--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 model-index: - name: fine-tuned results: - task: name: Image Classification type: image-classification dataset: name: custom_dataset type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.2857142857142857 - name: F1 type: f1 value: 0.20303030303030303 --- # fine-tuned This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the custom_dataset dataset. It achieves the following results on the evaluation set: - Loss: 2.0068 - Accuracy: 0.2857 - F1: 0.2030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0