sunsmarterjieleaf commited on
Commit
e205e5c
·
verified ·
1 Parent(s): 56784dd

Upload ade20k_upernet_vmamba_base_160k_512_iter160000_511.log

Browse files
ade20k_upernet_vmamba_base_160k_512_iter160000_511.log ADDED
@@ -0,0 +1,770 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2024/01/14 17:47:47 - mmengine - INFO -
2
+ ------------------------------------------------------------
3
+ System environment:
4
+ sys.platform: linux
5
+ Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]
6
+ CUDA available: True
7
+ numpy_random_seed: 1688668109
8
+ GPU 0,1,2,3,4,5,6,7: Tesla V100-SXM3-32GB
9
+ CUDA_HOME: /usr/local/cuda
10
+ NVCC: Cuda compilation tools, release 11.7, V11.7.99
11
+ GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
12
+ PyTorch: 1.13.0
13
+ PyTorch compiling details: PyTorch built with:
14
+ - GCC 9.3
15
+ - C++ Version: 201402
16
+ - Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications
17
+ - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
18
+ - OpenMP 201511 (a.k.a. OpenMP 4.5)
19
+ - LAPACK is enabled (usually provided by MKL)
20
+ - NNPACK is enabled
21
+ - CPU capability usage: AVX2
22
+ - CUDA Runtime 11.7
23
+ - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
24
+ - CuDNN 8.5
25
+ - Magma 2.6.1
26
+ - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.5.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
27
+
28
+ TorchVision: 0.14.0
29
+ OpenCV: 4.9.0
30
+ MMEngine: 0.10.1
31
+
32
+ Runtime environment:
33
+ cudnn_benchmark: True
34
+ mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
35
+ dist_cfg: {'backend': 'nccl'}
36
+ seed: 1688668109
37
+ Distributed launcher: pytorch
38
+ Distributed training: True
39
+ GPU number: 8
40
+ ------------------------------------------------------------
41
+
42
+ 2024/01/14 17:47:48 - mmengine - INFO - Config:
43
+ backbone_norm_cfg = dict(requires_grad=True, type='LN')
44
+ checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth'
45
+ crop_size = (
46
+ 512,
47
+ 512,
48
+ )
49
+ data_preprocessor = dict(
50
+ bgr_to_rgb=True,
51
+ mean=[
52
+ 123.675,
53
+ 116.28,
54
+ 103.53,
55
+ ],
56
+ pad_val=0,
57
+ seg_pad_val=255,
58
+ size=(
59
+ 512,
60
+ 512,
61
+ ),
62
+ std=[
63
+ 58.395,
64
+ 57.12,
65
+ 57.375,
66
+ ],
67
+ type='SegDataPreProcessor')
68
+ data_root = 'data/ade/ADEChallengeData2016'
69
+ dataset_type = 'ADE20KDataset'
70
+ default_hooks = dict(
71
+ checkpoint=dict(by_epoch=False, interval=16000, type='CheckpointHook'),
72
+ logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'),
73
+ param_scheduler=dict(type='ParamSchedulerHook'),
74
+ sampler_seed=dict(type='DistSamplerSeedHook'),
75
+ timer=dict(type='IterTimerHook'),
76
+ visualization=dict(type='SegVisualizationHook'))
77
+ default_scope = 'mmseg'
78
+ env_cfg = dict(
79
+ cudnn_benchmark=True,
80
+ dist_cfg=dict(backend='nccl'),
81
+ mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
82
+ img_ratios = [
83
+ 0.5,
84
+ 0.75,
85
+ 1.0,
86
+ 1.25,
87
+ 1.5,
88
+ 1.75,
89
+ ]
90
+ launcher = 'pytorch'
91
+ load_from = './work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base/iter_160000.pth'
92
+ log_level = 'INFO'
93
+ log_processor = dict(by_epoch=False)
94
+ model = dict(
95
+ module=dict(
96
+ auxiliary_head=dict(
97
+ align_corners=False,
98
+ channels=256,
99
+ concat_input=False,
100
+ dropout_ratio=0.1,
101
+ in_channels=512,
102
+ in_index=2,
103
+ loss_decode=dict(
104
+ loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
105
+ norm_cfg=dict(requires_grad=True, type='SyncBN'),
106
+ num_classes=150,
107
+ num_convs=1,
108
+ type='FCNHead'),
109
+ backbone=dict(
110
+ act_cfg=dict(type='GELU'),
111
+ attn_drop_rate=0.0,
112
+ depths=(
113
+ 2,
114
+ 2,
115
+ 27,
116
+ 2,
117
+ ),
118
+ dims=128,
119
+ drop_path_rate=0.3,
120
+ drop_rate=0.0,
121
+ embed_dims=128,
122
+ init_cfg=dict(
123
+ checkpoint=
124
+ 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth',
125
+ type='Pretrained'),
126
+ mlp_ratio=4,
127
+ norm_cfg=dict(requires_grad=True, type='LN'),
128
+ num_heads=[
129
+ 4,
130
+ 8,
131
+ 16,
132
+ 32,
133
+ ],
134
+ out_indices=(
135
+ 0,
136
+ 1,
137
+ 2,
138
+ 3,
139
+ ),
140
+ patch_norm=True,
141
+ patch_size=4,
142
+ pretrain_img_size=224,
143
+ pretrained='../../ckpts/vssmbase/ckpt_epoch_260.pth',
144
+ qk_scale=None,
145
+ qkv_bias=True,
146
+ strides=(
147
+ 4,
148
+ 2,
149
+ 2,
150
+ 2,
151
+ ),
152
+ type='MMSEG_VSSM',
153
+ use_abs_pos_embed=False,
154
+ window_size=7),
155
+ data_preprocessor=dict(
156
+ bgr_to_rgb=True,
157
+ mean=[
158
+ 123.675,
159
+ 116.28,
160
+ 103.53,
161
+ ],
162
+ pad_val=0,
163
+ seg_pad_val=255,
164
+ size=(
165
+ 512,
166
+ 512,
167
+ ),
168
+ std=[
169
+ 58.395,
170
+ 57.12,
171
+ 57.375,
172
+ ],
173
+ type='SegDataPreProcessor'),
174
+ decode_head=dict(
175
+ align_corners=False,
176
+ channels=512,
177
+ dropout_ratio=0.1,
178
+ in_channels=[
179
+ 128,
180
+ 256,
181
+ 512,
182
+ 1024,
183
+ ],
184
+ in_index=[
185
+ 0,
186
+ 1,
187
+ 2,
188
+ 3,
189
+ ],
190
+ loss_decode=dict(
191
+ loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
192
+ norm_cfg=dict(requires_grad=True, type='SyncBN'),
193
+ num_classes=150,
194
+ pool_scales=(
195
+ 1,
196
+ 2,
197
+ 3,
198
+ 6,
199
+ ),
200
+ type='UPerHead'),
201
+ pretrained=None,
202
+ test_cfg=dict(mode='whole'),
203
+ train_cfg=dict(),
204
+ type='EncoderDecoder'),
205
+ type='SegTTAModel')
206
+ norm_cfg = dict(requires_grad=True, type='SyncBN')
207
+ optim_wrapper = dict(
208
+ optimizer=dict(
209
+ betas=(
210
+ 0.9,
211
+ 0.999,
212
+ ), lr=6e-05, type='AdamW', weight_decay=0.01),
213
+ paramwise_cfg=dict(
214
+ custom_keys=dict(
215
+ absolute_pos_embed=dict(decay_mult=0.0),
216
+ norm=dict(decay_mult=0.0),
217
+ relative_position_bias_table=dict(decay_mult=0.0))),
218
+ type='OptimWrapper')
219
+ optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
220
+ param_scheduler = [
221
+ dict(
222
+ begin=0, by_epoch=False, end=1500, start_factor=1e-06,
223
+ type='LinearLR'),
224
+ dict(
225
+ begin=1500,
226
+ by_epoch=False,
227
+ end=160000,
228
+ eta_min=0.0,
229
+ power=1.0,
230
+ type='PolyLR'),
231
+ ]
232
+ resume = False
233
+ test_cfg = dict(type='TestLoop')
234
+ test_dataloader = dict(
235
+ batch_size=1,
236
+ dataset=dict(
237
+ data_prefix=dict(
238
+ img_path='images/validation',
239
+ seg_map_path='annotations/validation'),
240
+ data_root='data/ade/ADEChallengeData2016',
241
+ pipeline=[
242
+ dict(backend_args=None, type='LoadImageFromFile'),
243
+ dict(
244
+ transforms=[
245
+ [
246
+ dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
247
+ dict(
248
+ keep_ratio=True, scale_factor=0.75, type='Resize'),
249
+ dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
250
+ dict(
251
+ keep_ratio=True, scale_factor=1.25, type='Resize'),
252
+ dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
253
+ dict(
254
+ keep_ratio=True, scale_factor=1.75, type='Resize'),
255
+ ],
256
+ [
257
+ dict(
258
+ direction='horizontal',
259
+ prob=0.0,
260
+ type='RandomFlip'),
261
+ dict(
262
+ direction='horizontal',
263
+ prob=1.0,
264
+ type='RandomFlip'),
265
+ ],
266
+ [
267
+ dict(type='LoadAnnotations'),
268
+ ],
269
+ [
270
+ dict(type='PackSegInputs'),
271
+ ],
272
+ ],
273
+ type='TestTimeAug'),
274
+ ],
275
+ type='ADE20KDataset'),
276
+ num_workers=4,
277
+ persistent_workers=True,
278
+ sampler=dict(shuffle=False, type='DefaultSampler'))
279
+ test_evaluator = dict(
280
+ iou_metrics=[
281
+ 'mIoU',
282
+ ], type='IoUMetric')
283
+ test_pipeline = [
284
+ dict(type='LoadImageFromFile'),
285
+ dict(keep_ratio=True, scale=(
286
+ 2048,
287
+ 512,
288
+ ), type='Resize'),
289
+ dict(reduce_zero_label=True, type='LoadAnnotations'),
290
+ dict(type='PackSegInputs'),
291
+ ]
292
+ train_cfg = dict(
293
+ max_iters=160000, type='IterBasedTrainLoop', val_interval=16000)
294
+ train_dataloader = dict(
295
+ batch_size=2,
296
+ dataset=dict(
297
+ data_prefix=dict(
298
+ img_path='images/training', seg_map_path='annotations/training'),
299
+ data_root='data/ade/ADEChallengeData2016',
300
+ pipeline=[
301
+ dict(type='LoadImageFromFile'),
302
+ dict(reduce_zero_label=True, type='LoadAnnotations'),
303
+ dict(
304
+ keep_ratio=True,
305
+ ratio_range=(
306
+ 0.5,
307
+ 2.0,
308
+ ),
309
+ scale=(
310
+ 2048,
311
+ 512,
312
+ ),
313
+ type='RandomResize'),
314
+ dict(
315
+ cat_max_ratio=0.75, crop_size=(
316
+ 512,
317
+ 512,
318
+ ), type='RandomCrop'),
319
+ dict(prob=0.5, type='RandomFlip'),
320
+ dict(type='PhotoMetricDistortion'),
321
+ dict(type='PackSegInputs'),
322
+ ],
323
+ type='ADE20KDataset'),
324
+ num_workers=4,
325
+ persistent_workers=True,
326
+ sampler=dict(shuffle=True, type='InfiniteSampler'))
327
+ train_pipeline = [
328
+ dict(type='LoadImageFromFile'),
329
+ dict(reduce_zero_label=True, type='LoadAnnotations'),
330
+ dict(
331
+ keep_ratio=True,
332
+ ratio_range=(
333
+ 0.5,
334
+ 2.0,
335
+ ),
336
+ scale=(
337
+ 2048,
338
+ 512,
339
+ ),
340
+ type='RandomResize'),
341
+ dict(cat_max_ratio=0.75, crop_size=(
342
+ 512,
343
+ 512,
344
+ ), type='RandomCrop'),
345
+ dict(prob=0.5, type='RandomFlip'),
346
+ dict(type='PhotoMetricDistortion'),
347
+ dict(type='PackSegInputs'),
348
+ ]
349
+ tta_model = dict(
350
+ module=dict(
351
+ auxiliary_head=dict(
352
+ align_corners=False,
353
+ channels=256,
354
+ concat_input=False,
355
+ dropout_ratio=0.1,
356
+ in_channels=512,
357
+ in_index=2,
358
+ loss_decode=dict(
359
+ loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
360
+ norm_cfg=dict(requires_grad=True, type='SyncBN'),
361
+ num_classes=150,
362
+ num_convs=1,
363
+ type='FCNHead'),
364
+ backbone=dict(
365
+ act_cfg=dict(type='GELU'),
366
+ attn_drop_rate=0.0,
367
+ depths=(
368
+ 2,
369
+ 2,
370
+ 27,
371
+ 2,
372
+ ),
373
+ dims=128,
374
+ drop_path_rate=0.3,
375
+ drop_rate=0.0,
376
+ embed_dims=128,
377
+ init_cfg=dict(
378
+ checkpoint=
379
+ 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth',
380
+ type='Pretrained'),
381
+ mlp_ratio=4,
382
+ norm_cfg=dict(requires_grad=True, type='LN'),
383
+ num_heads=[
384
+ 4,
385
+ 8,
386
+ 16,
387
+ 32,
388
+ ],
389
+ out_indices=(
390
+ 0,
391
+ 1,
392
+ 2,
393
+ 3,
394
+ ),
395
+ patch_norm=True,
396
+ patch_size=4,
397
+ pretrain_img_size=224,
398
+ pretrained='../../ckpts/vssmbase/ckpt_epoch_260.pth',
399
+ qk_scale=None,
400
+ qkv_bias=True,
401
+ strides=(
402
+ 4,
403
+ 2,
404
+ 2,
405
+ 2,
406
+ ),
407
+ type='MMSEG_VSSM',
408
+ use_abs_pos_embed=False,
409
+ window_size=7),
410
+ data_preprocessor=dict(
411
+ bgr_to_rgb=True,
412
+ mean=[
413
+ 123.675,
414
+ 116.28,
415
+ 103.53,
416
+ ],
417
+ pad_val=0,
418
+ seg_pad_val=255,
419
+ size=(
420
+ 512,
421
+ 512,
422
+ ),
423
+ std=[
424
+ 58.395,
425
+ 57.12,
426
+ 57.375,
427
+ ],
428
+ type='SegDataPreProcessor'),
429
+ decode_head=dict(
430
+ align_corners=False,
431
+ channels=512,
432
+ dropout_ratio=0.1,
433
+ in_channels=[
434
+ 128,
435
+ 256,
436
+ 512,
437
+ 1024,
438
+ ],
439
+ in_index=[
440
+ 0,
441
+ 1,
442
+ 2,
443
+ 3,
444
+ ],
445
+ loss_decode=dict(
446
+ loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
447
+ norm_cfg=dict(requires_grad=True, type='SyncBN'),
448
+ num_classes=150,
449
+ pool_scales=(
450
+ 1,
451
+ 2,
452
+ 3,
453
+ 6,
454
+ ),
455
+ type='UPerHead'),
456
+ pretrained=None,
457
+ test_cfg=dict(mode='whole'),
458
+ train_cfg=dict(),
459
+ type='EncoderDecoder'),
460
+ type='SegTTAModel')
461
+ tta_pipeline = [
462
+ dict(backend_args=None, type='LoadImageFromFile'),
463
+ dict(
464
+ transforms=[
465
+ [
466
+ dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
467
+ dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
468
+ dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
469
+ dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
470
+ dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
471
+ dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
472
+ ],
473
+ [
474
+ dict(direction='horizontal', prob=0.0, type='RandomFlip'),
475
+ dict(direction='horizontal', prob=1.0, type='RandomFlip'),
476
+ ],
477
+ [
478
+ dict(type='LoadAnnotations'),
479
+ ],
480
+ [
481
+ dict(type='PackSegInputs'),
482
+ ],
483
+ ],
484
+ type='TestTimeAug'),
485
+ ]
486
+ val_cfg = dict(type='ValLoop')
487
+ val_dataloader = dict(
488
+ batch_size=1,
489
+ dataset=dict(
490
+ data_prefix=dict(
491
+ img_path='images/validation',
492
+ seg_map_path='annotations/validation'),
493
+ data_root='data/ade/ADEChallengeData2016',
494
+ pipeline=[
495
+ dict(type='LoadImageFromFile'),
496
+ dict(keep_ratio=True, scale=(
497
+ 2048,
498
+ 512,
499
+ ), type='Resize'),
500
+ dict(reduce_zero_label=True, type='LoadAnnotations'),
501
+ dict(type='PackSegInputs'),
502
+ ],
503
+ type='ADE20KDataset'),
504
+ num_workers=4,
505
+ persistent_workers=True,
506
+ sampler=dict(shuffle=False, type='DefaultSampler'))
507
+ val_evaluator = dict(
508
+ iou_metrics=[
509
+ 'mIoU',
510
+ ], type='IoUMetric')
511
+ vis_backends = [
512
+ dict(type='LocalVisBackend'),
513
+ ]
514
+ visualizer = dict(
515
+ name='visualizer',
516
+ type='SegLocalVisualizer',
517
+ vis_backends=[
518
+ dict(type='LocalVisBackend'),
519
+ ])
520
+ work_dir = './work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base'
521
+
522
+ 2024/01/14 17:47:58 - mmengine - INFO - Hooks will be executed in the following order:
523
+ before_run:
524
+ (VERY_HIGH ) RuntimeInfoHook
525
+ (BELOW_NORMAL) LoggerHook
526
+ --------------------
527
+ before_train:
528
+ (VERY_HIGH ) RuntimeInfoHook
529
+ (NORMAL ) IterTimerHook
530
+ (VERY_LOW ) CheckpointHook
531
+ --------------------
532
+ before_train_epoch:
533
+ (VERY_HIGH ) RuntimeInfoHook
534
+ (NORMAL ) IterTimerHook
535
+ (NORMAL ) DistSamplerSeedHook
536
+ --------------------
537
+ before_train_iter:
538
+ (VERY_HIGH ) RuntimeInfoHook
539
+ (NORMAL ) IterTimerHook
540
+ --------------------
541
+ after_train_iter:
542
+ (VERY_HIGH ) RuntimeInfoHook
543
+ (NORMAL ) IterTimerHook
544
+ (NORMAL ) SegVisualizationHook
545
+ (BELOW_NORMAL) LoggerHook
546
+ (LOW ) ParamSchedulerHook
547
+ (VERY_LOW ) CheckpointHook
548
+ --------------------
549
+ after_train_epoch:
550
+ (NORMAL ) IterTimerHook
551
+ (LOW ) ParamSchedulerHook
552
+ (VERY_LOW ) CheckpointHook
553
+ --------------------
554
+ before_val:
555
+ (VERY_HIGH ) RuntimeInfoHook
556
+ --------------------
557
+ before_val_epoch:
558
+ (NORMAL ) IterTimerHook
559
+ --------------------
560
+ before_val_iter:
561
+ (NORMAL ) IterTimerHook
562
+ --------------------
563
+ after_val_iter:
564
+ (NORMAL ) IterTimerHook
565
+ (NORMAL ) SegVisualizationHook
566
+ (BELOW_NORMAL) LoggerHook
567
+ --------------------
568
+ after_val_epoch:
569
+ (VERY_HIGH ) RuntimeInfoHook
570
+ (NORMAL ) IterTimerHook
571
+ (BELOW_NORMAL) LoggerHook
572
+ (LOW ) ParamSchedulerHook
573
+ (VERY_LOW ) CheckpointHook
574
+ --------------------
575
+ after_val:
576
+ (VERY_HIGH ) RuntimeInfoHook
577
+ --------------------
578
+ after_train:
579
+ (VERY_HIGH ) RuntimeInfoHook
580
+ (VERY_LOW ) CheckpointHook
581
+ --------------------
582
+ before_test:
583
+ (VERY_HIGH ) RuntimeInfoHook
584
+ --------------------
585
+ before_test_epoch:
586
+ (NORMAL ) IterTimerHook
587
+ --------------------
588
+ before_test_iter:
589
+ (NORMAL ) IterTimerHook
590
+ --------------------
591
+ after_test_iter:
592
+ (NORMAL ) IterTimerHook
593
+ (NORMAL ) SegVisualizationHook
594
+ (BELOW_NORMAL) LoggerHook
595
+ --------------------
596
+ after_test_epoch:
597
+ (VERY_HIGH ) RuntimeInfoHook
598
+ (NORMAL ) IterTimerHook
599
+ (BELOW_NORMAL) LoggerHook
600
+ --------------------
601
+ after_test:
602
+ (VERY_HIGH ) RuntimeInfoHook
603
+ --------------------
604
+ after_run:
605
+ (BELOW_NORMAL) LoggerHook
606
+ --------------------
607
+ 2024/01/14 17:47:59 - mmengine - WARNING - The prefix is not set in metric class IoUMetric.
608
+ 2024/01/14 17:48:08 - mmengine - INFO - Load checkpoint from ./work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base/iter_160000.pth
609
+ 2024/01/14 18:02:41 - mmengine - INFO - Iter(test) [ 50/250] eta: 0:58:11 time: 10.1193 data_time: 0.0121 memory: 20518
610
+ 2024/01/14 18:10:19 - mmengine - INFO - Iter(test) [100/250] eta: 0:33:17 time: 8.5116 data_time: 0.0100 memory: 19429
611
+ 2024/01/14 18:15:12 - mmengine - INFO - Iter(test) [150/250] eta: 0:18:02 time: 5.7400 data_time: 0.0111 memory: 19330
612
+ 2024/01/14 18:20:32 - mmengine - INFO - Iter(test) [200/250] eta: 0:08:05 time: 6.0980 data_time: 0.0114 memory: 19330
613
+ 2024/01/14 18:25:01 - mmengine - INFO - Iter(test) [250/250] eta: 0:00:00 time: 3.3462 data_time: 0.0118 memory: 18931
614
+ 2024/01/14 18:28:07 - mmengine - INFO - per class results:
615
+ 2024/01/14 18:28:07 - mmengine - INFO -
616
+ +---------------------+-------+-------+
617
+ | Class | IoU | Acc |
618
+ +---------------------+-------+-------+
619
+ | wall | 78.97 | 89.79 |
620
+ | building | 83.44 | 93.48 |
621
+ | sky | 94.33 | 97.56 |
622
+ | floor | 82.05 | 90.77 |
623
+ | tree | 74.87 | 88.67 |
624
+ | ceiling | 85.17 | 93.67 |
625
+ | road | 84.22 | 90.66 |
626
+ | bed | 89.05 | 96.36 |
627
+ | windowpane | 63.55 | 79.82 |
628
+ | grass | 69.99 | 84.45 |
629
+ | cabinet | 62.16 | 75.89 |
630
+ | sidewalk | 66.09 | 81.19 |
631
+ | person | 81.66 | 93.13 |
632
+ | earth | 37.51 | 48.77 |
633
+ | door | 52.74 | 65.76 |
634
+ | table | 62.93 | 78.47 |
635
+ | mountain | 63.34 | 78.01 |
636
+ | plant | 52.21 | 63.43 |
637
+ | curtain | 75.86 | 87.52 |
638
+ | chair | 61.77 | 72.89 |
639
+ | car | 84.12 | 90.96 |
640
+ | water | 53.74 | 67.62 |
641
+ | painting | 76.67 | 89.15 |
642
+ | sofa | 69.15 | 84.85 |
643
+ | shelf | 43.65 | 63.48 |
644
+ | house | 37.83 | 50.42 |
645
+ | sea | 63.54 | 89.14 |
646
+ | mirror | 69.31 | 76.99 |
647
+ | rug | 55.02 | 64.68 |
648
+ | field | 27.91 | 43.35 |
649
+ | armchair | 48.02 | 67.01 |
650
+ | seat | 63.51 | 84.09 |
651
+ | fence | 47.72 | 61.45 |
652
+ | desk | 53.92 | 72.17 |
653
+ | rock | 45.01 | 66.9 |
654
+ | wardrobe | 49.15 | 59.93 |
655
+ | lamp | 66.03 | 77.09 |
656
+ | bathtub | 80.36 | 85.58 |
657
+ | railing | 35.23 | 49.33 |
658
+ | cushion | 60.43 | 73.02 |
659
+ | base | 31.65 | 42.54 |
660
+ | box | 26.89 | 31.63 |
661
+ | column | 48.94 | 56.13 |
662
+ | signboard | 39.69 | 50.97 |
663
+ | chest of drawers | 48.02 | 62.14 |
664
+ | counter | 25.34 | 35.46 |
665
+ | sand | 55.67 | 73.43 |
666
+ | sink | 74.58 | 80.96 |
667
+ | skyscraper | 42.42 | 51.55 |
668
+ | fireplace | 80.92 | 91.73 |
669
+ | refrigerator | 77.76 | 85.12 |
670
+ | grandstand | 45.02 | 83.82 |
671
+ | path | 16.49 | 26.37 |
672
+ | stairs | 35.1 | 42.42 |
673
+ | runway | 72.8 | 93.9 |
674
+ | case | 48.01 | 62.28 |
675
+ | pool table | 93.33 | 97.32 |
676
+ | pillow | 61.87 | 72.67 |
677
+ | screen door | 68.21 | 77.03 |
678
+ | stairway | 32.7 | 38.45 |
679
+ | river | 11.6 | 22.81 |
680
+ | bridge | 38.77 | 43.57 |
681
+ | bookcase | 44.89 | 65.61 |
682
+ | blind | 46.61 | 48.95 |
683
+ | coffee table | 59.71 | 84.15 |
684
+ | toilet | 84.8 | 90.86 |
685
+ | flower | 43.64 | 64.1 |
686
+ | book | 49.21 | 66.22 |
687
+ | hill | 13.48 | 21.64 |
688
+ | bench | 55.21 | 64.27 |
689
+ | countertop | 49.06 | 73.98 |
690
+ | stove | 77.39 | 83.56 |
691
+ | palm | 51.11 | 67.45 |
692
+ | kitchen island | 49.14 | 76.72 |
693
+ | computer | 69.78 | 77.84 |
694
+ | swivel chair | 39.71 | 56.34 |
695
+ | boat | 48.05 | 52.89 |
696
+ | bar | 26.98 | 35.7 |
697
+ | arcade machine | 69.15 | 76.38 |
698
+ | hovel | 20.92 | 30.12 |
699
+ | bus | 87.77 | 97.1 |
700
+ | towel | 67.32 | 75.99 |
701
+ | light | 57.87 | 64.92 |
702
+ | truck | 37.61 | 48.83 |
703
+ | tower | 35.31 | 45.43 |
704
+ | chandelier | 65.99 | 79.86 |
705
+ | awning | 31.7 | 37.19 |
706
+ | streetlight | 28.83 | 35.37 |
707
+ | booth | 52.58 | 58.07 |
708
+ | television receiver | 70.28 | 80.92 |
709
+ | airplane | 61.82 | 68.65 |
710
+ | dirt track | 13.58 | 49.33 |
711
+ | apparel | 40.61 | 58.04 |
712
+ | pole | 27.08 | 34.57 |
713
+ | land | 1.6 | 3.64 |
714
+ | bannister | 15.63 | 19.65 |
715
+ | escalator | 28.68 | 31.74 |
716
+ | ottoman | 52.2 | 63.91 |
717
+ | bottle | 37.11 | 60.8 |
718
+ | buffet | 34.32 | 38.55 |
719
+ | poster | 30.1 | 37.59 |
720
+ | stage | 19.22 | 26.17 |
721
+ | van | 42.28 | 60.26 |
722
+ | ship | 61.48 | 88.98 |
723
+ | fountain | 19.35 | 21.66 |
724
+ | conveyer belt | 86.38 | 92.34 |
725
+ | canopy | 31.41 | 40.68 |
726
+ | washer | 75.23 | 76.0 |
727
+ | plaything | 30.46 | 46.68 |
728
+ | swimming pool | 70.72 | 77.6 |
729
+ | stool | 44.38 | 59.55 |
730
+ | barrel | 60.72 | 73.06 |
731
+ | basket | 37.5 | 48.99 |
732
+ | waterfall | 64.29 | 78.71 |
733
+ | tent | 92.9 | 98.47 |
734
+ | bag | 16.7 | 19.33 |
735
+ | minibike | 71.87 | 86.48 |
736
+ | cradle | 77.59 | 96.96 |
737
+ | oven | 44.84 | 79.75 |
738
+ | ball | 33.6 | 63.33 |
739
+ | food | 49.67 | 60.48 |
740
+ | step | 11.71 | 13.09 |
741
+ | tank | 57.11 | 61.44 |
742
+ | trade name | 29.41 | 33.71 |
743
+ | microwave | 71.46 | 75.56 |
744
+ | pot | 47.52 | 56.11 |
745
+ | animal | 43.99 | 44.89 |
746
+ | bicycle | 56.79 | 78.38 |
747
+ | lake | 54.44 | 63.37 |
748
+ | dishwasher | 67.34 | 71.8 |
749
+ | screen | 52.35 | 69.01 |
750
+ | blanket | 9.74 | 11.95 |
751
+ | sculpture | 69.57 | 84.66 |
752
+ | hood | 68.9 | 73.3 |
753
+ | sconce | 50.94 | 60.25 |
754
+ | vase | 46.92 | 61.85 |
755
+ | traffic light | 38.47 | 57.45 |
756
+ | tray | 11.6 | 18.94 |
757
+ | ashcan | 49.51 | 59.73 |
758
+ | fan | 64.55 | 77.35 |
759
+ | pier | 43.19 | 53.55 |
760
+ | crt screen | 6.65 | 20.83 |
761
+ | plate | 56.85 | 72.0 |
762
+ | monitor | 6.72 | 9.36 |
763
+ | bulletin board | 40.76 | 47.92 |
764
+ | shower | 2.85 | 4.45 |
765
+ | radiator | 66.1 | 72.02 |
766
+ | glass | 14.93 | 15.65 |
767
+ | clock | 39.09 | 45.98 |
768
+ | flag | 53.01 | 56.24 |
769
+ +---------------------+-------+-------+
770
+ 2024/01/14 18:28:07 - mmengine - INFO - Iter(test) [250/250] aAcc: 83.9200 mIoU: 51.1200 mAcc: 62.5500 data_time: 0.0509 time: 8.8501