Commit
·
32f8dbd
1
Parent(s):
ab2ef41
Upload model
Browse files- README.md +93 -0
- config.json +91 -0
- preprocessor_config.json +9 -0
- pytorch_model.bin +3 -0
README.md
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
datasets:
|
| 4 |
+
- superb
|
| 5 |
+
tags:
|
| 6 |
+
- speech
|
| 7 |
+
- audio
|
| 8 |
+
- hubert
|
| 9 |
+
- audio-classification
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Hubert-Large for Emotion Recognition
|
| 14 |
+
|
| 15 |
+
## Model description
|
| 16 |
+
|
| 17 |
+
This is a ported version of
|
| 18 |
+
[S3PRL's Hubert for the SUPERB Emotion Recognition task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/emotion).
|
| 19 |
+
|
| 20 |
+
The base model is [hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k), which is pretrained on 16kHz
|
| 21 |
+
sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
|
| 22 |
+
|
| 23 |
+
For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
|
| 24 |
+
|
| 25 |
+
## Task and dataset description
|
| 26 |
+
|
| 27 |
+
Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset
|
| 28 |
+
[IEMOCAP](https://sail.usc.edu/iemocap/) is adopted, and we follow the conventional evaluation protocol:
|
| 29 |
+
we drop the unbalanced emotion classes to leave the final four classes with a similar amount of data points and
|
| 30 |
+
cross-validate on five folds of the standard splits.
|
| 31 |
+
|
| 32 |
+
For the original model's training and evaluation instructions refer to the
|
| 33 |
+
[S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#er-emotion-recognition).
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
## Usage examples
|
| 37 |
+
|
| 38 |
+
You can use the model via the Audio Classification pipeline:
|
| 39 |
+
```python
|
| 40 |
+
from datasets import load_dataset
|
| 41 |
+
from transformers import pipeline
|
| 42 |
+
|
| 43 |
+
dataset = load_dataset("anton-l/superb_demo", "er", split="session1")
|
| 44 |
+
|
| 45 |
+
classifier = pipeline("audio-classification", model="superb/hubert-large-superb-er")
|
| 46 |
+
labels = classifier(dataset[0]["file"], top_k=5)
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
Or use the model directly:
|
| 50 |
+
```python
|
| 51 |
+
import torch
|
| 52 |
+
import librosa
|
| 53 |
+
from datasets import load_dataset
|
| 54 |
+
from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor
|
| 55 |
+
|
| 56 |
+
def map_to_array(example):
|
| 57 |
+
speech, _ = librosa.load(example["file"], sr=16000, mono=True)
|
| 58 |
+
example["speech"] = speech
|
| 59 |
+
return example
|
| 60 |
+
|
| 61 |
+
# load a demo dataset and read audio files
|
| 62 |
+
dataset = load_dataset("anton-l/superb_demo", "er", split="session1")
|
| 63 |
+
dataset = dataset.map(map_to_array)
|
| 64 |
+
|
| 65 |
+
model = HubertForSequenceClassification.from_pretrained("superb/hubert-large-superb-er")
|
| 66 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-large-superb-er")
|
| 67 |
+
|
| 68 |
+
# compute attention masks and normalize the waveform if needed
|
| 69 |
+
inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
|
| 70 |
+
|
| 71 |
+
logits = model(**inputs).logits
|
| 72 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 73 |
+
labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
## Eval results
|
| 77 |
+
|
| 78 |
+
The evaluation metric is accuracy.
|
| 79 |
+
|
| 80 |
+
| | **s3prl** | **transformers** |
|
| 81 |
+
|--------|-----------|------------------|
|
| 82 |
+
|**session1**| `0.6762` | `N/A` |
|
| 83 |
+
|
| 84 |
+
### BibTeX entry and citation info
|
| 85 |
+
|
| 86 |
+
```bibtex
|
| 87 |
+
@article{yang2021superb,
|
| 88 |
+
title={SUPERB: Speech processing Universal PERformance Benchmark},
|
| 89 |
+
author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
|
| 90 |
+
journal={arXiv preprint arXiv:2105.01051},
|
| 91 |
+
year={2021}
|
| 92 |
+
}
|
| 93 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "facebook/hubert-large-ll60k",
|
| 3 |
+
"activation_dropout": 0.0,
|
| 4 |
+
"apply_spec_augment": true,
|
| 5 |
+
"architectures": [
|
| 6 |
+
"HubertForSequenceClassification"
|
| 7 |
+
],
|
| 8 |
+
"attention_dropout": 0.1,
|
| 9 |
+
"bos_token_id": 1,
|
| 10 |
+
"classifier_proj_size": 256,
|
| 11 |
+
"conv_bias": true,
|
| 12 |
+
"conv_dim": [
|
| 13 |
+
512,
|
| 14 |
+
512,
|
| 15 |
+
512,
|
| 16 |
+
512,
|
| 17 |
+
512,
|
| 18 |
+
512,
|
| 19 |
+
512
|
| 20 |
+
],
|
| 21 |
+
"conv_kernel": [
|
| 22 |
+
10,
|
| 23 |
+
3,
|
| 24 |
+
3,
|
| 25 |
+
3,
|
| 26 |
+
3,
|
| 27 |
+
2,
|
| 28 |
+
2
|
| 29 |
+
],
|
| 30 |
+
"conv_stride": [
|
| 31 |
+
5,
|
| 32 |
+
2,
|
| 33 |
+
2,
|
| 34 |
+
2,
|
| 35 |
+
2,
|
| 36 |
+
2,
|
| 37 |
+
2
|
| 38 |
+
],
|
| 39 |
+
"ctc_loss_reduction": "sum",
|
| 40 |
+
"ctc_zero_infinity": false,
|
| 41 |
+
"do_stable_layer_norm": true,
|
| 42 |
+
"eos_token_id": 2,
|
| 43 |
+
"feat_extract_activation": "gelu",
|
| 44 |
+
"feat_extract_dropout": 0.0,
|
| 45 |
+
"feat_extract_norm": "layer",
|
| 46 |
+
"feat_proj_dropout": 0.1,
|
| 47 |
+
"final_dropout": 0.0,
|
| 48 |
+
"gradient_checkpointing": false,
|
| 49 |
+
"hidden_act": "gelu",
|
| 50 |
+
"hidden_dropout": 0.1,
|
| 51 |
+
"hidden_size": 1024,
|
| 52 |
+
"id2label": {
|
| 53 |
+
"0": "neu",
|
| 54 |
+
"1": "hap",
|
| 55 |
+
"2": "ang",
|
| 56 |
+
"3": "sad"
|
| 57 |
+
},
|
| 58 |
+
"initializer_range": 0.02,
|
| 59 |
+
"intermediate_size": 4096,
|
| 60 |
+
"label2id": {
|
| 61 |
+
"ang": 2,
|
| 62 |
+
"hap": 1,
|
| 63 |
+
"neu": 0,
|
| 64 |
+
"sad": 3
|
| 65 |
+
},
|
| 66 |
+
"layer_norm_eps": 1e-05,
|
| 67 |
+
"layerdrop": 0.1,
|
| 68 |
+
"mask_channel_length": 10,
|
| 69 |
+
"mask_channel_min_space": 1,
|
| 70 |
+
"mask_channel_other": 0.0,
|
| 71 |
+
"mask_channel_prob": 0.0,
|
| 72 |
+
"mask_channel_selection": "static",
|
| 73 |
+
"mask_feature_length": 10,
|
| 74 |
+
"mask_feature_prob": 0.0,
|
| 75 |
+
"mask_time_length": 10,
|
| 76 |
+
"mask_time_min_space": 1,
|
| 77 |
+
"mask_time_other": 0.0,
|
| 78 |
+
"mask_time_prob": 0.075,
|
| 79 |
+
"mask_time_selection": "static",
|
| 80 |
+
"model_type": "hubert",
|
| 81 |
+
"num_attention_heads": 16,
|
| 82 |
+
"num_conv_pos_embedding_groups": 16,
|
| 83 |
+
"num_conv_pos_embeddings": 128,
|
| 84 |
+
"num_feat_extract_layers": 7,
|
| 85 |
+
"num_hidden_layers": 24,
|
| 86 |
+
"pad_token_id": 0,
|
| 87 |
+
"torch_dtype": "float32",
|
| 88 |
+
"transformers_version": "4.11.0.dev0",
|
| 89 |
+
"use_weighted_layer_sum": true,
|
| 90 |
+
"vocab_size": 32
|
| 91 |
+
}
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": true,
|
| 3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
| 4 |
+
"feature_size": 1,
|
| 5 |
+
"padding_side": "right",
|
| 6 |
+
"padding_value": 0,
|
| 7 |
+
"return_attention_mask": true,
|
| 8 |
+
"sampling_rate": 16000
|
| 9 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f9e5f9386285300a3e5e7d7f6852f578fec7bb0cc75e89661a3f98db7112237d
|
| 3 |
+
size 1262970923
|