| 620 |
+
2024/01/18 14:38:02 - mmengine - INFO -
|
| 621 |
+
+---------------------+-------+-------+
|
| 622 |
+
| Class | IoU | Acc |
|
| 623 |
+
+---------------------+-------+-------+
|
| 624 |
+
| wall | 78.75 | 89.36 |
|
| 625 |
+
| building | 83.12 | 92.71 |
|
| 626 |
+
| sky | 94.5 | 97.63 |
|
| 627 |
+
| floor | 81.76 | 90.23 |
|
| 628 |
+
| tree | 74.85 | 88.04 |
|
| 629 |
+
| ceiling | 85.58 | 92.92 |
|
| 630 |
+
| road | 85.53 | 91.16 |
|
| 631 |
+
| bed | 89.56 | 95.86 |
|
| 632 |
+
| windowpane | 64.66 | 81.12 |
|
| 633 |
+
| grass | 65.41 | 80.54 |
|
| 634 |
+
| cabinet | 61.71 | 73.16 |
|
| 635 |
+
| sidewalk | 69.77 | 82.53 |
|
| 636 |
+
| person | 80.78 | 92.72 |
|
| 637 |
+
| earth | 39.83 | 53.66 |
|
| 638 |
+
| door | 53.67 | 67.04 |
|
| 639 |
+
| table | 61.54 | 79.57 |
|
| 640 |
+
| mountain | 57.79 | 75.02 |
|
| 641 |
+
| plant | 52.7 | 63.35 |
|
| 642 |
+
| curtain | 74.79 | 86.97 |
|
| 643 |
+
| chair | 59.42 | 72.69 |
|
| 644 |
+
| car | 84.32 | 92.36 |
|
| 645 |
+
| water | 55.89 | 69.4 |
|
| 646 |
+
| painting | 74.79 | 87.5 |
|
| 647 |
+
| sofa | 68.36 | 84.71 |
|
| 648 |
+
| shelf | 44.36 | 63.6 |
|
| 649 |
+
| house | 46.15 | 61.18 |
|
| 650 |
+
| sea | 57.85 | 81.06 |
|
| 651 |
+
| mirror | 69.21 | 77.51 |
|
| 652 |
+
| rug | 61.87 | 73.64 |
|
| 653 |
+
| field | 29.81 | 47.44 |
|
| 654 |
+
| armchair | 46.69 | 64.08 |
|
| 655 |
+
| seat | 62.14 | 82.15 |
|
| 656 |
+
| fence | 47.03 | 64.8 |
|
| 657 |
+
| desk | 53.19 | 70.23 |
|
| 658 |
+
| rock | 46.6 | 70.86 |
|
| 659 |
+
| wardrobe | 46.65 | 66.04 |
|
| 660 |
+
| lamp | 66.87 | 78.03 |
|
| 661 |
+
| bathtub | 83.11 | 86.64 |
|
| 662 |
+
| railing | 35.37 | 49.1 |
|
| 663 |
+
| cushion | 60.08 | 72.91 |
|
| 664 |
+
| base | 28.85 | 42.24 |
|
| 665 |
+
| box | 26.91 | 33.36 |
|
| 666 |
+
| column | 46.47 | 58.22 |
|
| 667 |
+
| signboard | 38.24 | 51.08 |
|
| 668 |
+
| chest of drawers | 45.6 | 66.14 |
|
| 669 |
+
| counter | 25.59 | 34.04 |
|
| 670 |
+
| sand | 45.36 | 64.69 |
|
| 671 |
+
| sink | 73.4 | 81.15 |
|
| 672 |
+
| skyscraper | 49.52 | 60.23 |
|
| 673 |
+
| fireplace | 80.08 | 90.52 |
|
| 674 |
+
| refrigerator | 76.78 | 81.87 |
|
| 675 |
+
| grandstand | 46.64 | 79.47 |
|
| 676 |
+
| path | 25.75 | 36.79 |
|
| 677 |
+
| stairs | 34.91 | 44.92 |
|
| 678 |
+
| runway | 70.95 | 92.5 |
|
| 679 |
+
| case | 61.74 | 76.13 |
|
| 680 |
+
| pool table | 91.83 | 96.65 |
|
| 681 |
+
| pillow | 60.23 | 71.02 |
|
| 682 |
+
| screen door | 70.03 | 75.59 |
|
| 683 |
+
| stairway | 34.92 | 41.71 |
|
| 684 |
+
| river | 9.03 | 17.44 |
|
| 685 |
+
| bridge | 67.13 | 78.16 |
|
| 686 |
+
| bookcase | 44.09 | 68.9 |
|
| 687 |
+
| blind | 46.02 | 50.39 |
|
| 688 |
+
| coffee table | 59.14 | 82.97 |
|
| 689 |
+
| toilet | 85.59 | 90.78 |
|
| 690 |
+
| flower | 37.12 | 51.46 |
|
| 691 |
+
| book | 46.03 | 62.65 |
|
| 692 |
+
| hill | 12.8 | 20.47 |
|
| 693 |
+
| bench | 40.19 | 46.67 |
|
| 694 |
+
| countertop | 56.79 | 74.35 |
|
| 695 |
+
| stove | 78.19 | 85.06 |
|
| 696 |
+
| palm | 51.92 | 70.76 |
|
| 697 |
+
| kitchen island | 49.25 | 77.56 |
|
| 698 |
+
| computer | 76.69 | 89.25 |
|
| 699 |
+
| swivel chair | 46.97 | 64.54 |
|
| 700 |
+
| boat | 39.55 | 56.75 |
|
| 701 |
+
| bar | 40.71 | 53.86 |
|
| 702 |
+
| arcade machine | 85.72 | 94.08 |
|
| 703 |
+
| hovel | 33.09 | 39.0 |
|
| 704 |
+
| bus | 93.28 | 97.04 |
|
| 705 |
+
| towel | 66.95 | 78.09 |
|
| 706 |
+
| light | 57.36 | 64.37 |
|
| 707 |
+
| truck | 43.92 | 56.1 |
|
| 708 |
+
| tower | 17.34 | 27.06 |
|
| 709 |
+
| chandelier | 70.27 | 85.27 |
|
| 710 |
+
| awning | 25.15 | 30.83 |
|
| 711 |
+
| streetlight | 27.76 | 33.84 |
|
| 712 |
+
| booth | 34.47 | 38.09 |
|
| 713 |
+
| television receiver | 70.57 | 77.57 |
|
| 714 |
+
| airplane | 60.13 | 67.32 |
|
| 715 |
+
| dirt track | 1.29 | 2.65 |
|
| 716 |
+
| apparel | 30.46 | 48.93 |
|
| 717 |
+
| pole | 22.16 | 29.32 |
|
| 718 |
+
| land | 2.43 | 3.38 |
|
| 719 |
+
| bannister | 12.98 | 17.41 |
|
| 720 |
+
| escalator | 35.52 | 51.31 |
|
| 721 |
+
| ottoman | 49.75 | 64.2 |
|
| 722 |
+
| bottle | 36.52 | 57.03 |
|
| 723 |
+
| buffet | 45.18 | 59.91 |
|
| 724 |
+
| poster | 26.96 | 30.14 |
|
| 725 |
+
| stage | 15.07 | 19.98 |
|
| 726 |
+
| van | 40.79 | 58.46 |
|
| 727 |
+
| ship | 58.61 | 93.2 |
|
| 728 |
+
| fountain | 37.13 | 37.62 |
|
| 729 |
+
| conveyer belt | 73.14 | 91.11 |
|
| 730 |
+
| canopy | 16.41 | 21.48 |
|
| 731 |
+
| washer | 70.64 | 72.56 |
|
| 732 |
+
| plaything | 26.95 | 40.15 |
|
| 733 |
+
| swimming pool | 46.85 | 49.67 |
|
| 734 |
+
| stool | 43.95 | 55.94 |
|
| 735 |
+
| barrel | 43.46 | 68.28 |
|
| 736 |
+
| basket | 28.25 | 40.89 |
|
| 737 |
+
| waterfall | 52.45 | 64.56 |
|
| 738 |
+
| tent | 88.84 | 98.38 |
|
| 739 |
+
| bag | 16.38 | 20.77 |
|
| 740 |
+
| minibike | 74.94 | 87.17 |
|
| 741 |
+
| cradle | 76.09 | 97.44 |
|
| 742 |
+
| oven | 56.13 | 67.6 |
|
| 743 |
+
| ball | 48.07 | 61.55 |
|
| 744 |
+
| food | 47.43 | 54.79 |
|
| 745 |
+
| step | 11.71 | 13.34 |
|
| 746 |
+
| tank | 49.12 | 52.75 |
|
| 747 |
+
| trade name | 25.88 | 29.71 |
|
| 748 |
+
| microwave | 85.51 | 93.72 |
|
| 749 |
+
| pot | 45.76 | 52.34 |
|
| 750 |
+
| animal | 55.15 | 57.0 |
|
| 751 |
+
| bicycle | 57.35 | 80.39 |
|
| 752 |
+
| lake | 47.5 | 63.73 |
|
| 753 |
+
| dishwasher | 70.78 | 80.28 |
|
| 754 |
+
| screen | 66.71 | 81.93 |
|
| 755 |
+
| blanket | 11.9 | 13.84 |
|
| 756 |
+
| sculpture | 64.88 | 77.88 |
|
| 757 |
+
| hood | 58.27 | 69.63 |
|
| 758 |
+
| sconce | 49.96 | 61.09 |
|
| 759 |
+
| vase | 44.7 | 55.6 |
|
| 760 |
+
| traffic light | 37.16 | 53.95 |
|
| 761 |
+
| tray | 7.6 | 10.69 |
|
| 762 |
+
| ashcan | 42.42 | 56.09 |
|
| 763 |
+
| fan | 62.16 | 76.81 |
|
| 764 |
+
| pier | 47.99 | 56.02 |
|
| 765 |
+
| crt screen | 6.95 | 19.0 |
|
| 766 |
+
| plate | 53.63 | 67.7 |
|
| 767 |
+
| monitor | 4.75 | 5.08 |
|
| 768 |
+
| bulletin board | 54.16 | 62.52 |
|
| 769 |
+
| shower | 0.0 | 0.0 |
|
| 770 |
+
| radiator | 62.46 | 71.64 |
|
| 771 |
+
| glass | 13.45 | 14.01 |
|
| 772 |
+
| clock | 40.9 | 46.31 |
|
| 773 |
+
| flag | 50.72 | 53.6 |
|
| 774 |
+
+---------------------+-------+-------+
|
| 775 |
+
2024/01/18 14:38:02 - mmengine - INFO - Iter(test) [500/500] aAcc: 83.8800 mIoU: 50.7800 mAcc: 62.2700 data_time: 0.0226 time: 6.5675
|
ade20k_upernet_vmamba_small_640_iter_112000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8bbd2c9f22b136dba0b69afa17b3de859cdb7df34243a5d01d83cb01d99e7f14
|
| 3 |
+
size 932223741
|