mciccone commited on
Commit
208a074
·
verified ·
1 Parent(s): 2cd25e4

Add/update README

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # medmcqa LoRA Models
2
+
3
+ This repository contains LoRA (Low-Rank Adaptation) models trained on the medmcqa dataset.
4
+
5
+ ## Models in this repository:
6
+
7
+ - `llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=500_seed=123
8
+ - `llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=100_seed=123
9
+ - `llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr5e-06_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr5e-06_data_size1000_max_steps=500_seed=123
10
+ - `llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=500_seed=123
11
+ - `llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr1e-05_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr1e-05_data_size1000_max_steps=500_seed=123
12
+ - `llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr0.0001_data_size1000_max_steps=500_seed=123
13
+ - `llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr0.0002_data_size1000_max_steps=100_seed=123
14
+ - `llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=100_seed=123/`: LoRA adapter for llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr0.0003_data_size1000_max_steps=100_seed=123
15
+ - `llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr1e-05_data_size1000_max_steps=1000_seed=123/`: LoRA adapter for llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr1e-05_data_size1000_max_steps=1000_seed=123
16
+ - `llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr5e-06_data_size1000_max_steps=1000_seed=123/`: LoRA adapter for llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr5e-06_data_size1000_max_steps=1000_seed=123
17
+ - `llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr5e-05_data_size1000_max_steps=500_seed=123/`: LoRA adapter for llama_finetune_medmcqa_r16_alpha=32_dropout=0.05_lr5e-05_data_size1000_max_steps=500_seed=123
18
+
19
+ ## Usage
20
+
21
+ To use these LoRA models, you'll need the `peft` library:
22
+
23
+ ```bash
24
+ pip install peft transformers torch
25
+ ```
26
+
27
+ Example usage:
28
+
29
+ ```python
30
+ from peft import PeftModel
31
+ from transformers import AutoModelForCausalLM, AutoTokenizer
32
+
33
+ # Load base model
34
+ base_model_name = "your-base-model" # Replace with actual base model
35
+ model = AutoModelForCausalLM.from_pretrained(base_model_name)
36
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
37
+
38
+ # Load LoRA adapter
39
+ model = PeftModel.from_pretrained(
40
+ model,
41
+ "supergoose/medmcqa",
42
+ subfolder="model_name_here" # Replace with specific model folder
43
+ )
44
+
45
+ # Use the model
46
+ inputs = tokenizer("Your prompt here", return_tensors="pt")
47
+ outputs = model.generate(**inputs)
48
+ ```
49
+
50
+ ## Training Details
51
+
52
+ - Dataset: medmcqa
53
+ - Training framework: LoRA/PEFT
54
+ - Models included: 11 variants
55
+
56
+ ## Files Structure
57
+
58
+ Each model folder contains:
59
+ - `adapter_config.json`: LoRA configuration
60
+ - `adapter_model.safetensors`: LoRA weights
61
+ - `tokenizer.json`: Tokenizer configuration
62
+ - Additional training artifacts
63
+
64
+ ---
65
+ *Generated automatically by LoRA uploader script*