File size: 2,129 Bytes
ce4645d c1cac3b c7f9941 ce4645d f65e4e3 ce4645d c7f9941 c6606a5 7e49de0 c7f9941 a7a26be e3812e9 c7f9941 26acb44 e3812e9 c7f9941 e3812e9 c7f9941 80cfe01 7e49de0 c7f9941 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
base_model: Qwen/Qwen2.5-0.5B-Instruct
datasets:
- generator
library_name: peft
license: apache-2.0
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: trained_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trained_model
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5432
- Bertscore Precision: 0.9305
- Bertscore Recall: 0.9338
- Bertscore F1: 0.9321
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bertscore Precision | Bertscore Recall | Bertscore F1 |
|:-------------:|:------:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|
| No log | 0.9664 | 18 | 1.1003 | 0.8802 | 0.8897 | 0.8849 |
| 1.7123 | 1.9866 | 37 | 0.6787 | 0.9207 | 0.9228 | 0.9218 |
| 1.7123 | 2.9530 | 55 | 0.5895 | 0.9300 | 0.9330 | 0.9315 |
| 0.5828 | 3.9732 | 74 | 0.5516 | 0.9330 | 0.9355 | 0.9342 |
| 0.4501 | 4.8322 | 90 | 0.5432 | 0.9305 | 0.9338 | 0.9321 |
### Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.5.1+cpu
- Datasets 3.0.1
- Tokenizers 0.20.0 |