Improve language tag
Browse filesHi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.
README.md
CHANGED
|
@@ -8,65 +8,79 @@ tags:
|
|
| 8 |
- trl
|
| 9 |
- sft
|
| 10 |
- generated_from_trainer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
model-index:
|
| 12 |
- name: trained_model
|
| 13 |
results: []
|
| 14 |
---
|
| 15 |
-
|
| 16 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 17 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 18 |
-
|
| 19 |
-
# trained_model
|
| 20 |
-
|
| 21 |
-
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the generator dataset.
|
| 22 |
-
It achieves the following results on the evaluation set:
|
| 23 |
-
- Loss: 0.5432
|
| 24 |
-
- Bertscore Precision: 0.9305
|
| 25 |
-
- Bertscore Recall: 0.9338
|
| 26 |
-
- Bertscore F1: 0.9321
|
| 27 |
-
|
| 28 |
-
## Model description
|
| 29 |
-
|
| 30 |
-
More information needed
|
| 31 |
-
|
| 32 |
-
## Intended uses & limitations
|
| 33 |
-
|
| 34 |
-
More information needed
|
| 35 |
-
|
| 36 |
-
## Training and evaluation data
|
| 37 |
-
|
| 38 |
-
More information needed
|
| 39 |
-
|
| 40 |
-
## Training procedure
|
| 41 |
-
|
| 42 |
-
### Training hyperparameters
|
| 43 |
-
|
| 44 |
-
The following hyperparameters were used during training:
|
| 45 |
-
- learning_rate: 0.0001
|
| 46 |
-
- train_batch_size: 2
|
| 47 |
-
- eval_batch_size: 2
|
| 48 |
-
- seed: 42
|
| 49 |
-
- gradient_accumulation_steps: 8
|
| 50 |
-
- total_train_batch_size: 16
|
| 51 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 52 |
-
- lr_scheduler_type: linear
|
| 53 |
-
- num_epochs: 5
|
| 54 |
-
|
| 55 |
-
### Training results
|
| 56 |
-
|
| 57 |
-
| Training Loss | Epoch | Step | Validation Loss | Bertscore Precision | Bertscore Recall | Bertscore F1 |
|
| 58 |
-
|:-------------:|:------:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|
|
| 59 |
-
| No log | 0.9664 | 18 | 1.1003 | 0.8802 | 0.8897 | 0.8849 |
|
| 60 |
-
| 1.7123 | 1.9866 | 37 | 0.6787 | 0.9207 | 0.9228 | 0.9218 |
|
| 61 |
-
| 1.7123 | 2.9530 | 55 | 0.5895 | 0.9300 | 0.9330 | 0.9315 |
|
| 62 |
-
| 0.5828 | 3.9732 | 74 | 0.5516 | 0.9330 | 0.9355 | 0.9342 |
|
| 63 |
-
| 0.4501 | 4.8322 | 90 | 0.5432 | 0.9305 | 0.9338 | 0.9321 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
### Framework versions
|
| 67 |
-
|
| 68 |
-
- PEFT 0.13.0
|
| 69 |
-
- Transformers 4.45.1
|
| 70 |
-
- Pytorch 2.5.1+cpu
|
| 71 |
-
- Datasets 3.0.1
|
| 72 |
- Tokenizers 0.20.0
|
|
|
|
| 8 |
- trl
|
| 9 |
- sft
|
| 10 |
- generated_from_trainer
|
| 11 |
+
language:
|
| 12 |
+
- zho
|
| 13 |
+
- eng
|
| 14 |
+
- fra
|
| 15 |
+
- spa
|
| 16 |
+
- por
|
| 17 |
+
- deu
|
| 18 |
+
- ita
|
| 19 |
+
- rus
|
| 20 |
+
- jpn
|
| 21 |
+
- kor
|
| 22 |
+
- vie
|
| 23 |
+
- tha
|
| 24 |
+
- ara
|
| 25 |
model-index:
|
| 26 |
- name: trained_model
|
| 27 |
results: []
|
| 28 |
---
|
| 29 |
+
|
| 30 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 31 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 32 |
+
|
| 33 |
+
# trained_model
|
| 34 |
+
|
| 35 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the generator dataset.
|
| 36 |
+
It achieves the following results on the evaluation set:
|
| 37 |
+
- Loss: 0.5432
|
| 38 |
+
- Bertscore Precision: 0.9305
|
| 39 |
+
- Bertscore Recall: 0.9338
|
| 40 |
+
- Bertscore F1: 0.9321
|
| 41 |
+
|
| 42 |
+
## Model description
|
| 43 |
+
|
| 44 |
+
More information needed
|
| 45 |
+
|
| 46 |
+
## Intended uses & limitations
|
| 47 |
+
|
| 48 |
+
More information needed
|
| 49 |
+
|
| 50 |
+
## Training and evaluation data
|
| 51 |
+
|
| 52 |
+
More information needed
|
| 53 |
+
|
| 54 |
+
## Training procedure
|
| 55 |
+
|
| 56 |
+
### Training hyperparameters
|
| 57 |
+
|
| 58 |
+
The following hyperparameters were used during training:
|
| 59 |
+
- learning_rate: 0.0001
|
| 60 |
+
- train_batch_size: 2
|
| 61 |
+
- eval_batch_size: 2
|
| 62 |
+
- seed: 42
|
| 63 |
+
- gradient_accumulation_steps: 8
|
| 64 |
+
- total_train_batch_size: 16
|
| 65 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 66 |
+
- lr_scheduler_type: linear
|
| 67 |
+
- num_epochs: 5
|
| 68 |
+
|
| 69 |
+
### Training results
|
| 70 |
+
|
| 71 |
+
| Training Loss | Epoch | Step | Validation Loss | Bertscore Precision | Bertscore Recall | Bertscore F1 |
|
| 72 |
+
|:-------------:|:------:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|
|
| 73 |
+
| No log | 0.9664 | 18 | 1.1003 | 0.8802 | 0.8897 | 0.8849 |
|
| 74 |
+
| 1.7123 | 1.9866 | 37 | 0.6787 | 0.9207 | 0.9228 | 0.9218 |
|
| 75 |
+
| 1.7123 | 2.9530 | 55 | 0.5895 | 0.9300 | 0.9330 | 0.9315 |
|
| 76 |
+
| 0.5828 | 3.9732 | 74 | 0.5516 | 0.9330 | 0.9355 | 0.9342 |
|
| 77 |
+
| 0.4501 | 4.8322 | 90 | 0.5432 | 0.9305 | 0.9338 | 0.9321 |
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
### Framework versions
|
| 81 |
+
|
| 82 |
+
- PEFT 0.13.0
|
| 83 |
+
- Transformers 4.45.1
|
| 84 |
+
- Pytorch 2.5.1+cpu
|
| 85 |
+
- Datasets 3.0.1
|
| 86 |
- Tokenizers 0.20.0
|