svsvenu commited on
Commit
ec940b2
·
verified ·
1 Parent(s): 0ace93c

End of training

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/layoutlm-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: layoutlm-funsd
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # layoutlm-funsd
16
+
17
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6947
20
+ - Answer: {'precision': 0.7250554323725056, 'recall': 0.8084054388133498, 'f1': 0.7644652250146114, 'number': 809}
21
+ - Header: {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119}
22
+ - Question: {'precision': 0.767586821015138, 'recall': 0.8093896713615023, 'f1': 0.7879341864716636, 'number': 1065}
23
+ - Overall Precision: 0.7225
24
+ - Overall Recall: 0.7797
25
+ - Overall F1: 0.75
26
+ - Overall Accuracy: 0.8070
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 3e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 15
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
58
+ | 1.742 | 1.0 | 10 | 1.5266 | {'precision': 0.027950310559006212, 'recall': 0.03337453646477132, 'f1': 0.030422535211267605, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2287292817679558, 'recall': 0.19436619718309858, 'f1': 0.21015228426395938, 'number': 1065} | 0.1251 | 0.1174 | 0.1211 | 0.4247 |
59
+ | 1.412 | 2.0 | 20 | 1.2278 | {'precision': 0.19525801952580196, 'recall': 0.173053152039555, 'f1': 0.1834862385321101, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4582560296846011, 'recall': 0.463849765258216, 'f1': 0.4610359309379375, 'number': 1065} | 0.3532 | 0.3181 | 0.3347 | 0.5888 |
60
+ | 1.0962 | 3.0 | 30 | 0.9645 | {'precision': 0.4753157290470723, 'recall': 0.511742892459827, 'f1': 0.4928571428571428, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6110183639398998, 'recall': 0.6873239436619718, 'f1': 0.6469288555015466, 'number': 1065} | 0.5478 | 0.5750 | 0.5611 | 0.7154 |
61
+ | 0.838 | 4.0 | 40 | 0.7924 | {'precision': 0.6248671625929861, 'recall': 0.7268232385661311, 'f1': 0.672, 'number': 809} | {'precision': 0.12698412698412698, 'recall': 0.06722689075630252, 'f1': 0.08791208791208792, 'number': 119} | {'precision': 0.6594863297431649, 'recall': 0.7474178403755869, 'f1': 0.7007042253521126, 'number': 1065} | 0.6296 | 0.6984 | 0.6622 | 0.7647 |
62
+ | 0.6636 | 5.0 | 50 | 0.7294 | {'precision': 0.6722037652270211, 'recall': 0.7503090234857849, 'f1': 0.7091121495327103, 'number': 809} | {'precision': 0.2077922077922078, 'recall': 0.13445378151260504, 'f1': 0.16326530612244897, 'number': 119} | {'precision': 0.6664086687306502, 'recall': 0.8084507042253521, 'f1': 0.7305897327110734, 'number': 1065} | 0.6532 | 0.7446 | 0.6959 | 0.7781 |
63
+ | 0.5632 | 6.0 | 60 | 0.6983 | {'precision': 0.660164271047228, 'recall': 0.7948084054388134, 'f1': 0.7212563095905777, 'number': 809} | {'precision': 0.21739130434782608, 'recall': 0.12605042016806722, 'f1': 0.1595744680851064, 'number': 119} | {'precision': 0.7283842794759825, 'recall': 0.7830985915492957, 'f1': 0.7547511312217194, 'number': 1065} | 0.6819 | 0.7486 | 0.7137 | 0.7905 |
64
+ | 0.4868 | 7.0 | 70 | 0.6635 | {'precision': 0.7008830022075055, 'recall': 0.7849196538936959, 'f1': 0.7405247813411079, 'number': 809} | {'precision': 0.25742574257425743, 'recall': 0.2184873949579832, 'f1': 0.23636363636363636, 'number': 119} | {'precision': 0.7467248908296943, 'recall': 0.8028169014084507, 'f1': 0.7737556561085973, 'number': 1065} | 0.7045 | 0.7607 | 0.7315 | 0.7993 |
65
+ | 0.4332 | 8.0 | 80 | 0.6626 | {'precision': 0.6882168925964547, 'recall': 0.8158220024721878, 'f1': 0.7466063348416289, 'number': 809} | {'precision': 0.2727272727272727, 'recall': 0.226890756302521, 'f1': 0.24770642201834864, 'number': 119} | {'precision': 0.7463456577815993, 'recall': 0.8150234741784037, 'f1': 0.7791741472172352, 'number': 1065} | 0.7001 | 0.7802 | 0.7380 | 0.7992 |
66
+ | 0.3853 | 9.0 | 90 | 0.6623 | {'precision': 0.7160220994475138, 'recall': 0.8009888751545118, 'f1': 0.7561260210035006, 'number': 809} | {'precision': 0.30927835051546393, 'recall': 0.25210084033613445, 'f1': 0.2777777777777778, 'number': 119} | {'precision': 0.753448275862069, 'recall': 0.8206572769953052, 'f1': 0.7856179775280899, 'number': 1065} | 0.7179 | 0.7787 | 0.7471 | 0.8031 |
67
+ | 0.3733 | 10.0 | 100 | 0.6695 | {'precision': 0.7180327868852459, 'recall': 0.8121137206427689, 'f1': 0.7621809744779582, 'number': 809} | {'precision': 0.28846153846153844, 'recall': 0.25210084033613445, 'f1': 0.26905829596412556, 'number': 119} | {'precision': 0.77068345323741, 'recall': 0.8046948356807512, 'f1': 0.7873220027560864, 'number': 1065} | 0.7245 | 0.7747 | 0.7488 | 0.8085 |
68
+ | 0.3201 | 11.0 | 110 | 0.6826 | {'precision': 0.7122381477398015, 'recall': 0.7985166872682324, 'f1': 0.752913752913753, 'number': 809} | {'precision': 0.32142857142857145, 'recall': 0.3025210084033613, 'f1': 0.3116883116883117, 'number': 119} | {'precision': 0.7510620220900595, 'recall': 0.8300469483568075, 'f1': 0.7885816235504014, 'number': 1065} | 0.7131 | 0.7858 | 0.7477 | 0.8048 |
69
+ | 0.3027 | 12.0 | 120 | 0.6841 | {'precision': 0.7213656387665198, 'recall': 0.8096415327564895, 'f1': 0.762958648806057, 'number': 809} | {'precision': 0.34210526315789475, 'recall': 0.3277310924369748, 'f1': 0.33476394849785407, 'number': 119} | {'precision': 0.7768744354110207, 'recall': 0.8075117370892019, 'f1': 0.7918968692449355, 'number': 1065} | 0.7299 | 0.7797 | 0.7540 | 0.8068 |
70
+ | 0.2902 | 13.0 | 130 | 0.6871 | {'precision': 0.7210065645514223, 'recall': 0.8145859085290482, 'f1': 0.7649448636099826, 'number': 809} | {'precision': 0.32142857142857145, 'recall': 0.3025210084033613, 'f1': 0.3116883116883117, 'number': 119} | {'precision': 0.7732506643046945, 'recall': 0.819718309859155, 'f1': 0.7958067456700091, 'number': 1065} | 0.7276 | 0.7868 | 0.7560 | 0.8073 |
71
+ | 0.2694 | 14.0 | 140 | 0.6911 | {'precision': 0.7197802197802198, 'recall': 0.8096415327564895, 'f1': 0.7620709714950552, 'number': 809} | {'precision': 0.32456140350877194, 'recall': 0.31092436974789917, 'f1': 0.31759656652360513, 'number': 119} | {'precision': 0.7796762589928058, 'recall': 0.8140845070422535, 'f1': 0.7965089572806615, 'number': 1065} | 0.7299 | 0.7822 | 0.7551 | 0.8083 |
72
+ | 0.2721 | 15.0 | 150 | 0.6947 | {'precision': 0.7250554323725056, 'recall': 0.8084054388133498, 'f1': 0.7644652250146114, 'number': 809} | {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119} | {'precision': 0.767586821015138, 'recall': 0.8093896713615023, 'f1': 0.7879341864716636, 'number': 1065} | 0.7225 | 0.7797 | 0.75 | 0.8070 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.48.3
78
+ - Pytorch 2.5.1+cu124
79
+ - Tokenizers 0.21.0
logs/events.out.tfevents.1740546481.5a508363aebf.1562.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a8b8841bb41240ca48ccb039b0293ffb0d839418b8abfc8a03d29635140ebf94
3
- size 13720
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce89c6fd369b036d48cd63b0b9c761e6b18bc88ff292b4fdb2b1fb2293ebba29
3
+ size 16219
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0aa5d49f3ff6455f8a70f45c770bb8197d97502a18af54b226a3c8e345c2dff6
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ff701af3accc6d775e6d18ff45d5bbb818b234cc2dc0a1e5e925405238b456b
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "extra_special_tokens": {},
57
+ "mask_token": "[MASK]",
58
+ "model_max_length": 512,
59
+ "never_split": null,
60
+ "only_label_first_subword": true,
61
+ "pad_token": "[PAD]",
62
+ "pad_token_box": [
63
+ 0,
64
+ 0,
65
+ 0,
66
+ 0
67
+ ],
68
+ "pad_token_label": -100,
69
+ "processor_class": "LayoutLMv2Processor",
70
+ "sep_token": "[SEP]",
71
+ "sep_token_box": [
72
+ 1000,
73
+ 1000,
74
+ 1000,
75
+ 1000
76
+ ],
77
+ "strip_accents": null,
78
+ "tokenize_chinese_chars": true,
79
+ "tokenizer_class": "LayoutLMv2Tokenizer",
80
+ "unk_token": "[UNK]"
81
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff