Upload ade20k_upernet_vmamba_base_160k_512_iter160000_511.log
Browse files
ade20k_upernet_vmamba_base_160k_512_iter160000_511.log
ADDED
|
@@ -0,0 +1,770 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2024/01/14 17:47:47 - mmengine - INFO -
|
| 2 |
+
------------------------------------------------------------
|
| 3 |
+
System environment:
|
| 4 |
+
sys.platform: linux
|
| 5 |
+
Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0]
|
| 6 |
+
CUDA available: True
|
| 7 |
+
numpy_random_seed: 1688668109
|
| 8 |
+
GPU 0,1,2,3,4,5,6,7: Tesla V100-SXM3-32GB
|
| 9 |
+
CUDA_HOME: /usr/local/cuda
|
| 10 |
+
NVCC: Cuda compilation tools, release 11.7, V11.7.99
|
| 11 |
+
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
|
| 12 |
+
PyTorch: 1.13.0
|
| 13 |
+
PyTorch compiling details: PyTorch built with:
|
| 14 |
+
- GCC 9.3
|
| 15 |
+
- C++ Version: 201402
|
| 16 |
+
- Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications
|
| 17 |
+
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
|
| 18 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
| 19 |
+
- LAPACK is enabled (usually provided by MKL)
|
| 20 |
+
- NNPACK is enabled
|
| 21 |
+
- CPU capability usage: AVX2
|
| 22 |
+
- CUDA Runtime 11.7
|
| 23 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
|
| 24 |
+
- CuDNN 8.5
|
| 25 |
+
- Magma 2.6.1
|
| 26 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.5.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
| 27 |
+
|
| 28 |
+
TorchVision: 0.14.0
|
| 29 |
+
OpenCV: 4.9.0
|
| 30 |
+
MMEngine: 0.10.1
|
| 31 |
+
|
| 32 |
+
Runtime environment:
|
| 33 |
+
cudnn_benchmark: True
|
| 34 |
+
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0}
|
| 35 |
+
dist_cfg: {'backend': 'nccl'}
|
| 36 |
+
seed: 1688668109
|
| 37 |
+
Distributed launcher: pytorch
|
| 38 |
+
Distributed training: True
|
| 39 |
+
GPU number: 8
|
| 40 |
+
------------------------------------------------------------
|
| 41 |
+
|
| 42 |
+
2024/01/14 17:47:48 - mmengine - INFO - Config:
|
| 43 |
+
backbone_norm_cfg = dict(requires_grad=True, type='LN')
|
| 44 |
+
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth'
|
| 45 |
+
crop_size = (
|
| 46 |
+
512,
|
| 47 |
+
512,
|
| 48 |
+
)
|
| 49 |
+
data_preprocessor = dict(
|
| 50 |
+
bgr_to_rgb=True,
|
| 51 |
+
mean=[
|
| 52 |
+
123.675,
|
| 53 |
+
116.28,
|
| 54 |
+
103.53,
|
| 55 |
+
],
|
| 56 |
+
pad_val=0,
|
| 57 |
+
seg_pad_val=255,
|
| 58 |
+
size=(
|
| 59 |
+
512,
|
| 60 |
+
512,
|
| 61 |
+
),
|
| 62 |
+
std=[
|
| 63 |
+
58.395,
|
| 64 |
+
57.12,
|
| 65 |
+
57.375,
|
| 66 |
+
],
|
| 67 |
+
type='SegDataPreProcessor')
|
| 68 |
+
data_root = 'data/ade/ADEChallengeData2016'
|
| 69 |
+
dataset_type = 'ADE20KDataset'
|
| 70 |
+
default_hooks = dict(
|
| 71 |
+
checkpoint=dict(by_epoch=False, interval=16000, type='CheckpointHook'),
|
| 72 |
+
logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'),
|
| 73 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
| 74 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
| 75 |
+
timer=dict(type='IterTimerHook'),
|
| 76 |
+
visualization=dict(type='SegVisualizationHook'))
|
| 77 |
+
default_scope = 'mmseg'
|
| 78 |
+
env_cfg = dict(
|
| 79 |
+
cudnn_benchmark=True,
|
| 80 |
+
dist_cfg=dict(backend='nccl'),
|
| 81 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 82 |
+
img_ratios = [
|
| 83 |
+
0.5,
|
| 84 |
+
0.75,
|
| 85 |
+
1.0,
|
| 86 |
+
1.25,
|
| 87 |
+
1.5,
|
| 88 |
+
1.75,
|
| 89 |
+
]
|
| 90 |
+
launcher = 'pytorch'
|
| 91 |
+
load_from = './work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base/iter_160000.pth'
|
| 92 |
+
log_level = 'INFO'
|
| 93 |
+
log_processor = dict(by_epoch=False)
|
| 94 |
+
model = dict(
|
| 95 |
+
module=dict(
|
| 96 |
+
auxiliary_head=dict(
|
| 97 |
+
align_corners=False,
|
| 98 |
+
channels=256,
|
| 99 |
+
concat_input=False,
|
| 100 |
+
dropout_ratio=0.1,
|
| 101 |
+
in_channels=512,
|
| 102 |
+
in_index=2,
|
| 103 |
+
loss_decode=dict(
|
| 104 |
+
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
|
| 105 |
+
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
| 106 |
+
num_classes=150,
|
| 107 |
+
num_convs=1,
|
| 108 |
+
type='FCNHead'),
|
| 109 |
+
backbone=dict(
|
| 110 |
+
act_cfg=dict(type='GELU'),
|
| 111 |
+
attn_drop_rate=0.0,
|
| 112 |
+
depths=(
|
| 113 |
+
2,
|
| 114 |
+
2,
|
| 115 |
+
27,
|
| 116 |
+
2,
|
| 117 |
+
),
|
| 118 |
+
dims=128,
|
| 119 |
+
drop_path_rate=0.3,
|
| 120 |
+
drop_rate=0.0,
|
| 121 |
+
embed_dims=128,
|
| 122 |
+
init_cfg=dict(
|
| 123 |
+
checkpoint=
|
| 124 |
+
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth',
|
| 125 |
+
type='Pretrained'),
|
| 126 |
+
mlp_ratio=4,
|
| 127 |
+
norm_cfg=dict(requires_grad=True, type='LN'),
|
| 128 |
+
num_heads=[
|
| 129 |
+
4,
|
| 130 |
+
8,
|
| 131 |
+
16,
|
| 132 |
+
32,
|
| 133 |
+
],
|
| 134 |
+
out_indices=(
|
| 135 |
+
0,
|
| 136 |
+
1,
|
| 137 |
+
2,
|
| 138 |
+
3,
|
| 139 |
+
),
|
| 140 |
+
patch_norm=True,
|
| 141 |
+
patch_size=4,
|
| 142 |
+
pretrain_img_size=224,
|
| 143 |
+
pretrained='../../ckpts/vssmbase/ckpt_epoch_260.pth',
|
| 144 |
+
qk_scale=None,
|
| 145 |
+
qkv_bias=True,
|
| 146 |
+
strides=(
|
| 147 |
+
4,
|
| 148 |
+
2,
|
| 149 |
+
2,
|
| 150 |
+
2,
|
| 151 |
+
),
|
| 152 |
+
type='MMSEG_VSSM',
|
| 153 |
+
use_abs_pos_embed=False,
|
| 154 |
+
window_size=7),
|
| 155 |
+
data_preprocessor=dict(
|
| 156 |
+
bgr_to_rgb=True,
|
| 157 |
+
mean=[
|
| 158 |
+
123.675,
|
| 159 |
+
116.28,
|
| 160 |
+
103.53,
|
| 161 |
+
],
|
| 162 |
+
pad_val=0,
|
| 163 |
+
seg_pad_val=255,
|
| 164 |
+
size=(
|
| 165 |
+
512,
|
| 166 |
+
512,
|
| 167 |
+
),
|
| 168 |
+
std=[
|
| 169 |
+
58.395,
|
| 170 |
+
57.12,
|
| 171 |
+
57.375,
|
| 172 |
+
],
|
| 173 |
+
type='SegDataPreProcessor'),
|
| 174 |
+
decode_head=dict(
|
| 175 |
+
align_corners=False,
|
| 176 |
+
channels=512,
|
| 177 |
+
dropout_ratio=0.1,
|
| 178 |
+
in_channels=[
|
| 179 |
+
128,
|
| 180 |
+
256,
|
| 181 |
+
512,
|
| 182 |
+
1024,
|
| 183 |
+
],
|
| 184 |
+
in_index=[
|
| 185 |
+
0,
|
| 186 |
+
1,
|
| 187 |
+
2,
|
| 188 |
+
3,
|
| 189 |
+
],
|
| 190 |
+
loss_decode=dict(
|
| 191 |
+
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
|
| 192 |
+
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
| 193 |
+
num_classes=150,
|
| 194 |
+
pool_scales=(
|
| 195 |
+
1,
|
| 196 |
+
2,
|
| 197 |
+
3,
|
| 198 |
+
6,
|
| 199 |
+
),
|
| 200 |
+
type='UPerHead'),
|
| 201 |
+
pretrained=None,
|
| 202 |
+
test_cfg=dict(mode='whole'),
|
| 203 |
+
train_cfg=dict(),
|
| 204 |
+
type='EncoderDecoder'),
|
| 205 |
+
type='SegTTAModel')
|
| 206 |
+
norm_cfg = dict(requires_grad=True, type='SyncBN')
|
| 207 |
+
optim_wrapper = dict(
|
| 208 |
+
optimizer=dict(
|
| 209 |
+
betas=(
|
| 210 |
+
0.9,
|
| 211 |
+
0.999,
|
| 212 |
+
), lr=6e-05, type='AdamW', weight_decay=0.01),
|
| 213 |
+
paramwise_cfg=dict(
|
| 214 |
+
custom_keys=dict(
|
| 215 |
+
absolute_pos_embed=dict(decay_mult=0.0),
|
| 216 |
+
norm=dict(decay_mult=0.0),
|
| 217 |
+
relative_position_bias_table=dict(decay_mult=0.0))),
|
| 218 |
+
type='OptimWrapper')
|
| 219 |
+
optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005)
|
| 220 |
+
param_scheduler = [
|
| 221 |
+
dict(
|
| 222 |
+
begin=0, by_epoch=False, end=1500, start_factor=1e-06,
|
| 223 |
+
type='LinearLR'),
|
| 224 |
+
dict(
|
| 225 |
+
begin=1500,
|
| 226 |
+
by_epoch=False,
|
| 227 |
+
end=160000,
|
| 228 |
+
eta_min=0.0,
|
| 229 |
+
power=1.0,
|
| 230 |
+
type='PolyLR'),
|
| 231 |
+
]
|
| 232 |
+
resume = False
|
| 233 |
+
test_cfg = dict(type='TestLoop')
|
| 234 |
+
test_dataloader = dict(
|
| 235 |
+
batch_size=1,
|
| 236 |
+
dataset=dict(
|
| 237 |
+
data_prefix=dict(
|
| 238 |
+
img_path='images/validation',
|
| 239 |
+
seg_map_path='annotations/validation'),
|
| 240 |
+
data_root='data/ade/ADEChallengeData2016',
|
| 241 |
+
pipeline=[
|
| 242 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
| 243 |
+
dict(
|
| 244 |
+
transforms=[
|
| 245 |
+
[
|
| 246 |
+
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
|
| 247 |
+
dict(
|
| 248 |
+
keep_ratio=True, scale_factor=0.75, type='Resize'),
|
| 249 |
+
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
|
| 250 |
+
dict(
|
| 251 |
+
keep_ratio=True, scale_factor=1.25, type='Resize'),
|
| 252 |
+
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
|
| 253 |
+
dict(
|
| 254 |
+
keep_ratio=True, scale_factor=1.75, type='Resize'),
|
| 255 |
+
],
|
| 256 |
+
[
|
| 257 |
+
dict(
|
| 258 |
+
direction='horizontal',
|
| 259 |
+
prob=0.0,
|
| 260 |
+
type='RandomFlip'),
|
| 261 |
+
dict(
|
| 262 |
+
direction='horizontal',
|
| 263 |
+
prob=1.0,
|
| 264 |
+
type='RandomFlip'),
|
| 265 |
+
],
|
| 266 |
+
[
|
| 267 |
+
dict(type='LoadAnnotations'),
|
| 268 |
+
],
|
| 269 |
+
[
|
| 270 |
+
dict(type='PackSegInputs'),
|
| 271 |
+
],
|
| 272 |
+
],
|
| 273 |
+
type='TestTimeAug'),
|
| 274 |
+
],
|
| 275 |
+
type='ADE20KDataset'),
|
| 276 |
+
num_workers=4,
|
| 277 |
+
persistent_workers=True,
|
| 278 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
| 279 |
+
test_evaluator = dict(
|
| 280 |
+
iou_metrics=[
|
| 281 |
+
'mIoU',
|
| 282 |
+
], type='IoUMetric')
|
| 283 |
+
test_pipeline = [
|
| 284 |
+
dict(type='LoadImageFromFile'),
|
| 285 |
+
dict(keep_ratio=True, scale=(
|
| 286 |
+
2048,
|
| 287 |
+
512,
|
| 288 |
+
), type='Resize'),
|
| 289 |
+
dict(reduce_zero_label=True, type='LoadAnnotations'),
|
| 290 |
+
dict(type='PackSegInputs'),
|
| 291 |
+
]
|
| 292 |
+
train_cfg = dict(
|
| 293 |
+
max_iters=160000, type='IterBasedTrainLoop', val_interval=16000)
|
| 294 |
+
train_dataloader = dict(
|
| 295 |
+
batch_size=2,
|
| 296 |
+
dataset=dict(
|
| 297 |
+
data_prefix=dict(
|
| 298 |
+
img_path='images/training', seg_map_path='annotations/training'),
|
| 299 |
+
data_root='data/ade/ADEChallengeData2016',
|
| 300 |
+
pipeline=[
|
| 301 |
+
dict(type='LoadImageFromFile'),
|
| 302 |
+
dict(reduce_zero_label=True, type='LoadAnnotations'),
|
| 303 |
+
dict(
|
| 304 |
+
keep_ratio=True,
|
| 305 |
+
ratio_range=(
|
| 306 |
+
0.5,
|
| 307 |
+
2.0,
|
| 308 |
+
),
|
| 309 |
+
scale=(
|
| 310 |
+
2048,
|
| 311 |
+
512,
|
| 312 |
+
),
|
| 313 |
+
type='RandomResize'),
|
| 314 |
+
dict(
|
| 315 |
+
cat_max_ratio=0.75, crop_size=(
|
| 316 |
+
512,
|
| 317 |
+
512,
|
| 318 |
+
), type='RandomCrop'),
|
| 319 |
+
dict(prob=0.5, type='RandomFlip'),
|
| 320 |
+
dict(type='PhotoMetricDistortion'),
|
| 321 |
+
dict(type='PackSegInputs'),
|
| 322 |
+
],
|
| 323 |
+
type='ADE20KDataset'),
|
| 324 |
+
num_workers=4,
|
| 325 |
+
persistent_workers=True,
|
| 326 |
+
sampler=dict(shuffle=True, type='InfiniteSampler'))
|
| 327 |
+
train_pipeline = [
|
| 328 |
+
dict(type='LoadImageFromFile'),
|
| 329 |
+
dict(reduce_zero_label=True, type='LoadAnnotations'),
|
| 330 |
+
dict(
|
| 331 |
+
keep_ratio=True,
|
| 332 |
+
ratio_range=(
|
| 333 |
+
0.5,
|
| 334 |
+
2.0,
|
| 335 |
+
),
|
| 336 |
+
scale=(
|
| 337 |
+
2048,
|
| 338 |
+
512,
|
| 339 |
+
),
|
| 340 |
+
type='RandomResize'),
|
| 341 |
+
dict(cat_max_ratio=0.75, crop_size=(
|
| 342 |
+
512,
|
| 343 |
+
512,
|
| 344 |
+
), type='RandomCrop'),
|
| 345 |
+
dict(prob=0.5, type='RandomFlip'),
|
| 346 |
+
dict(type='PhotoMetricDistortion'),
|
| 347 |
+
dict(type='PackSegInputs'),
|
| 348 |
+
]
|
| 349 |
+
tta_model = dict(
|
| 350 |
+
module=dict(
|
| 351 |
+
auxiliary_head=dict(
|
| 352 |
+
align_corners=False,
|
| 353 |
+
channels=256,
|
| 354 |
+
concat_input=False,
|
| 355 |
+
dropout_ratio=0.1,
|
| 356 |
+
in_channels=512,
|
| 357 |
+
in_index=2,
|
| 358 |
+
loss_decode=dict(
|
| 359 |
+
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False),
|
| 360 |
+
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
| 361 |
+
num_classes=150,
|
| 362 |
+
num_convs=1,
|
| 363 |
+
type='FCNHead'),
|
| 364 |
+
backbone=dict(
|
| 365 |
+
act_cfg=dict(type='GELU'),
|
| 366 |
+
attn_drop_rate=0.0,
|
| 367 |
+
depths=(
|
| 368 |
+
2,
|
| 369 |
+
2,
|
| 370 |
+
27,
|
| 371 |
+
2,
|
| 372 |
+
),
|
| 373 |
+
dims=128,
|
| 374 |
+
drop_path_rate=0.3,
|
| 375 |
+
drop_rate=0.0,
|
| 376 |
+
embed_dims=128,
|
| 377 |
+
init_cfg=dict(
|
| 378 |
+
checkpoint=
|
| 379 |
+
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth',
|
| 380 |
+
type='Pretrained'),
|
| 381 |
+
mlp_ratio=4,
|
| 382 |
+
norm_cfg=dict(requires_grad=True, type='LN'),
|
| 383 |
+
num_heads=[
|
| 384 |
+
4,
|
| 385 |
+
8,
|
| 386 |
+
16,
|
| 387 |
+
32,
|
| 388 |
+
],
|
| 389 |
+
out_indices=(
|
| 390 |
+
0,
|
| 391 |
+
1,
|
| 392 |
+
2,
|
| 393 |
+
3,
|
| 394 |
+
),
|
| 395 |
+
patch_norm=True,
|
| 396 |
+
patch_size=4,
|
| 397 |
+
pretrain_img_size=224,
|
| 398 |
+
pretrained='../../ckpts/vssmbase/ckpt_epoch_260.pth',
|
| 399 |
+
qk_scale=None,
|
| 400 |
+
qkv_bias=True,
|
| 401 |
+
strides=(
|
| 402 |
+
4,
|
| 403 |
+
2,
|
| 404 |
+
2,
|
| 405 |
+
2,
|
| 406 |
+
),
|
| 407 |
+
type='MMSEG_VSSM',
|
| 408 |
+
use_abs_pos_embed=False,
|
| 409 |
+
window_size=7),
|
| 410 |
+
data_preprocessor=dict(
|
| 411 |
+
bgr_to_rgb=True,
|
| 412 |
+
mean=[
|
| 413 |
+
123.675,
|
| 414 |
+
116.28,
|
| 415 |
+
103.53,
|
| 416 |
+
],
|
| 417 |
+
pad_val=0,
|
| 418 |
+
seg_pad_val=255,
|
| 419 |
+
size=(
|
| 420 |
+
512,
|
| 421 |
+
512,
|
| 422 |
+
),
|
| 423 |
+
std=[
|
| 424 |
+
58.395,
|
| 425 |
+
57.12,
|
| 426 |
+
57.375,
|
| 427 |
+
],
|
| 428 |
+
type='SegDataPreProcessor'),
|
| 429 |
+
decode_head=dict(
|
| 430 |
+
align_corners=False,
|
| 431 |
+
channels=512,
|
| 432 |
+
dropout_ratio=0.1,
|
| 433 |
+
in_channels=[
|
| 434 |
+
128,
|
| 435 |
+
256,
|
| 436 |
+
512,
|
| 437 |
+
1024,
|
| 438 |
+
],
|
| 439 |
+
in_index=[
|
| 440 |
+
0,
|
| 441 |
+
1,
|
| 442 |
+
2,
|
| 443 |
+
3,
|
| 444 |
+
],
|
| 445 |
+
loss_decode=dict(
|
| 446 |
+
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False),
|
| 447 |
+
norm_cfg=dict(requires_grad=True, type='SyncBN'),
|
| 448 |
+
num_classes=150,
|
| 449 |
+
pool_scales=(
|
| 450 |
+
1,
|
| 451 |
+
2,
|
| 452 |
+
3,
|
| 453 |
+
6,
|
| 454 |
+
),
|
| 455 |
+
type='UPerHead'),
|
| 456 |
+
pretrained=None,
|
| 457 |
+
test_cfg=dict(mode='whole'),
|
| 458 |
+
train_cfg=dict(),
|
| 459 |
+
type='EncoderDecoder'),
|
| 460 |
+
type='SegTTAModel')
|
| 461 |
+
tta_pipeline = [
|
| 462 |
+
dict(backend_args=None, type='LoadImageFromFile'),
|
| 463 |
+
dict(
|
| 464 |
+
transforms=[
|
| 465 |
+
[
|
| 466 |
+
dict(keep_ratio=True, scale_factor=0.5, type='Resize'),
|
| 467 |
+
dict(keep_ratio=True, scale_factor=0.75, type='Resize'),
|
| 468 |
+
dict(keep_ratio=True, scale_factor=1.0, type='Resize'),
|
| 469 |
+
dict(keep_ratio=True, scale_factor=1.25, type='Resize'),
|
| 470 |
+
dict(keep_ratio=True, scale_factor=1.5, type='Resize'),
|
| 471 |
+
dict(keep_ratio=True, scale_factor=1.75, type='Resize'),
|
| 472 |
+
],
|
| 473 |
+
[
|
| 474 |
+
dict(direction='horizontal', prob=0.0, type='RandomFlip'),
|
| 475 |
+
dict(direction='horizontal', prob=1.0, type='RandomFlip'),
|
| 476 |
+
],
|
| 477 |
+
[
|
| 478 |
+
dict(type='LoadAnnotations'),
|
| 479 |
+
],
|
| 480 |
+
[
|
| 481 |
+
dict(type='PackSegInputs'),
|
| 482 |
+
],
|
| 483 |
+
],
|
| 484 |
+
type='TestTimeAug'),
|
| 485 |
+
]
|
| 486 |
+
val_cfg = dict(type='ValLoop')
|
| 487 |
+
val_dataloader = dict(
|
| 488 |
+
batch_size=1,
|
| 489 |
+
dataset=dict(
|
| 490 |
+
data_prefix=dict(
|
| 491 |
+
img_path='images/validation',
|
| 492 |
+
seg_map_path='annotations/validation'),
|
| 493 |
+
data_root='data/ade/ADEChallengeData2016',
|
| 494 |
+
pipeline=[
|
| 495 |
+
dict(type='LoadImageFromFile'),
|
| 496 |
+
dict(keep_ratio=True, scale=(
|
| 497 |
+
2048,
|
| 498 |
+
512,
|
| 499 |
+
), type='Resize'),
|
| 500 |
+
dict(reduce_zero_label=True, type='LoadAnnotations'),
|
| 501 |
+
dict(type='PackSegInputs'),
|
| 502 |
+
],
|
| 503 |
+
type='ADE20KDataset'),
|
| 504 |
+
num_workers=4,
|
| 505 |
+
persistent_workers=True,
|
| 506 |
+
sampler=dict(shuffle=False, type='DefaultSampler'))
|
| 507 |
+
val_evaluator = dict(
|
| 508 |
+
iou_metrics=[
|
| 509 |
+
'mIoU',
|
| 510 |
+
], type='IoUMetric')
|
| 511 |
+
vis_backends = [
|
| 512 |
+
dict(type='LocalVisBackend'),
|
| 513 |
+
]
|
| 514 |
+
visualizer = dict(
|
| 515 |
+
name='visualizer',
|
| 516 |
+
type='SegLocalVisualizer',
|
| 517 |
+
vis_backends=[
|
| 518 |
+
dict(type='LocalVisBackend'),
|
| 519 |
+
])
|
| 520 |
+
work_dir = './work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base'
|
| 521 |
+
|
| 522 |
+
2024/01/14 17:47:58 - mmengine - INFO - Hooks will be executed in the following order:
|
| 523 |
+
before_run:
|
| 524 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 525 |
+
(BELOW_NORMAL) LoggerHook
|
| 526 |
+
--------------------
|
| 527 |
+
before_train:
|
| 528 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 529 |
+
(NORMAL ) IterTimerHook
|
| 530 |
+
(VERY_LOW ) CheckpointHook
|
| 531 |
+
--------------------
|
| 532 |
+
before_train_epoch:
|
| 533 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 534 |
+
(NORMAL ) IterTimerHook
|
| 535 |
+
(NORMAL ) DistSamplerSeedHook
|
| 536 |
+
--------------------
|
| 537 |
+
before_train_iter:
|
| 538 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 539 |
+
(NORMAL ) IterTimerHook
|
| 540 |
+
--------------------
|
| 541 |
+
after_train_iter:
|
| 542 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 543 |
+
(NORMAL ) IterTimerHook
|
| 544 |
+
(NORMAL ) SegVisualizationHook
|
| 545 |
+
(BELOW_NORMAL) LoggerHook
|
| 546 |
+
(LOW ) ParamSchedulerHook
|
| 547 |
+
(VERY_LOW ) CheckpointHook
|
| 548 |
+
--------------------
|
| 549 |
+
after_train_epoch:
|
| 550 |
+
(NORMAL ) IterTimerHook
|
| 551 |
+
(LOW ) ParamSchedulerHook
|
| 552 |
+
(VERY_LOW ) CheckpointHook
|
| 553 |
+
--------------------
|
| 554 |
+
before_val:
|
| 555 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 556 |
+
--------------------
|
| 557 |
+
before_val_epoch:
|
| 558 |
+
(NORMAL ) IterTimerHook
|
| 559 |
+
--------------------
|
| 560 |
+
before_val_iter:
|
| 561 |
+
(NORMAL ) IterTimerHook
|
| 562 |
+
--------------------
|
| 563 |
+
after_val_iter:
|
| 564 |
+
(NORMAL ) IterTimerHook
|
| 565 |
+
(NORMAL ) SegVisualizationHook
|
| 566 |
+
(BELOW_NORMAL) LoggerHook
|
| 567 |
+
--------------------
|
| 568 |
+
after_val_epoch:
|
| 569 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 570 |
+
(NORMAL ) IterTimerHook
|
| 571 |
+
(BELOW_NORMAL) LoggerHook
|
| 572 |
+
(LOW ) ParamSchedulerHook
|
| 573 |
+
(VERY_LOW ) CheckpointHook
|
| 574 |
+
--------------------
|
| 575 |
+
after_val:
|
| 576 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 577 |
+
--------------------
|
| 578 |
+
after_train:
|
| 579 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 580 |
+
(VERY_LOW ) CheckpointHook
|
| 581 |
+
--------------------
|
| 582 |
+
before_test:
|
| 583 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 584 |
+
--------------------
|
| 585 |
+
before_test_epoch:
|
| 586 |
+
(NORMAL ) IterTimerHook
|
| 587 |
+
--------------------
|
| 588 |
+
before_test_iter:
|
| 589 |
+
(NORMAL ) IterTimerHook
|
| 590 |
+
--------------------
|
| 591 |
+
after_test_iter:
|
| 592 |
+
(NORMAL ) IterTimerHook
|
| 593 |
+
(NORMAL ) SegVisualizationHook
|
| 594 |
+
(BELOW_NORMAL) LoggerHook
|
| 595 |
+
--------------------
|
| 596 |
+
after_test_epoch:
|
| 597 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 598 |
+
(NORMAL ) IterTimerHook
|
| 599 |
+
(BELOW_NORMAL) LoggerHook
|
| 600 |
+
--------------------
|
| 601 |
+
after_test:
|
| 602 |
+
(VERY_HIGH ) RuntimeInfoHook
|
| 603 |
+
--------------------
|
| 604 |
+
after_run:
|
| 605 |
+
(BELOW_NORMAL) LoggerHook
|
| 606 |
+
--------------------
|
| 607 |
+
2024/01/14 17:47:59 - mmengine - WARNING - The prefix is not set in metric class IoUMetric.
|
| 608 |
+
2024/01/14 17:48:08 - mmengine - INFO - Load checkpoint from ./work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base/iter_160000.pth
|
| 609 |
+
2024/01/14 18:02:41 - mmengine - INFO - Iter(test) [ 50/250] eta: 0:58:11 time: 10.1193 data_time: 0.0121 memory: 20518
|
| 610 |
+
2024/01/14 18:10:19 - mmengine - INFO - Iter(test) [100/250] eta: 0:33:17 time: 8.5116 data_time: 0.0100 memory: 19429
|
| 611 |
+
2024/01/14 18:15:12 - mmengine - INFO - Iter(test) [150/250] eta: 0:18:02 time: 5.7400 data_time: 0.0111 memory: 19330
|
| 612 |
+
2024/01/14 18:20:32 - mmengine - INFO - Iter(test) [200/250] eta: 0:08:05 time: 6.0980 data_time: 0.0114 memory: 19330
|
| 613 |
+
2024/01/14 18:25:01 - mmengine - INFO - Iter(test) [250/250] eta: 0:00:00 time: 3.3462 data_time: 0.0118 memory: 18931
|
| 614 |
+
2024/01/14 18:28:07 - mmengine - INFO - per class results:
|
| 615 |
+
2024/01/14 18:28:07 - mmengine - INFO -
|
| 616 |
+
+---------------------+-------+-------+
|
| 617 |
+
| Class | IoU | Acc |
|
| 618 |
+
+---------------------+-------+-------+
|
| 619 |
+
| wall | 78.97 | 89.79 |
|
| 620 |
+
| building | 83.44 | 93.48 |
|
| 621 |
+
| sky | 94.33 | 97.56 |
|
| 622 |
+
| floor | 82.05 | 90.77 |
|
| 623 |
+
| tree | 74.87 | 88.67 |
|
| 624 |
+
| ceiling | 85.17 | 93.67 |
|
| 625 |
+
| road | 84.22 | 90.66 |
|
| 626 |
+
| bed | 89.05 | 96.36 |
|
| 627 |
+
| windowpane | 63.55 | 79.82 |
|
| 628 |
+
| grass | 69.99 | 84.45 |
|
| 629 |
+
| cabinet | 62.16 | 75.89 |
|
| 630 |
+
| sidewalk | 66.09 | 81.19 |
|
| 631 |
+
| person | 81.66 | 93.13 |
|
| 632 |
+
| earth | 37.51 | 48.77 |
|
| 633 |
+
| door | 52.74 | 65.76 |
|
| 634 |
+
| table | 62.93 | 78.47 |
|
| 635 |
+
| mountain | 63.34 | 78.01 |
|
| 636 |
+
| plant | 52.21 | 63.43 |
|
| 637 |
+
| curtain | 75.86 | 87.52 |
|
| 638 |
+
| chair | 61.77 | 72.89 |
|
| 639 |
+
| car | 84.12 | 90.96 |
|
| 640 |
+
| water | 53.74 | 67.62 |
|
| 641 |
+
| painting | 76.67 | 89.15 |
|
| 642 |
+
| sofa | 69.15 | 84.85 |
|
| 643 |
+
| shelf | 43.65 | 63.48 |
|
| 644 |
+
| house | 37.83 | 50.42 |
|
| 645 |
+
| sea | 63.54 | 89.14 |
|
| 646 |
+
| mirror | 69.31 | 76.99 |
|
| 647 |
+
| rug | 55.02 | 64.68 |
|
| 648 |
+
| field | 27.91 | 43.35 |
|
| 649 |
+
| armchair | 48.02 | 67.01 |
|
| 650 |
+
| seat | 63.51 | 84.09 |
|
| 651 |
+
| fence | 47.72 | 61.45 |
|
| 652 |
+
| desk | 53.92 | 72.17 |
|
| 653 |
+
| rock | 45.01 | 66.9 |
|
| 654 |
+
| wardrobe | 49.15 | 59.93 |
|
| 655 |
+
| lamp | 66.03 | 77.09 |
|
| 656 |
+
| bathtub | 80.36 | 85.58 |
|
| 657 |
+
| railing | 35.23 | 49.33 |
|
| 658 |
+
| cushion | 60.43 | 73.02 |
|
| 659 |
+
| base | 31.65 | 42.54 |
|
| 660 |
+
| box | 26.89 | 31.63 |
|
| 661 |
+
| column | 48.94 | 56.13 |
|
| 662 |
+
| signboard | 39.69 | 50.97 |
|
| 663 |
+
| chest of drawers | 48.02 | 62.14 |
|
| 664 |
+
| counter | 25.34 | 35.46 |
|
| 665 |
+
| sand | 55.67 | 73.43 |
|
| 666 |
+
| sink | 74.58 | 80.96 |
|
| 667 |
+
| skyscraper | 42.42 | 51.55 |
|
| 668 |
+
| fireplace | 80.92 | 91.73 |
|
| 669 |
+
| refrigerator | 77.76 | 85.12 |
|
| 670 |
+
| grandstand | 45.02 | 83.82 |
|
| 671 |
+
| path | 16.49 | 26.37 |
|
| 672 |
+
| stairs | 35.1 | 42.42 |
|
| 673 |
+
| runway | 72.8 | 93.9 |
|
| 674 |
+
| case | 48.01 | 62.28 |
|
| 675 |
+
| pool table | 93.33 | 97.32 |
|
| 676 |
+
| pillow | 61.87 | 72.67 |
|
| 677 |
+
| screen door | 68.21 | 77.03 |
|
| 678 |
+
| stairway | 32.7 | 38.45 |
|
| 679 |
+
| river | 11.6 | 22.81 |
|
| 680 |
+
| bridge | 38.77 | 43.57 |
|
| 681 |
+
| bookcase | 44.89 | 65.61 |
|
| 682 |
+
| blind | 46.61 | 48.95 |
|
| 683 |
+
| coffee table | 59.71 | 84.15 |
|
| 684 |
+
| toilet | 84.8 | 90.86 |
|
| 685 |
+
| flower | 43.64 | 64.1 |
|
| 686 |
+
| book | 49.21 | 66.22 |
|
| 687 |
+
| hill | 13.48 | 21.64 |
|
| 688 |
+
| bench | 55.21 | 64.27 |
|
| 689 |
+
| countertop | 49.06 | 73.98 |
|
| 690 |
+
| stove | 77.39 | 83.56 |
|
| 691 |
+
| palm | 51.11 | 67.45 |
|
| 692 |
+
| kitchen island | 49.14 | 76.72 |
|
| 693 |
+
| computer | 69.78 | 77.84 |
|
| 694 |
+
| swivel chair | 39.71 | 56.34 |
|
| 695 |
+
| boat | 48.05 | 52.89 |
|
| 696 |
+
| bar | 26.98 | 35.7 |
|
| 697 |
+
| arcade machine | 69.15 | 76.38 |
|
| 698 |
+
| hovel | 20.92 | 30.12 |
|
| 699 |
+
| bus | 87.77 | 97.1 |
|
| 700 |
+
| towel | 67.32 | 75.99 |
|
| 701 |
+
| light | 57.87 | 64.92 |
|
| 702 |
+
| truck | 37.61 | 48.83 |
|
| 703 |
+
| tower | 35.31 | 45.43 |
|
| 704 |
+
| chandelier | 65.99 | 79.86 |
|
| 705 |
+
| awning | 31.7 | 37.19 |
|
| 706 |
+
| streetlight | 28.83 | 35.37 |
|
| 707 |
+
| booth | 52.58 | 58.07 |
|
| 708 |
+
| television receiver | 70.28 | 80.92 |
|
| 709 |
+
| airplane | 61.82 | 68.65 |
|
| 710 |
+
| dirt track | 13.58 | 49.33 |
|
| 711 |
+
| apparel | 40.61 | 58.04 |
|
| 712 |
+
| pole | 27.08 | 34.57 |
|
| 713 |
+
| land | 1.6 | 3.64 |
|
| 714 |
+
| bannister | 15.63 | 19.65 |
|
| 715 |
+
| escalator | 28.68 | 31.74 |
|
| 716 |
+
| ottoman | 52.2 | 63.91 |
|
| 717 |
+
| bottle | 37.11 | 60.8 |
|
| 718 |
+
| buffet | 34.32 | 38.55 |
|
| 719 |
+
| poster | 30.1 | 37.59 |
|
| 720 |
+
| stage | 19.22 | 26.17 |
|
| 721 |
+
| van | 42.28 | 60.26 |
|
| 722 |
+
| ship | 61.48 | 88.98 |
|
| 723 |
+
| fountain | 19.35 | 21.66 |
|
| 724 |
+
| conveyer belt | 86.38 | 92.34 |
|
| 725 |
+
| canopy | 31.41 | 40.68 |
|
| 726 |
+
| washer | 75.23 | 76.0 |
|
| 727 |
+
| plaything | 30.46 | 46.68 |
|
| 728 |
+
| swimming pool | 70.72 | 77.6 |
|
| 729 |
+
| stool | 44.38 | 59.55 |
|
| 730 |
+
| barrel | 60.72 | 73.06 |
|
| 731 |
+
| basket | 37.5 | 48.99 |
|
| 732 |
+
| waterfall | 64.29 | 78.71 |
|
| 733 |
+
| tent | 92.9 | 98.47 |
|
| 734 |
+
| bag | 16.7 | 19.33 |
|
| 735 |
+
| minibike | 71.87 | 86.48 |
|
| 736 |
+
| cradle | 77.59 | 96.96 |
|
| 737 |
+
| oven | 44.84 | 79.75 |
|
| 738 |
+
| ball | 33.6 | 63.33 |
|
| 739 |
+
| food | 49.67 | 60.48 |
|
| 740 |
+
| step | 11.71 | 13.09 |
|
| 741 |
+
| tank | 57.11 | 61.44 |
|
| 742 |
+
| trade name | 29.41 | 33.71 |
|
| 743 |
+
| microwave | 71.46 | 75.56 |
|
| 744 |
+
| pot | 47.52 | 56.11 |
|
| 745 |
+
| animal | 43.99 | 44.89 |
|
| 746 |
+
| bicycle | 56.79 | 78.38 |
|
| 747 |
+
| lake | 54.44 | 63.37 |
|
| 748 |
+
| dishwasher | 67.34 | 71.8 |
|
| 749 |
+
| screen | 52.35 | 69.01 |
|
| 750 |
+
| blanket | 9.74 | 11.95 |
|
| 751 |
+
| sculpture | 69.57 | 84.66 |
|
| 752 |
+
| hood | 68.9 | 73.3 |
|
| 753 |
+
| sconce | 50.94 | 60.25 |
|
| 754 |
+
| vase | 46.92 | 61.85 |
|
| 755 |
+
| traffic light | 38.47 | 57.45 |
|
| 756 |
+
| tray | 11.6 | 18.94 |
|
| 757 |
+
| ashcan | 49.51 | 59.73 |
|
| 758 |
+
| fan | 64.55 | 77.35 |
|
| 759 |
+
| pier | 43.19 | 53.55 |
|
| 760 |
+
| crt screen | 6.65 | 20.83 |
|
| 761 |
+
| plate | 56.85 | 72.0 |
|
| 762 |
+
| monitor | 6.72 | 9.36 |
|
| 763 |
+
| bulletin board | 40.76 | 47.92 |
|
| 764 |
+
| shower | 2.85 | 4.45 |
|
| 765 |
+
| radiator | 66.1 | 72.02 |
|
| 766 |
+
| glass | 14.93 | 15.65 |
|
| 767 |
+
| clock | 39.09 | 45.98 |
|
| 768 |
+
| flag | 53.01 | 56.24 |
|
| 769 |
+
+---------------------+-------+-------+
|
| 770 |
+
2024/01/14 18:28:07 - mmengine - INFO - Iter(test) [250/250] aAcc: 83.9200 mIoU: 51.1200 mAcc: 62.5500 data_time: 0.0509 time: 8.8501
|