Move to in-library checkpoint (#60)
Browse files- Move to in-library checkpoint (bb9e6c53c434569bce78be43abf05d629735328f)
- Preparations for transition to in-library checkpoint (972d3ef44362a0c96e89fd210e570ab0741b34b7)
- Fix typo (50ec42273167020bc69d4aa0f7e5657b5b72fe5b)
- Revert to Falcon naming (eddf7c444f833df31722d4745ff46e0b3f502723)
- README.md +3 -3
- config.json +12 -7
- configuration_RW.py +0 -75
- configuration_falcon.py +147 -0
- generation_config.json +4 -4
- modelling_RW.py → modeling_falcon.py +420 -264
- tokenizer_config.json +5 -1
README.md
CHANGED
|
@@ -21,6 +21,8 @@ license: apache-2.0
|
|
| 21 |
* **Falcon-40B is the best open-source model available.** It outperforms [LLaMA](https://github.com/facebookresearch/llama), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1), [MPT](https://huggingface.co/mosaicml/mpt-7b), etc. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
| 22 |
* **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).
|
| 23 |
|
|
|
|
|
|
|
| 24 |
💬 **This is an instruct model, which may not be ideal for further finetuning.** If you are interested in building your own instruct/chat model, we recommend starting from [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b).
|
| 25 |
|
| 26 |
💸 **Looking for a smaller, less expensive model?** [Falcon-7B-Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) is Falcon-40B-Instruct's little brother!
|
|
@@ -38,7 +40,6 @@ pipeline = transformers.pipeline(
|
|
| 38 |
model=model,
|
| 39 |
tokenizer=tokenizer,
|
| 40 |
torch_dtype=torch.bfloat16,
|
| 41 |
-
trust_remote_code=True,
|
| 42 |
device_map="auto",
|
| 43 |
)
|
| 44 |
sequences = pipeline(
|
|
@@ -110,7 +111,6 @@ pipeline = transformers.pipeline(
|
|
| 110 |
model=model,
|
| 111 |
tokenizer=tokenizer,
|
| 112 |
torch_dtype=torch.bfloat16,
|
| 113 |
-
trust_remote_code=True,
|
| 114 |
device_map="auto",
|
| 115 |
)
|
| 116 |
sequences = pipeline(
|
|
@@ -219,4 +219,4 @@ To cite the [Baize](https://github.com/project-baize/baize-chatbot) instruction
|
|
| 219 |
Falcon-40B-Instruct is made available under the Apache 2.0 license.
|
| 220 |
|
| 221 |
## Contact
|
| 222 |
|
|
|
| 21 |
* **Falcon-40B is the best open-source model available.** It outperforms [LLaMA](https://github.com/facebookresearch/llama), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1), [MPT](https://huggingface.co/mosaicml/mpt-7b), etc. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
| 22 |
* **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).
|
| 23 |
|
| 24 |
+
⚠️ Falcon is now available as a core model in the `transformers` library! To use the in-library version, please install the latest version of `transformers` with `pip install git+https://github.com/huggingface/transformers.git`, then simply remove the `trust_remote_code=True` argument from `from_pretrained()`.
|
| 25 |
+
|
| 26 |
💬 **This is an instruct model, which may not be ideal for further finetuning.** If you are interested in building your own instruct/chat model, we recommend starting from [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b).
|
| 27 |
|
| 28 |
💸 **Looking for a smaller, less expensive model?** [Falcon-7B-Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) is Falcon-40B-Instruct's little brother!
|
|
|
|
| 40 |
model=model,
|
| 41 |
tokenizer=tokenizer,
|
| 42 |
torch_dtype=torch.bfloat16,
|
|
|
|
| 43 |
device_map="auto",
|
| 44 |
)
|
| 45 |
sequences = pipeline(
|
|
|
|
| 111 |
model=model,
|
| 112 |
tokenizer=tokenizer,
|
| 113 |
torch_dtype=torch.bfloat16,
|
|
|
|
| 114 |
device_map="auto",
|
| 115 |
)
|
| 116 |
sequences = pipeline(
|
|
|
|
| 219 |
Falcon-40B-Instruct is made available under the Apache 2.0 license.
|
| 220 |
|
| 221 |
## Contact
|
| 222 |
config.json
CHANGED
|
@@ -2,12 +2,16 @@
|
|
| 2 |
"alibi": false,
|
| 3 |
"apply_residual_connection_post_layernorm": false,
|
| 4 |
"architectures": [
|
| 5 |
-
"
|
| 6 |
],
|
| 7 |
"attention_dropout": 0.0,
|
| 8 |
"auto_map": {
|
| 9 |
-
"AutoConfig": "
|
| 10 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
"bias": false,
|
| 13 |
"bos_token_id": 11,
|
|
@@ -16,10 +20,11 @@
|
|
| 16 |
"hidden_size": 8192,
|
| 17 |
"initializer_range": 0.02,
|
| 18 |
"layer_norm_epsilon": 1e-05,
|
| 19 |
-
"model_type": "
|
| 20 |
-
"
|
| 21 |
-
"
|
| 22 |
-
"
|
|
|
|
| 23 |
"parallel_attn": true,
|
| 24 |
"torch_dtype": "bfloat16",
|
| 25 |
"transformers_version": "4.26.0",
|
|
|
|
| 2 |
"alibi": false,
|
| 3 |
"apply_residual_connection_post_layernorm": false,
|
| 4 |
"architectures": [
|
| 5 |
+
"FalconForCausalLM"
|
| 6 |
],
|
| 7 |
"attention_dropout": 0.0,
|
| 8 |
"auto_map": {
|
| 9 |
+
"AutoConfig": "configuration_falcon.FalconConfig",
|
| 10 |
+
"AutoModel": "modeling_falcon.FalconModel",
|
| 11 |
+
"AutoModelForSequenceClassification": "modeling_falcon.FalconForSequenceClassification",
|
| 12 |
+
"AutoModelForTokenClassification": "modeling_falcon.FalconForTokenClassification",
|
| 13 |
+
"AutoModelForQuestionAnswering": "modeling_falcon.FalconForQuestionAnswering",
|
| 14 |
+
"AutoModelForCausalLM": "modeling_falcon.FalconForCausalLM"
|
| 15 |
},
|
| 16 |
"bias": false,
|
| 17 |
"bos_token_id": 11,
|
|
|
|
| 20 |
"hidden_size": 8192,
|
| 21 |
"initializer_range": 0.02,
|
| 22 |
"layer_norm_epsilon": 1e-05,
|
| 23 |
+
"model_type": "falcon",
|
| 24 |
+
"new_decoder_architecture": true,
|
| 25 |
+
"num_attention_heads": 128,
|
| 26 |
+
"num_hidden_layers": 60,
|
| 27 |
+
"num_kv_heads": 8,
|
| 28 |
"parallel_attn": true,
|
| 29 |
"torch_dtype": "bfloat16",
|
| 30 |
"transformers_version": "4.26.0",
|
configuration_RW.py
DELETED
|
@@ -1,75 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
""" Bloom configuration"""
|
| 16 |
-
from transformers.configuration_utils import PretrainedConfig
|
| 17 |
-
from transformers.utils import logging
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
logger = logging.get_logger(__name__)
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
class RWConfig(PretrainedConfig):
|
| 24 |
-
model_type = "RefinedWeb"
|
| 25 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
| 26 |
-
attribute_map = {
|
| 27 |
-
"num_hidden_layers": "n_layer",
|
| 28 |
-
"num_attention_heads": "n_head",
|
| 29 |
-
}
|
| 30 |
-
|
| 31 |
-
def __init__(
|
| 32 |
-
self,
|
| 33 |
-
vocab_size=250880,
|
| 34 |
-
hidden_size=64,
|
| 35 |
-
n_layer=2,
|
| 36 |
-
n_head=8,
|
| 37 |
-
layer_norm_epsilon=1e-5,
|
| 38 |
-
initializer_range=0.02,
|
| 39 |
-
use_cache=True,
|
| 40 |
-
bos_token_id=1,
|
| 41 |
-
eos_token_id=2,
|
| 42 |
-
apply_residual_connection_post_layernorm=False,
|
| 43 |
-
hidden_dropout=0.0,
|
| 44 |
-
attention_dropout=0.0,
|
| 45 |
-
n_head_kv=None,
|
| 46 |
-
alibi=False,
|
| 47 |
-
**kwargs,
|
| 48 |
-
):
|
| 49 |
-
self.vocab_size = vocab_size
|
| 50 |
-
# Backward compatibility with n_embed kwarg
|
| 51 |
-
n_embed = kwargs.pop("n_embed", None)
|
| 52 |
-
self.hidden_size = hidden_size if n_embed is None else n_embed
|
| 53 |
-
self.n_layer = n_layer
|
| 54 |
-
self.n_head = n_head
|
| 55 |
-
self.layer_norm_epsilon = layer_norm_epsilon
|
| 56 |
-
self.initializer_range = initializer_range
|
| 57 |
-
self.use_cache = use_cache
|
| 58 |
-
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
| 59 |
-
self.hidden_dropout = hidden_dropout
|
| 60 |
-
self.attention_dropout = attention_dropout
|
| 61 |
-
|
| 62 |
-
self.bos_token_id = bos_token_id
|
| 63 |
-
self.eos_token_id = eos_token_id
|
| 64 |
-
self.n_head_kv = n_head if n_head_kv is None else n_head_kv
|
| 65 |
-
self.alibi = alibi
|
| 66 |
-
|
| 67 |
-
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
| 68 |
-
|
| 69 |
-
@property
|
| 70 |
-
def head_dim(self):
|
| 71 |
-
return self.hidden_size // self.n_head
|
| 72 |
-
|
| 73 |
-
@property
|
| 74 |
-
def rotary(self):
|
| 75 |
-
return not self.alibi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configuration_falcon.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" Falcon configuration"""
|
| 16 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 17 |
+
from transformers.utils import logging
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
logger = logging.get_logger(__name__)
|
| 21 |
+
|
| 22 |
+
FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 23 |
+
"tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
|
| 24 |
+
"tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
class FalconConfig(PretrainedConfig):
|
| 29 |
+
r"""
|
| 30 |
+
This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
|
| 31 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
| 32 |
+
defaults will yield a similar configuration to that of the
|
| 33 |
+
[tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.
|
| 34 |
+
|
| 35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 36 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
vocab_size (`int`, *optional*, defaults to 65024):
|
| 41 |
+
Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
|
| 42 |
+
`inputs_ids` passed when calling [`FalconModel`]
|
| 43 |
+
hidden_size (`int`, *optional*, defaults to 4544):
|
| 44 |
+
Dimension of the hidden representations.
|
| 45 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 46 |
+
Number of hidden layers in the Transformer decoder.
|
| 47 |
+
num_attention_heads (`int`, *optional*, defaults to 71):
|
| 48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 49 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 50 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 51 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 52 |
+
Whether the model should return the last key/values attentions (not used by all models). Only relevant if
|
| 53 |
+
`config.is_decoder=True`.
|
| 54 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
| 55 |
+
The epsilon used by the layer normalization layers.
|
| 56 |
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
| 57 |
+
The dropout probability for MLP layers.
|
| 58 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 59 |
+
The dropout probability for attention layers.
|
| 60 |
+
num_kv_heads (`int`, *optional*):
|
| 61 |
+
Number of key-value heads to use per attention layer. If unset, defaults to the same value as
|
| 62 |
+
`num_attention_heads`.
|
| 63 |
+
alibi (`bool`, *optional*, defaults to `False`):
|
| 64 |
+
Whether to use ALiBi positional biases during self-attention.
|
| 65 |
+
new_decoder_architecture (`bool`, *optional*, defaults to `False`):
|
| 66 |
+
Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
|
| 67 |
+
arguments are ignored, as the new decoder always uses parallel attention.
|
| 68 |
+
multi_query (`bool`, *optional*, defaults to `True`):
|
| 69 |
+
Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
|
| 70 |
+
parallel_attn (`bool`, *optional*, defaults to `True`):
|
| 71 |
+
Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
|
| 72 |
+
instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
|
| 73 |
+
bias (`bool`, *optional*, defaults to `False`):
|
| 74 |
+
Whether to use bias on Linear layers.
|
| 75 |
+
bos_token_id (`int`, *optional*, defaults to 11):
|
| 76 |
+
The id of the "beginning-of-sequence" token.
|
| 77 |
+
eos_token_id (`int`, *optional*, defaults to 11):
|
| 78 |
+
The id of the "end-of-sequence" token.
|
| 79 |
+
|
| 80 |
+
Example:
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
+
>>> from transformers import FalconModel, FalconConfig
|
| 84 |
+
|
| 85 |
+
>>> # Initializing a small (2-layer) Falcon configuration
|
| 86 |
+
>>> configuration = FalconConfig(num_hidden_layers=2)
|
| 87 |
+
|
| 88 |
+
>>> # Initializing a model from the small configuration
|
| 89 |
+
>>> model = FalconModel(configuration)
|
| 90 |
+
|
| 91 |
+
>>> # Accessing the model configuration
|
| 92 |
+
>>> configuration = model.config
|
| 93 |
+
```"""
|
| 94 |
+
model_type = "falcon"
|
| 95 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 96 |
+
|
| 97 |
+
def __init__(
|
| 98 |
+
self,
|
| 99 |
+
vocab_size=65024,
|
| 100 |
+
hidden_size=4544,
|
| 101 |
+
num_hidden_layers=32,
|
| 102 |
+
num_attention_heads=71,
|
| 103 |
+
layer_norm_epsilon=1e-5,
|
| 104 |
+
initializer_range=0.02,
|
| 105 |
+
use_cache=True,
|
| 106 |
+
hidden_dropout=0.0,
|
| 107 |
+
attention_dropout=0.0,
|
| 108 |
+
num_kv_heads=None,
|
| 109 |
+
alibi=False,
|
| 110 |
+
new_decoder_architecture=False,
|
| 111 |
+
multi_query=True,
|
| 112 |
+
parallel_attn=True,
|
| 113 |
+
bias=False,
|
| 114 |
+
bos_token_id=11,
|
| 115 |
+
eos_token_id=11,
|
| 116 |
+
**kwargs,
|
| 117 |
+
):
|
| 118 |
+
self.vocab_size = vocab_size
|
| 119 |
+
# Backward compatibility with n_embed kwarg
|
| 120 |
+
n_embed = kwargs.pop("n_embed", None)
|
| 121 |
+
self.hidden_size = hidden_size if n_embed is None else n_embed
|
| 122 |
+
self.num_hidden_layers = num_hidden_layers
|
| 123 |
+
self.num_attention_heads = num_attention_heads
|
| 124 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 125 |
+
self.initializer_range = initializer_range
|
| 126 |
+
self.use_cache = use_cache
|
| 127 |
+
self.hidden_dropout = hidden_dropout
|
| 128 |
+
self.attention_dropout = attention_dropout
|
| 129 |
+
|
| 130 |
+
self.bos_token_id = bos_token_id
|
| 131 |
+
self.eos_token_id = eos_token_id
|
| 132 |
+
self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
|
| 133 |
+
self.alibi = alibi
|
| 134 |
+
self.new_decoder_architecture = new_decoder_architecture
|
| 135 |
+
self.multi_query = multi_query # Ignored when new_decoder_architecture is True
|
| 136 |
+
self.parallel_attn = parallel_attn
|
| 137 |
+
self.bias = bias
|
| 138 |
+
|
| 139 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
| 140 |
+
|
| 141 |
+
@property
|
| 142 |
+
def head_dim(self):
|
| 143 |
+
return self.hidden_size // self.num_attention_heads
|
| 144 |
+
|
| 145 |
+
@property
|
| 146 |
+
def rotary(self):
|
| 147 |
+
return not self.alibi
|
generation_config.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
{
|
| 2 |
"_from_model_config": true,
|
| 3 |
-
"bos_token_id":
|
| 4 |
-
"eos_token_id":
|
| 5 |
-
"transformers_version": "4.
|
| 6 |
-
}
|
|
|
|
| 1 |
{
|
| 2 |
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 11,
|
| 4 |
+
"eos_token_id": 11,
|
| 5 |
+
"transformers_version": "4.31.0.dev0"
|
| 6 |
+
}
|
modelling_RW.py → modeling_falcon.py
RENAMED
|
@@ -1,9 +1,20 @@
|
|
| 1 |
-
#
|
| 2 |
-
#
|
| 3 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
import math
|
| 6 |
-
import warnings
|
| 7 |
from typing import Optional, Tuple, Union
|
| 8 |
|
| 9 |
import torch
|
|
@@ -20,59 +31,60 @@ from transformers.modeling_outputs import (
|
|
| 20 |
TokenClassifierOutput,
|
| 21 |
)
|
| 22 |
from transformers.modeling_utils import PreTrainedModel
|
| 23 |
-
from transformers.utils import logging
|
| 24 |
-
from .
|
|
|
|
| 25 |
|
| 26 |
logger = logging.get_logger(__name__)
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
|
| 29 |
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
|
| 30 |
-
class
|
| 31 |
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
| 32 |
-
|
| 33 |
if self.bias is None:
|
| 34 |
-
return
|
| 35 |
-
|
| 36 |
-
return ret + self.bias
|
| 37 |
-
|
| 38 |
|
| 39 |
-
from einops import rearrange
|
| 40 |
|
| 41 |
# rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...)
|
| 42 |
def rotate_half(x):
|
| 43 |
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
| 44 |
-
return torch.cat((-x2, x1), dim
|
| 45 |
|
| 46 |
|
| 47 |
-
class
|
| 48 |
"""Implementation of RotaryEmbedding from GPT-NeoX.
|
| 49 |
-
This implementation is
|
| 50 |
-
|
| 51 |
"""
|
| 52 |
|
| 53 |
-
def __init__(
|
| 54 |
-
self,
|
| 55 |
-
head_dim: int,
|
| 56 |
-
base=10000,
|
| 57 |
-
):
|
| 58 |
super().__init__()
|
| 59 |
inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim))
|
| 60 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 61 |
self.head_dim = head_dim
|
| 62 |
-
self.seq_len_cached =
|
| 63 |
-
self.batch_size_cached = None
|
| 64 |
self.cos_cached: torch.Tensor | None = None
|
| 65 |
self.sin_cached: torch.Tensor | None = None
|
| 66 |
|
| 67 |
-
def cos_sin(
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
) -> torch.Tensor:
|
| 73 |
-
if seq_len != self.seq_len_cached:
|
| 74 |
-
self.seq_len_cached = seq_len
|
| 75 |
-
t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
|
| 76 |
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 77 |
emb = torch.cat((freqs, freqs), dim=-1).to(device)
|
| 78 |
|
|
@@ -85,36 +97,46 @@ class RotaryEmbedding(torch.nn.Module):
|
|
| 85 |
self.cos_cached = self.cos_cached.type(dtype)
|
| 86 |
self.sin_cached = self.sin_cached.type(dtype)
|
| 87 |
|
| 88 |
-
return
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
def forward(self,
|
| 91 |
-
batch, seq_len, head_dim =
|
| 92 |
-
cos, sin = self.cos_sin(seq_len,
|
| 93 |
-
return (
|
| 94 |
|
| 95 |
|
| 96 |
def _make_causal_mask(
|
| 97 |
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
| 98 |
) -> torch.BoolTensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
batch_size, target_length = input_ids_shape
|
| 100 |
-
mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
|
| 101 |
-
# ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
|
| 102 |
-
seq_ids = torch.arange(target_length, device=device)
|
| 103 |
-
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
|
| 104 |
-
|
| 105 |
-
if past_key_values_length > 0:
|
| 106 |
-
mask[:, :past_key_values_length] = False
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
|
| 109 |
return expanded_mask
|
| 110 |
|
| 111 |
|
| 112 |
-
def _expand_mask(mask: torch.Tensor,
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
|
| 117 |
-
return expanded_mask.expand(batch_size, 1,
|
| 118 |
|
| 119 |
|
| 120 |
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
|
@@ -145,18 +167,32 @@ def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torc
|
|
| 145 |
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
| 146 |
|
| 147 |
|
|
|
|
| 148 |
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
out = F.dropout(x, p=prob, training=training)
|
| 150 |
out = residual + out
|
| 151 |
return out
|
| 152 |
|
| 153 |
|
| 154 |
-
class
|
| 155 |
-
def __init__(self, config:
|
| 156 |
super().__init__()
|
| 157 |
|
| 158 |
self.hidden_size = config.hidden_size
|
| 159 |
-
self.num_heads = config.
|
| 160 |
self.head_dim = self.hidden_size // self.num_heads
|
| 161 |
self.split_size = self.hidden_size
|
| 162 |
self.hidden_dropout = config.hidden_dropout
|
|
@@ -167,59 +203,62 @@ class Attention(nn.Module):
|
|
| 167 |
f" {self.num_heads})."
|
| 168 |
)
|
| 169 |
|
| 170 |
-
self.maybe_rotary =
|
| 171 |
|
| 172 |
# Layer-wise attention scaling
|
| 173 |
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
| 174 |
self.beta = self.inv_norm_factor
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
self.
|
|
|
|
|
|
|
|
|
|
| 182 |
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
| 183 |
-
self.
|
| 184 |
|
| 185 |
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 186 |
"""
|
| 187 |
-
Split the last dimension into (num_heads, head_dim), results share same memory
|
| 188 |
-
storage as `fused_qkv`
|
| 189 |
|
| 190 |
Args:
|
| 191 |
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
| 192 |
|
| 193 |
Returns:
|
| 194 |
-
query: [batch_size, seq_length, num_heads, head_dim]
|
| 195 |
-
key: [batch_size, seq_length, num_heads, head_dim]
|
| 196 |
value: [batch_size, seq_length, num_heads, head_dim]
|
| 197 |
"""
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
|
|
|
| 216 |
|
|
|
|
| 217 |
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
| 218 |
"""
|
| 219 |
Merge heads together over the last dimenstion
|
| 220 |
|
| 221 |
Args:
|
| 222 |
-
x
|
| 223 |
|
| 224 |
Returns:
|
| 225 |
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
|
@@ -242,7 +281,7 @@ class Attention(nn.Module):
|
|
| 242 |
def forward(
|
| 243 |
self,
|
| 244 |
hidden_states: torch.Tensor,
|
| 245 |
-
alibi: torch.Tensor,
|
| 246 |
attention_mask: torch.Tensor,
|
| 247 |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 248 |
head_mask: Optional[torch.Tensor] = None,
|
|
@@ -250,106 +289,120 @@ class Attention(nn.Module):
|
|
| 250 |
output_attentions: bool = False,
|
| 251 |
):
|
| 252 |
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
| 253 |
-
|
| 254 |
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
| 255 |
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
| 256 |
|
| 257 |
-
batch_size,
|
| 258 |
|
| 259 |
-
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads,
|
| 260 |
key_layer = key_layer.transpose(1, 2).reshape(
|
| 261 |
-
batch_size *
|
| 262 |
-
|
| 263 |
self.head_dim,
|
| 264 |
)
|
| 265 |
-
value_layer = value_layer.transpose(1, 2).reshape(batch_size *
|
| 266 |
|
| 267 |
-
|
|
|
|
| 268 |
|
| 269 |
if layer_past is not None:
|
| 270 |
past_key, past_value = layer_past
|
| 271 |
# concatenate along seq_length dimension:
|
| 272 |
-
# - key: [batch_size * self.num_heads,
|
| 273 |
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
| 274 |
key_layer = torch.cat((past_key, key_layer), dim=1)
|
| 275 |
value_layer = torch.cat((past_value, value_layer), dim=1)
|
| 276 |
|
| 277 |
_, kv_length, _ = key_layer.shape
|
| 278 |
-
|
| 279 |
-
if use_cache is True:
|
| 280 |
present = (key_layer, value_layer)
|
| 281 |
else:
|
| 282 |
present = None
|
| 283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
if alibi is None:
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
| 288 |
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
attn_output =
|
| 296 |
|
| 297 |
output_tensor = self.dense(attn_output)
|
| 298 |
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
|
|
|
|
|
|
| 302 |
else:
|
| 303 |
-
|
| 304 |
-
matmul_result = query_layer @ key_layer.transpose(-1, -2)
|
| 305 |
|
| 306 |
# change view to [batch_size, num_heads, q_length, kv_length]
|
| 307 |
-
attention_scores = matmul_result.view(batch_size, self.num_heads,
|
| 308 |
|
| 309 |
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
| 310 |
input_dtype = attention_scores.dtype
|
| 311 |
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
| 312 |
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
|
| 313 |
attention_scores = attention_scores.to(torch.float32)
|
| 314 |
-
#
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
)
|
| 321 |
# [batch_size, num_heads, q_length, kv_length]
|
| 322 |
attention_probs = self.attention_dropout(attention_probs)
|
| 323 |
|
| 324 |
if head_mask is not None:
|
| 325 |
attention_probs = attention_probs * head_mask
|
| 326 |
|
| 327 |
-
# change view [batch_size
|
| 328 |
-
attention_probs_reshaped = attention_probs.view(batch_size
|
| 329 |
|
| 330 |
# matmul: [batch_size * num_heads, q_length, head_dim]
|
| 331 |
-
context_layer = attention_probs_reshaped @
|
| 332 |
|
| 333 |
# change view [batch_size, num_heads, q_length, head_dim]
|
| 334 |
context_layer = self._merge_heads(context_layer)
|
| 335 |
|
| 336 |
output_tensor = self.dense(context_layer)
|
| 337 |
|
| 338 |
-
outputs = (output_tensor, present)
|
| 339 |
if output_attentions:
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
|
| 344 |
|
| 345 |
-
class
|
| 346 |
-
def __init__(self, config:
|
| 347 |
super().__init__()
|
| 348 |
hidden_size = config.hidden_size
|
| 349 |
|
| 350 |
-
self.dense_h_to_4h =
|
| 351 |
self.act = nn.GELU()
|
| 352 |
-
self.dense_4h_to_h =
|
| 353 |
self.hidden_dropout = config.hidden_dropout
|
| 354 |
|
| 355 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
@@ -358,43 +411,47 @@ class MLP(nn.Module):
|
|
| 358 |
return x
|
| 359 |
|
| 360 |
|
| 361 |
-
class
|
| 362 |
-
def __init__(self, config:
|
| 363 |
super().__init__()
|
| 364 |
hidden_size = config.hidden_size
|
| 365 |
-
|
| 366 |
-
self.
|
| 367 |
-
self.
|
| 368 |
-
|
| 369 |
-
self.num_heads = config.n_head
|
| 370 |
-
self.self_attention = Attention(config)
|
| 371 |
-
|
| 372 |
-
self.mlp = MLP(config)
|
| 373 |
-
|
| 374 |
-
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
| 375 |
self.hidden_dropout = config.hidden_dropout
|
| 376 |
-
|
| 377 |
self.config = config
|
| 378 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
def forward(
|
| 380 |
self,
|
| 381 |
hidden_states: torch.Tensor,
|
| 382 |
-
alibi: torch.Tensor,
|
| 383 |
attention_mask: torch.Tensor,
|
| 384 |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 385 |
head_mask: Optional[torch.Tensor] = None,
|
| 386 |
use_cache: bool = False,
|
| 387 |
output_attentions: bool = False,
|
| 388 |
):
|
| 389 |
-
|
| 390 |
-
ln_attn = self.ln_attn(hidden_states)
|
| 391 |
-
ln_mlp = self.ln_mlp(hidden_states)
|
| 392 |
-
|
| 393 |
residual = hidden_states
|
| 394 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
# Self attention.
|
| 396 |
attn_outputs = self.self_attention(
|
| 397 |
-
|
| 398 |
layer_past=layer_past,
|
| 399 |
attention_mask=attention_mask,
|
| 400 |
alibi=alibi,
|
|
@@ -405,14 +462,24 @@ class DecoderLayer(nn.Module):
|
|
| 405 |
|
| 406 |
attention_output = attn_outputs[0]
|
| 407 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
outputs = attn_outputs[1:]
|
| 409 |
|
| 410 |
# MLP.
|
| 411 |
-
mlp_output = self.mlp(
|
| 412 |
|
| 413 |
-
|
| 414 |
-
mlp_output
|
| 415 |
-
|
|
|
|
| 416 |
|
| 417 |
if use_cache:
|
| 418 |
outputs = (output,) + outputs
|
|
@@ -422,24 +489,93 @@ class DecoderLayer(nn.Module):
|
|
| 422 |
return outputs # hidden_states, present, attentions
|
| 423 |
|
| 424 |
|
| 425 |
-
|
| 426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
"""
|
| 428 |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 429 |
models.
|
| 430 |
"""
|
| 431 |
|
| 432 |
-
config_class =
|
| 433 |
base_model_prefix = "transformer"
|
| 434 |
supports_gradient_checkpointing = True
|
| 435 |
-
_no_split_modules = ["
|
| 436 |
|
| 437 |
def __init__(self, *inputs, **kwargs):
|
| 438 |
super().__init__(*inputs, **kwargs)
|
| 439 |
|
| 440 |
def _init_weights(self, module: nn.Module):
|
| 441 |
"""Initialize the weights."""
|
| 442 |
-
if isinstance(module, nn.Linear) or isinstance(module,
|
| 443 |
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 444 |
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 445 |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
@@ -453,26 +589,28 @@ class RWPreTrainedModel(PreTrainedModel):
|
|
| 453 |
module.bias.data.zero_()
|
| 454 |
module.weight.data.fill_(1.0)
|
| 455 |
|
|
|
|
| 456 |
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
|
| 457 |
-
if isinstance(module,
|
| 458 |
module.gradient_checkpointing = value
|
| 459 |
|
| 460 |
@staticmethod
|
| 461 |
-
def
|
| 462 |
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
| 463 |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
| 464 |
"""
|
| 465 |
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
|
| 466 |
num_heads, ...]))
|
| 467 |
"""
|
| 468 |
-
batch_size_times_num_heads,
|
|
|
|
|
|
|
|
|
|
| 469 |
num_heads = batch_size_times_num_heads // batch_size
|
| 470 |
-
# key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
|
| 471 |
-
# value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
|
| 472 |
return tuple(
|
| 473 |
(
|
| 474 |
-
layer_past[0].view(batch_size, num_heads,
|
| 475 |
-
layer_past[1].view(batch_size, num_heads,
|
| 476 |
)
|
| 477 |
for layer_past in past_key_value
|
| 478 |
)
|
|
@@ -481,32 +619,35 @@ class RWPreTrainedModel(PreTrainedModel):
|
|
| 481 |
def _convert_to_rw_cache(
|
| 482 |
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
|
| 483 |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
| 484 |
-
batch_size, num_heads,
|
| 485 |
batch_size_times_num_heads = batch_size * num_heads
|
| 486 |
-
#
|
| 487 |
-
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
|
| 488 |
return tuple(
|
| 489 |
(
|
| 490 |
-
layer_past[0].view(batch_size_times_num_heads,
|
| 491 |
-
layer_past[1].view(batch_size_times_num_heads,
|
| 492 |
)
|
| 493 |
for layer_past in past_key_value
|
| 494 |
)
|
| 495 |
|
| 496 |
|
| 497 |
-
|
| 498 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
super().__init__(config)
|
| 500 |
|
| 501 |
self.embed_dim = config.hidden_size
|
| 502 |
-
self.num_heads = config.
|
| 503 |
-
self.
|
| 504 |
|
| 505 |
# Embedding + LN Embedding
|
| 506 |
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 507 |
|
| 508 |
# Transformer blocks
|
| 509 |
-
self.h = nn.ModuleList([
|
| 510 |
|
| 511 |
# Final Layer Norm
|
| 512 |
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
@@ -519,22 +660,31 @@ class RWModel(RWPreTrainedModel):
|
|
| 519 |
def get_input_embeddings(self):
|
| 520 |
return self.word_embeddings
|
| 521 |
|
|
|
|
| 522 |
def _prepare_attn_mask(
|
| 523 |
-
|
| 524 |
) -> torch.BoolTensor:
|
| 525 |
-
#
|
| 526 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 527 |
combined_attention_mask = None
|
| 528 |
device = attention_mask.device
|
| 529 |
-
_,
|
| 530 |
|
| 531 |
-
if
|
| 532 |
combined_attention_mask = _make_causal_mask(
|
| 533 |
input_shape, device=device, past_key_values_length=past_key_values_length
|
| 534 |
)
|
| 535 |
|
| 536 |
-
# [batch_size, seq_length] -> [batch_size, 1,
|
| 537 |
-
expanded_attn_mask = _expand_mask(attention_mask,
|
| 538 |
combined_attention_mask = (
|
| 539 |
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
| 540 |
)
|
|
@@ -544,6 +694,12 @@ class RWModel(RWPreTrainedModel):
|
|
| 544 |
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
| 545 |
self.word_embeddings = new_embeddings
|
| 546 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 547 |
def forward(
|
| 548 |
self,
|
| 549 |
input_ids: Optional[torch.LongTensor] = None,
|
|
@@ -555,18 +711,7 @@ class RWModel(RWPreTrainedModel):
|
|
| 555 |
output_attentions: Optional[bool] = None,
|
| 556 |
output_hidden_states: Optional[bool] = None,
|
| 557 |
return_dict: Optional[bool] = None,
|
| 558 |
-
**deprecated_arguments,
|
| 559 |
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
| 560 |
-
if deprecated_arguments.pop("position_ids", False) is not False:
|
| 561 |
-
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
| 562 |
-
warnings.warn(
|
| 563 |
-
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
| 564 |
-
" passing `position_ids`.",
|
| 565 |
-
FutureWarning,
|
| 566 |
-
)
|
| 567 |
-
if len(deprecated_arguments) > 0:
|
| 568 |
-
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
| 569 |
-
|
| 570 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 571 |
output_hidden_states = (
|
| 572 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
@@ -585,12 +730,14 @@ class RWModel(RWPreTrainedModel):
|
|
| 585 |
|
| 586 |
if past_key_values is None:
|
| 587 |
past_key_values = tuple([None] * len(self.h))
|
|
|
|
|
|
|
| 588 |
|
| 589 |
# Prepare head mask if needed
|
| 590 |
# 1.0 in head_mask indicate we keep the head
|
| 591 |
# attention_probs has shape batch_size x num_heads x N x N
|
| 592 |
# head_mask has shape n_layer x batch x num_heads x N x N
|
| 593 |
-
head_mask = self.get_head_mask(head_mask, self.config.
|
| 594 |
|
| 595 |
if inputs_embeds is None:
|
| 596 |
inputs_embeds = self.word_embeddings(input_ids)
|
|
@@ -602,17 +749,15 @@ class RWModel(RWPreTrainedModel):
|
|
| 602 |
all_hidden_states = () if output_hidden_states else None
|
| 603 |
|
| 604 |
# Compute alibi tensor: check build_alibi_tensor documentation
|
| 605 |
-
seq_length_with_past = seq_length
|
| 606 |
past_key_values_length = 0
|
| 607 |
if past_key_values[0] is not None:
|
| 608 |
-
past_key_values_length = past_key_values[0][0].shape[
|
| 609 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 610 |
if attention_mask is None:
|
| 611 |
-
attention_mask = torch.ones((batch_size,
|
| 612 |
else:
|
| 613 |
attention_mask = attention_mask.to(hidden_states.device)
|
| 614 |
|
| 615 |
-
if self.
|
| 616 |
alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
| 617 |
else:
|
| 618 |
alibi = None
|
|
@@ -624,12 +769,10 @@ class RWModel(RWPreTrainedModel):
|
|
| 624 |
)
|
| 625 |
|
| 626 |
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
| 627 |
-
|
| 628 |
if output_hidden_states:
|
| 629 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 630 |
|
| 631 |
if self.gradient_checkpointing and self.training:
|
| 632 |
-
|
| 633 |
if use_cache:
|
| 634 |
logger.warning(
|
| 635 |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
@@ -674,6 +817,9 @@ class RWModel(RWPreTrainedModel):
|
|
| 674 |
if output_hidden_states:
|
| 675 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 676 |
|
|
|
|
|
|
|
|
|
|
| 677 |
if not return_dict:
|
| 678 |
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
| 679 |
|
|
@@ -685,12 +831,16 @@ class RWModel(RWPreTrainedModel):
|
|
| 685 |
)
|
| 686 |
|
| 687 |
|
| 688 |
-
|
| 689 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 690 |
|
| 691 |
-
def __init__(self, config:
|
| 692 |
super().__init__(config)
|
| 693 |
-
self.transformer =
|
| 694 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 695 |
|
| 696 |
# Initialize weights and apply final processing
|
|
@@ -705,25 +855,26 @@ class RWForCausalLM(RWPreTrainedModel):
|
|
| 705 |
def prepare_inputs_for_generation(
|
| 706 |
self,
|
| 707 |
input_ids: torch.LongTensor,
|
| 708 |
-
|
| 709 |
attention_mask: Optional[torch.Tensor] = None,
|
| 710 |
**kwargs,
|
| 711 |
) -> dict:
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
input_ids = input_ids[:, -1].unsqueeze(-1)
|
| 715 |
-
|
| 716 |
-
# the cache may be in the stardard format (e.g. in contrastive search), convert to our's format if needed
|
| 717 |
-
if past[0][0].shape[0] == input_ids.shape[0]:
|
| 718 |
-
past = self._convert_to_rw_cache(past)
|
| 719 |
|
| 720 |
return {
|
| 721 |
"input_ids": input_ids,
|
| 722 |
-
"past_key_values":
|
| 723 |
"use_cache": kwargs.get("use_cache"),
|
| 724 |
"attention_mask": attention_mask,
|
| 725 |
}
|
| 726 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 727 |
def forward(
|
| 728 |
self,
|
| 729 |
input_ids: Optional[torch.LongTensor] = None,
|
|
@@ -736,7 +887,6 @@ class RWForCausalLM(RWPreTrainedModel):
|
|
| 736 |
output_attentions: Optional[bool] = None,
|
| 737 |
output_hidden_states: Optional[bool] = None,
|
| 738 |
return_dict: Optional[bool] = None,
|
| 739 |
-
**deprecated_arguments,
|
| 740 |
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
| 741 |
r"""
|
| 742 |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -744,15 +894,6 @@ class RWForCausalLM(RWPreTrainedModel):
|
|
| 744 |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 745 |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
| 746 |
"""
|
| 747 |
-
if deprecated_arguments.pop("position_ids", False) is not False:
|
| 748 |
-
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
| 749 |
-
warnings.warn(
|
| 750 |
-
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
| 751 |
-
" passing `position_ids`.",
|
| 752 |
-
FutureWarning,
|
| 753 |
-
)
|
| 754 |
-
if len(deprecated_arguments) > 0:
|
| 755 |
-
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
| 756 |
|
| 757 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 758 |
|
|
@@ -805,7 +946,6 @@ class RWForCausalLM(RWPreTrainedModel):
|
|
| 805 |
|
| 806 |
Output shares the same memory storage as `past`.
|
| 807 |
"""
|
| 808 |
-
standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))
|
| 809 |
|
| 810 |
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
| 811 |
device_to_beam_idx = {
|
|
@@ -816,23 +956,42 @@ class RWForCausalLM(RWPreTrainedModel):
|
|
| 816 |
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
| 817 |
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
| 818 |
)
|
| 819 |
-
for layer_past in
|
| 820 |
)
|
| 821 |
-
return
|
| 822 |
|
| 823 |
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 828 |
super().__init__(config)
|
| 829 |
self.num_labels = config.num_labels
|
| 830 |
-
self.transformer =
|
| 831 |
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
| 832 |
|
| 833 |
# Initialize weights and apply final processing
|
| 834 |
self.post_init()
|
| 835 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 836 |
def forward(
|
| 837 |
self,
|
| 838 |
input_ids: Optional[torch.LongTensor] = None,
|
|
@@ -845,7 +1004,6 @@ class RWForSequenceClassification(RWPreTrainedModel):
|
|
| 845 |
output_attentions: Optional[bool] = None,
|
| 846 |
output_hidden_states: Optional[bool] = None,
|
| 847 |
return_dict: Optional[bool] = None,
|
| 848 |
-
**deprecated_arguments,
|
| 849 |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
| 850 |
r"""
|
| 851 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
@@ -853,15 +1011,6 @@ class RWForSequenceClassification(RWPreTrainedModel):
|
|
| 853 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 854 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 855 |
"""
|
| 856 |
-
if deprecated_arguments.pop("position_ids", False) is not False:
|
| 857 |
-
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
| 858 |
-
warnings.warn(
|
| 859 |
-
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
| 860 |
-
" passing `position_ids`.",
|
| 861 |
-
FutureWarning,
|
| 862 |
-
)
|
| 863 |
-
if len(deprecated_arguments) > 0:
|
| 864 |
-
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
| 865 |
|
| 866 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 867 |
|
|
@@ -936,17 +1085,22 @@ class RWForSequenceClassification(RWPreTrainedModel):
|
|
| 936 |
)
|
| 937 |
|
| 938 |
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 943 |
super().__init__(config)
|
| 944 |
self.num_labels = config.num_labels
|
| 945 |
|
| 946 |
-
self.transformer =
|
| 947 |
-
if
|
| 948 |
classifier_dropout = config.classifier_dropout
|
| 949 |
-
elif
|
| 950 |
classifier_dropout = config.hidden_dropout
|
| 951 |
else:
|
| 952 |
classifier_dropout = 0.1
|
|
@@ -956,6 +1110,12 @@ class RWForTokenClassification(RWPreTrainedModel):
|
|
| 956 |
# Initialize weights and apply final processing
|
| 957 |
self.post_init()
|
| 958 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 959 |
def forward(
|
| 960 |
self,
|
| 961 |
input_ids: Optional[torch.LongTensor] = None,
|
|
@@ -968,7 +1128,6 @@ class RWForTokenClassification(RWPreTrainedModel):
|
|
| 968 |
output_attentions: Optional[bool] = None,
|
| 969 |
output_hidden_states: Optional[bool] = None,
|
| 970 |
return_dict: Optional[bool] = None,
|
| 971 |
-
**deprecated_arguments,
|
| 972 |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 973 |
r"""
|
| 974 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
@@ -976,15 +1135,6 @@ class RWForTokenClassification(RWPreTrainedModel):
|
|
| 976 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 977 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 978 |
"""
|
| 979 |
-
if deprecated_arguments.pop("position_ids", False) is not False:
|
| 980 |
-
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
| 981 |
-
warnings.warn(
|
| 982 |
-
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
| 983 |
-
" passing `position_ids`.",
|
| 984 |
-
FutureWarning,
|
| 985 |
-
)
|
| 986 |
-
if len(deprecated_arguments) > 0:
|
| 987 |
-
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
| 988 |
|
| 989 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 990 |
|
|
@@ -1008,7 +1158,9 @@ class RWForTokenClassification(RWPreTrainedModel):
|
|
| 1008 |
if labels is not None:
|
| 1009 |
batch_size, seq_length = labels.shape
|
| 1010 |
loss_fct = CrossEntropyLoss()
|
| 1011 |
-
loss = loss_fct(
|
|
|
|
|
|
|
| 1012 |
|
| 1013 |
if not return_dict:
|
| 1014 |
output = (logits,) + transformer_outputs[2:]
|
|
@@ -1022,22 +1174,27 @@ class RWForTokenClassification(RWPreTrainedModel):
|
|
| 1022 |
)
|
| 1023 |
|
| 1024 |
|
| 1025 |
-
|
| 1026 |
-
|
| 1027 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1028 |
def __init__(self, config):
|
| 1029 |
super().__init__(config)
|
| 1030 |
-
self.transformer =
|
| 1031 |
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
| 1032 |
|
| 1033 |
# Initialize weights and apply final processing
|
| 1034 |
self.post_init()
|
| 1035 |
|
|
|
|
| 1036 |
def forward(
|
| 1037 |
self,
|
| 1038 |
input_ids: Optional[torch.LongTensor] = None,
|
| 1039 |
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1040 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 1041 |
head_mask: Optional[torch.FloatTensor] = None,
|
| 1042 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1043 |
start_positions: Optional[torch.LongTensor] = None,
|
|
@@ -1061,7 +1218,6 @@ class RWForQuestionAnswering(RWPreTrainedModel):
|
|
| 1061 |
outputs = self.transformer(
|
| 1062 |
input_ids,
|
| 1063 |
attention_mask=attention_mask,
|
| 1064 |
-
position_ids=position_ids,
|
| 1065 |
head_mask=head_mask,
|
| 1066 |
inputs_embeds=inputs_embeds,
|
| 1067 |
output_attentions=output_attentions,
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""PyTorch Falcon model."""
|
| 16 |
|
| 17 |
import math
|
|
|
|
| 18 |
from typing import Optional, Tuple, Union
|
| 19 |
|
| 20 |
import torch
|
|
|
|
| 31 |
TokenClassifierOutput,
|
| 32 |
)
|
| 33 |
from transformers.modeling_utils import PreTrainedModel
|
| 34 |
+
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
| 35 |
+
from .configuration_falcon import FalconConfig
|
| 36 |
+
|
| 37 |
|
| 38 |
logger = logging.get_logger(__name__)
|
| 39 |
|
| 40 |
+
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 41 |
+
"tiiuae/falcon-40b",
|
| 42 |
+
"tiiuae/falcon-40b-instruct",
|
| 43 |
+
"tiiuae/falcon-7b",
|
| 44 |
+
"tiiuae/falcon-7b-instruct",
|
| 45 |
+
"tiiuae/falcon-rw-7b",
|
| 46 |
+
"tiiuae/falcon-rw-1b",
|
| 47 |
+
]
|
| 48 |
+
_CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b"
|
| 49 |
+
_CONFIG_FOR_DOC = "FalconConfig"
|
| 50 |
+
|
| 51 |
+
|
| 52 |
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
|
| 53 |
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
|
| 54 |
+
class FalconLinear(nn.Linear):
|
| 55 |
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
| 56 |
+
hidden_states = input @ self.weight.T
|
| 57 |
if self.bias is None:
|
| 58 |
+
return hidden_states
|
| 59 |
+
return hidden_states + self.bias
|
|
|
|
|
|
|
| 60 |
|
|
|
|
| 61 |
|
| 62 |
# rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...)
|
| 63 |
def rotate_half(x):
|
| 64 |
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
| 65 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 66 |
|
| 67 |
|
| 68 |
+
class FalconRotaryEmbedding(nn.Module):
|
| 69 |
"""Implementation of RotaryEmbedding from GPT-NeoX.
|
| 70 |
+
This implementation is designed to operate on queries and keys that are compatible with `[batch_size,
|
| 71 |
+
n_heads_per_partition, seq_len, head_dim]` (e.g. MinGPTAttention format).
|
| 72 |
"""
|
| 73 |
|
| 74 |
+
def __init__(self, head_dim: int, base=10000):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
super().__init__()
|
| 76 |
inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim))
|
| 77 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 78 |
self.head_dim = head_dim
|
| 79 |
+
self.seq_len_cached = -1
|
|
|
|
| 80 |
self.cos_cached: torch.Tensor | None = None
|
| 81 |
self.sin_cached: torch.Tensor | None = None
|
| 82 |
|
| 83 |
+
def cos_sin(self, seq_len: int, past_key_values_length: int, device="cpu", dtype=torch.bfloat16) -> torch.Tensor:
|
| 84 |
+
total_length = seq_len + past_key_values_length
|
| 85 |
+
if total_length > self.seq_len_cached:
|
| 86 |
+
self.seq_len_cached = total_length
|
| 87 |
+
t = torch.arange(total_length, device=device, dtype=self.inv_freq.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 89 |
emb = torch.cat((freqs, freqs), dim=-1).to(device)
|
| 90 |
|
|
|
|
| 97 |
self.cos_cached = self.cos_cached.type(dtype)
|
| 98 |
self.sin_cached = self.sin_cached.type(dtype)
|
| 99 |
|
| 100 |
+
return (
|
| 101 |
+
self.cos_cached[:, past_key_values_length : seq_len + past_key_values_length],
|
| 102 |
+
self.sin_cached[:, past_key_values_length : seq_len + past_key_values_length],
|
| 103 |
+
)
|
| 104 |
|
| 105 |
+
def forward(self, query, key, past_key_values_length=0):
|
| 106 |
+
batch, seq_len, head_dim = query.shape
|
| 107 |
+
cos, sin = self.cos_sin(seq_len, past_key_values_length, query.device, query.dtype)
|
| 108 |
+
return (query * cos) + (rotate_half(query) * sin), (key * cos) + (rotate_half(key) * sin)
|
| 109 |
|
| 110 |
|
| 111 |
def _make_causal_mask(
|
| 112 |
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
| 113 |
) -> torch.BoolTensor:
|
| 114 |
+
"""
|
| 115 |
+
Make causal mask used for self-attention. This mask does not take the existing attention mask into account - it
|
| 116 |
+
just blocks tokens from attending forwards in the sequence. The output shape will be `[batch_size, 1,
|
| 117 |
+
target_length, target_length+past_key_values_length]`.
|
| 118 |
+
"""
|
| 119 |
batch_size, target_length = input_ids_shape
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
mask = torch.triu(torch.ones((target_length, target_length), dtype=torch.bool, device=device), diagonal=1)
|
| 122 |
+
# If past_key_values_length is 0 this is an empty tensor and the concatenation is a no-op.
|
| 123 |
+
# This code style is an unfortunate consequence of getting your TF engineer to port models; doing it this
|
| 124 |
+
# way avoids a data-dependent conditional, which will help me when I have to port this to XLA later.
|
| 125 |
+
past_mask = torch.zeros((target_length, past_key_values_length), dtype=torch.bool, device=device)
|
| 126 |
+
mask = torch.cat([past_mask, mask], dim=-1)
|
| 127 |
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
|
| 128 |
return expanded_mask
|
| 129 |
|
| 130 |
|
| 131 |
+
def _expand_mask(mask: torch.Tensor, past_key_values_length: int) -> torch.BoolTensor:
|
| 132 |
+
"""
|
| 133 |
+
Expands attention_mask from `[batch_size, seq_length]` to `[batch_size, 1, seq_length, seq_length + past_length]`.
|
| 134 |
+
"""
|
| 135 |
+
batch_size, total_length = mask.shape
|
| 136 |
+
seq_length = total_length - past_key_values_length if past_key_values_length is not None else total_length
|
| 137 |
|
| 138 |
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
|
| 139 |
+
return expanded_mask.expand(batch_size, 1, seq_length, total_length)
|
| 140 |
|
| 141 |
|
| 142 |
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
|
|
|
| 167 |
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
| 168 |
|
| 169 |
|
| 170 |
+
# Copied from transformers.models.bloom.modeling_bloom.dropout_add
|
| 171 |
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
| 172 |
+
"""
|
| 173 |
+
Dropout add function
|
| 174 |
+
|
| 175 |
+
Args:
|
| 176 |
+
x (`torch.tensor`, *required*):
|
| 177 |
+
input tensor
|
| 178 |
+
residual (`torch.tensor`, *required*):
|
| 179 |
+
residual tensor
|
| 180 |
+
prob (`float`, *required*):
|
| 181 |
+
dropout probability
|
| 182 |
+
training (`bool`, *required*):
|
| 183 |
+
training mode
|
| 184 |
+
"""
|
| 185 |
out = F.dropout(x, p=prob, training=training)
|
| 186 |
out = residual + out
|
| 187 |
return out
|
| 188 |
|
| 189 |
|
| 190 |
+
class FalconAttention(nn.Module):
|
| 191 |
+
def __init__(self, config: FalconConfig):
|
| 192 |
super().__init__()
|
| 193 |
|
| 194 |
self.hidden_size = config.hidden_size
|
| 195 |
+
self.num_heads = config.num_attention_heads
|
| 196 |
self.head_dim = self.hidden_size // self.num_heads
|
| 197 |
self.split_size = self.hidden_size
|
| 198 |
self.hidden_dropout = config.hidden_dropout
|
|
|
|
| 203 |
f" {self.num_heads})."
|
| 204 |
)
|
| 205 |
|
| 206 |
+
self.maybe_rotary = FalconRotaryEmbedding(config.head_dim) if config.rotary else lambda q, k, t: (q, k)
|
| 207 |
|
| 208 |
# Layer-wise attention scaling
|
| 209 |
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
| 210 |
self.beta = self.inv_norm_factor
|
| 211 |
+
if config.new_decoder_architecture:
|
| 212 |
+
qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim
|
| 213 |
+
elif config.multi_query:
|
| 214 |
+
qkv_out_dim = self.hidden_size + 2 * self.head_dim
|
| 215 |
+
else:
|
| 216 |
+
qkv_out_dim = 3 * self.hidden_size
|
| 217 |
+
self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias)
|
| 218 |
+
self.new_decoder_architecture = config.new_decoder_architecture
|
| 219 |
+
self.multi_query = config.multi_query
|
| 220 |
+
self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias)
|
| 221 |
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
| 222 |
+
self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1
|
| 223 |
|
| 224 |
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 225 |
"""
|
| 226 |
+
Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv`
|
|
|
|
| 227 |
|
| 228 |
Args:
|
| 229 |
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
| 230 |
|
| 231 |
Returns:
|
| 232 |
+
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
|
|
|
|
| 233 |
value: [batch_size, seq_length, num_heads, head_dim]
|
| 234 |
"""
|
| 235 |
+
if self.new_decoder_architecture:
|
| 236 |
+
batch, seq_len, _ = fused_qkv.shape
|
| 237 |
+
qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim)
|
| 238 |
+
query = qkv[:, :, :, :-2]
|
| 239 |
+
key = qkv[:, :, :, [-2]]
|
| 240 |
+
value = qkv[:, :, :, [-1]]
|
| 241 |
+
key = torch.broadcast_to(key, query.shape)
|
| 242 |
+
value = torch.broadcast_to(value, query.shape)
|
| 243 |
+
|
| 244 |
+
query, key, value = [x.flatten(2, 3) for x in (query, key, value)]
|
| 245 |
+
return query, key, value
|
| 246 |
+
elif not self.multi_query:
|
| 247 |
+
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
| 248 |
+
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
|
| 249 |
+
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
|
| 250 |
+
else:
|
| 251 |
+
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
|
| 252 |
+
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim)
|
| 253 |
+
return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :]
|
| 254 |
|
| 255 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads
|
| 256 |
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
| 257 |
"""
|
| 258 |
Merge heads together over the last dimenstion
|
| 259 |
|
| 260 |
Args:
|
| 261 |
+
x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
|
| 262 |
|
| 263 |
Returns:
|
| 264 |
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
|
|
|
| 281 |
def forward(
|
| 282 |
self,
|
| 283 |
hidden_states: torch.Tensor,
|
| 284 |
+
alibi: Optional[torch.Tensor],
|
| 285 |
attention_mask: torch.Tensor,
|
| 286 |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 287 |
head_mask: Optional[torch.Tensor] = None,
|
|
|
|
| 289 |
output_attentions: bool = False,
|
| 290 |
):
|
| 291 |
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
| 292 |
+
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
|
| 293 |
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
| 294 |
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
| 295 |
|
| 296 |
+
batch_size, query_length, _, _ = query_layer.shape
|
| 297 |
|
| 298 |
+
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, query_length, self.head_dim)
|
| 299 |
key_layer = key_layer.transpose(1, 2).reshape(
|
| 300 |
+
batch_size * num_kv_heads,
|
| 301 |
+
query_length,
|
| 302 |
self.head_dim,
|
| 303 |
)
|
| 304 |
+
value_layer = value_layer.transpose(1, 2).reshape(batch_size * num_kv_heads, query_length, self.head_dim)
|
| 305 |
|
| 306 |
+
past_kv_length = 0 if layer_past is None else layer_past[0].shape[1]
|
| 307 |
+
query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, past_kv_length)
|
| 308 |
|
| 309 |
if layer_past is not None:
|
| 310 |
past_key, past_value = layer_past
|
| 311 |
# concatenate along seq_length dimension:
|
| 312 |
+
# - key: [batch_size * self.num_heads, kv_length, head_dim]
|
| 313 |
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
| 314 |
key_layer = torch.cat((past_key, key_layer), dim=1)
|
| 315 |
value_layer = torch.cat((past_value, value_layer), dim=1)
|
| 316 |
|
| 317 |
_, kv_length, _ = key_layer.shape
|
| 318 |
+
if use_cache:
|
|
|
|
| 319 |
present = (key_layer, value_layer)
|
| 320 |
else:
|
| 321 |
present = None
|
| 322 |
|
| 323 |
+
attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, float("-1e9")).to(query_layer.dtype)
|
| 324 |
+
|
| 325 |
+
query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
|
| 326 |
+
key_layer_ = key_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
|
| 327 |
+
value_layer_ = value_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
|
| 328 |
+
|
| 329 |
if alibi is None:
|
| 330 |
+
if output_attentions:
|
| 331 |
+
# F.scaled_dot_product_attention doesn't return the attention weights, so we have
|
| 332 |
+
# to do it by hand if we want them
|
| 333 |
+
attention_scores = query_layer_ @ key_layer_.transpose(-1, -2)
|
| 334 |
+
attention_scores /= math.sqrt(self.head_dim)
|
| 335 |
|
| 336 |
+
attention_scores = F.softmax(
|
| 337 |
+
attention_scores + attention_mask_float, dim=-1, dtype=hidden_states.dtype
|
| 338 |
+
)
|
| 339 |
+
attn_output = attention_scores @ value_layer_
|
| 340 |
+
else:
|
| 341 |
+
attn_output = F.scaled_dot_product_attention(
|
| 342 |
+
query_layer_, key_layer_, value_layer_, attention_mask_float, 0.0, is_causal=False
|
| 343 |
+
)
|
| 344 |
+
attention_scores = None
|
| 345 |
|
| 346 |
+
attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
|
| 347 |
+
attn_output = attn_output.permute(0, 2, 1, 3)
|
| 348 |
+
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
|
| 349 |
|
| 350 |
output_tensor = self.dense(attn_output)
|
| 351 |
|
| 352 |
+
if output_attentions:
|
| 353 |
+
return output_tensor, present, attention_scores
|
| 354 |
+
else:
|
| 355 |
+
return output_tensor, present
|
| 356 |
+
|
| 357 |
else:
|
| 358 |
+
matmul_result = query_layer_ @ key_layer_.transpose(-1, -2)
|
|
|
|
| 359 |
|
| 360 |
# change view to [batch_size, num_heads, q_length, kv_length]
|
| 361 |
+
attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length)
|
| 362 |
|
| 363 |
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
| 364 |
input_dtype = attention_scores.dtype
|
| 365 |
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
| 366 |
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
|
| 367 |
attention_scores = attention_scores.to(torch.float32)
|
| 368 |
+
# Matt (HF) note: We could possibly use F.scaled_dot_product_attention here too, by
|
| 369 |
+
# adding (alibi * self.inv_norm_factor) to attention_mask_float. I think this would be mathematically
|
| 370 |
+
# equivalent and more performant, but there might be a numerical difference. If you're reading this
|
| 371 |
+
# and you'd like to experiment and maybe file a PR, feel free!
|
| 372 |
+
attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
|
| 373 |
+
attention_logits *= self.inv_norm_factor
|
| 374 |
+
attention_probs = F.softmax(attention_logits + attention_mask_float, dim=-1, dtype=hidden_states.dtype)
|
| 375 |
# [batch_size, num_heads, q_length, kv_length]
|
| 376 |
attention_probs = self.attention_dropout(attention_probs)
|
| 377 |
|
| 378 |
if head_mask is not None:
|
| 379 |
attention_probs = attention_probs * head_mask
|
| 380 |
|
| 381 |
+
# change view [batch_size, num_heads, q_length, kv_length]
|
| 382 |
+
attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length)
|
| 383 |
|
| 384 |
# matmul: [batch_size * num_heads, q_length, head_dim]
|
| 385 |
+
context_layer = (attention_probs_reshaped @ value_layer_).flatten(0, 1)
|
| 386 |
|
| 387 |
# change view [batch_size, num_heads, q_length, head_dim]
|
| 388 |
context_layer = self._merge_heads(context_layer)
|
| 389 |
|
| 390 |
output_tensor = self.dense(context_layer)
|
| 391 |
|
|
|
|
| 392 |
if output_attentions:
|
| 393 |
+
return output_tensor, present, attention_probs
|
| 394 |
+
else:
|
| 395 |
+
return output_tensor, present
|
| 396 |
|
| 397 |
|
| 398 |
+
class FalconMLP(nn.Module):
|
| 399 |
+
def __init__(self, config: FalconConfig):
|
| 400 |
super().__init__()
|
| 401 |
hidden_size = config.hidden_size
|
| 402 |
|
| 403 |
+
self.dense_h_to_4h = FalconLinear(hidden_size, 4 * hidden_size, bias=config.bias)
|
| 404 |
self.act = nn.GELU()
|
| 405 |
+
self.dense_4h_to_h = FalconLinear(4 * hidden_size, hidden_size, bias=config.bias)
|
| 406 |
self.hidden_dropout = config.hidden_dropout
|
| 407 |
|
| 408 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
| 411 |
return x
|
| 412 |
|
| 413 |
|
| 414 |
+
class FalconDecoderLayer(nn.Module):
|
| 415 |
+
def __init__(self, config: FalconConfig):
|
| 416 |
super().__init__()
|
| 417 |
hidden_size = config.hidden_size
|
| 418 |
+
self.num_heads = config.num_attention_heads
|
| 419 |
+
self.self_attention = FalconAttention(config)
|
| 420 |
+
self.mlp = FalconMLP(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
self.hidden_dropout = config.hidden_dropout
|
|
|
|
| 422 |
self.config = config
|
| 423 |
|
| 424 |
+
if config.new_decoder_architecture:
|
| 425 |
+
# The layer norm before self-attention
|
| 426 |
+
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 427 |
+
# The layer norm before the MLP
|
| 428 |
+
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 429 |
+
else:
|
| 430 |
+
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 431 |
+
if not config.parallel_attn:
|
| 432 |
+
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 433 |
+
|
| 434 |
def forward(
|
| 435 |
self,
|
| 436 |
hidden_states: torch.Tensor,
|
| 437 |
+
alibi: Optional[torch.Tensor],
|
| 438 |
attention_mask: torch.Tensor,
|
| 439 |
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 440 |
head_mask: Optional[torch.Tensor] = None,
|
| 441 |
use_cache: bool = False,
|
| 442 |
output_attentions: bool = False,
|
| 443 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
residual = hidden_states
|
| 445 |
|
| 446 |
+
if self.config.new_decoder_architecture:
|
| 447 |
+
attention_layernorm_out = self.ln_attn(hidden_states)
|
| 448 |
+
mlp_layernorm_out = self.ln_mlp(hidden_states)
|
| 449 |
+
else:
|
| 450 |
+
attention_layernorm_out = self.input_layernorm(hidden_states)
|
| 451 |
+
|
| 452 |
# Self attention.
|
| 453 |
attn_outputs = self.self_attention(
|
| 454 |
+
attention_layernorm_out,
|
| 455 |
layer_past=layer_past,
|
| 456 |
attention_mask=attention_mask,
|
| 457 |
alibi=alibi,
|
|
|
|
| 462 |
|
| 463 |
attention_output = attn_outputs[0]
|
| 464 |
|
| 465 |
+
if not self.config.new_decoder_architecture:
|
| 466 |
+
if self.config.parallel_attn:
|
| 467 |
+
mlp_layernorm_out = attention_layernorm_out
|
| 468 |
+
else:
|
| 469 |
+
residual = dropout_add(
|
| 470 |
+
attention_output, residual, self.config.attention_dropout, training=self.training
|
| 471 |
+
)
|
| 472 |
+
mlp_layernorm_out = self.post_attention_layernorm(residual)
|
| 473 |
+
|
| 474 |
outputs = attn_outputs[1:]
|
| 475 |
|
| 476 |
# MLP.
|
| 477 |
+
mlp_output = self.mlp(mlp_layernorm_out)
|
| 478 |
|
| 479 |
+
if self.config.new_decoder_architecture or self.config.parallel_attn:
|
| 480 |
+
mlp_output += attention_output
|
| 481 |
+
|
| 482 |
+
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training)
|
| 483 |
|
| 484 |
if use_cache:
|
| 485 |
outputs = (output,) + outputs
|
|
|
|
| 489 |
return outputs # hidden_states, present, attentions
|
| 490 |
|
| 491 |
|
| 492 |
+
FALCON_START_DOCSTRING = r"""
|
| 493 |
+
|
| 494 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 495 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
|
| 496 |
+
|
| 497 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 498 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 499 |
+
and behavior.
|
| 500 |
+
|
| 501 |
+
Parameters:
|
| 502 |
+
config ([`FalconConfig`]): Model configuration class with all the parameters of the model.
|
| 503 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 504 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 505 |
+
"""
|
| 506 |
+
|
| 507 |
+
FALCON_INPUTS_DOCSTRING = r"""
|
| 508 |
+
Args:
|
| 509 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
| 510 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
|
| 511 |
+
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
|
| 512 |
+
|
| 513 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
| 514 |
+
`input_ids`.
|
| 515 |
+
|
| 516 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 517 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 518 |
+
|
| 519 |
+
[What are input IDs?](../glossary#input-ids)
|
| 520 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_hidden_layers`):
|
| 521 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
| 522 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
| 523 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
| 524 |
+
|
| 525 |
+
Each element of `past_key_values` is a tuple (past_key, past_value):
|
| 526 |
+
- past_key: [batch_size * num_heads, head_dim, kv_length]
|
| 527 |
+
- past_value: [batch_size * num_heads, kv_length, head_dim]
|
| 528 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 529 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 530 |
+
|
| 531 |
+
- 1 for tokens that are **not masked**,
|
| 532 |
+
- 0 for tokens that are **masked**.
|
| 533 |
+
|
| 534 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 535 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 536 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 537 |
+
|
| 538 |
+
- 1 indicates the head is **not masked**,
|
| 539 |
+
- 0 indicates the head is **masked**.
|
| 540 |
+
|
| 541 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 542 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 543 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 544 |
+
model's internal embedding lookup matrix.
|
| 545 |
+
|
| 546 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
| 547 |
+
`past_key_values`).
|
| 548 |
+
use_cache (`bool`, *optional*):
|
| 549 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 550 |
+
`past_key_values`).
|
| 551 |
+
output_attentions (`bool`, *optional*):
|
| 552 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 553 |
+
tensors for more detail.
|
| 554 |
+
output_hidden_states (`bool`, *optional*):
|
| 555 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 556 |
+
more detail.
|
| 557 |
+
return_dict (`bool`, *optional*):
|
| 558 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
| 559 |
+
"""
|
| 560 |
+
|
| 561 |
+
|
| 562 |
+
class FalconPreTrainedModel(PreTrainedModel):
|
| 563 |
"""
|
| 564 |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 565 |
models.
|
| 566 |
"""
|
| 567 |
|
| 568 |
+
config_class = FalconConfig
|
| 569 |
base_model_prefix = "transformer"
|
| 570 |
supports_gradient_checkpointing = True
|
| 571 |
+
_no_split_modules = ["FalconDecoderLayer"]
|
| 572 |
|
| 573 |
def __init__(self, *inputs, **kwargs):
|
| 574 |
super().__init__(*inputs, **kwargs)
|
| 575 |
|
| 576 |
def _init_weights(self, module: nn.Module):
|
| 577 |
"""Initialize the weights."""
|
| 578 |
+
if isinstance(module, nn.Linear) or isinstance(module, FalconLinear):
|
| 579 |
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 580 |
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 581 |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
|
|
|
| 589 |
module.bias.data.zero_()
|
| 590 |
module.weight.data.fill_(1.0)
|
| 591 |
|
| 592 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomPreTrainedModel._set_gradient_checkpointing with BloomModel->FalconModel
|
| 593 |
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
|
| 594 |
+
if isinstance(module, FalconModel):
|
| 595 |
module.gradient_checkpointing = value
|
| 596 |
|
| 597 |
@staticmethod
|
| 598 |
+
def _convert_cache_to_standard_format(
|
| 599 |
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
| 600 |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
| 601 |
"""
|
| 602 |
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
|
| 603 |
num_heads, ...]))
|
| 604 |
"""
|
| 605 |
+
batch_size_times_num_heads, kv_length, head_dim = past_key_value[0][0].shape
|
| 606 |
+
# [batch_size * self.num_heads, kv_length, head_dim] -> [batch_size, num_heads, kv_length, head_dim]
|
| 607 |
+
# Note that don't want to use self.num_attention_heads because the number of heads may vary depending
|
| 608 |
+
# on whether we use multi_query attention.
|
| 609 |
num_heads = batch_size_times_num_heads // batch_size
|
|
|
|
|
|
|
| 610 |
return tuple(
|
| 611 |
(
|
| 612 |
+
layer_past[0].view(batch_size, num_heads, kv_length, head_dim),
|
| 613 |
+
layer_past[1].view(batch_size, num_heads, kv_length, head_dim),
|
| 614 |
)
|
| 615 |
for layer_past in past_key_value
|
| 616 |
)
|
|
|
|
| 619 |
def _convert_to_rw_cache(
|
| 620 |
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
|
| 621 |
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
| 622 |
+
batch_size, num_heads, kv_length, head_dim = past_key_value[0][0].shape
|
| 623 |
batch_size_times_num_heads = batch_size * num_heads
|
| 624 |
+
# [batch_size, num_heads, kv_length, head_dim] -> [batch_size * num_heads, kv_length, head_dim]
|
|
|
|
| 625 |
return tuple(
|
| 626 |
(
|
| 627 |
+
layer_past[0].view(batch_size_times_num_heads, kv_length, head_dim),
|
| 628 |
+
layer_past[1].view(batch_size_times_num_heads, kv_length, head_dim),
|
| 629 |
)
|
| 630 |
for layer_past in past_key_value
|
| 631 |
)
|
| 632 |
|
| 633 |
|
| 634 |
+
@add_start_docstrings(
|
| 635 |
+
"The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.",
|
| 636 |
+
FALCON_START_DOCSTRING,
|
| 637 |
+
)
|
| 638 |
+
class FalconModel(FalconPreTrainedModel):
|
| 639 |
+
def __init__(self, config: FalconConfig):
|
| 640 |
super().__init__(config)
|
| 641 |
|
| 642 |
self.embed_dim = config.hidden_size
|
| 643 |
+
self.num_heads = config.num_attention_heads
|
| 644 |
+
self.use_alibi = config.alibi
|
| 645 |
|
| 646 |
# Embedding + LN Embedding
|
| 647 |
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 648 |
|
| 649 |
# Transformer blocks
|
| 650 |
+
self.h = nn.ModuleList([FalconDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 651 |
|
| 652 |
# Final Layer Norm
|
| 653 |
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
|
|
| 660 |
def get_input_embeddings(self):
|
| 661 |
return self.word_embeddings
|
| 662 |
|
| 663 |
+
@staticmethod
|
| 664 |
def _prepare_attn_mask(
|
| 665 |
+
attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
|
| 666 |
) -> torch.BoolTensor:
|
| 667 |
+
# Create a causal mask
|
| 668 |
+
# The attention mask we receive as input should cover the whole extended sequence, including any past
|
| 669 |
+
# cache, so its shape should be [batch_size, seq_length + past_key_values_length]
|
| 670 |
+
# The output shape will be [batch_size, 1, seq_length, seq_length + past_key_values_length]
|
| 671 |
+
if input_shape[1] + past_key_values_length != attention_mask.shape[1]:
|
| 672 |
+
raise ValueError(
|
| 673 |
+
"Attention mask shape should be (batch_size, seq_length + past_key_values_length)"
|
| 674 |
+
f" but is {attention_mask.shape} with input_ids shape {input_shape} and past length"
|
| 675 |
+
f" {past_key_values_length}."
|
| 676 |
+
)
|
| 677 |
combined_attention_mask = None
|
| 678 |
device = attention_mask.device
|
| 679 |
+
_, seq_length = input_shape
|
| 680 |
|
| 681 |
+
if seq_length > 1:
|
| 682 |
combined_attention_mask = _make_causal_mask(
|
| 683 |
input_shape, device=device, past_key_values_length=past_key_values_length
|
| 684 |
)
|
| 685 |
|
| 686 |
+
# [batch_size, seq_length + past_key_values_length] -> [batch_size, 1, seq_length, seq_length + past_key_values_length]
|
| 687 |
+
expanded_attn_mask = _expand_mask(attention_mask, past_key_values_length=past_key_values_length)
|
| 688 |
combined_attention_mask = (
|
| 689 |
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
| 690 |
)
|
|
|
|
| 694 |
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
| 695 |
self.word_embeddings = new_embeddings
|
| 696 |
|
| 697 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
| 698 |
+
@add_code_sample_docstrings(
|
| 699 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 700 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
| 701 |
+
config_class=_CONFIG_FOR_DOC,
|
| 702 |
+
)
|
| 703 |
def forward(
|
| 704 |
self,
|
| 705 |
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
| 711 |
output_attentions: Optional[bool] = None,
|
| 712 |
output_hidden_states: Optional[bool] = None,
|
| 713 |
return_dict: Optional[bool] = None,
|
|
|
|
| 714 |
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 715 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 716 |
output_hidden_states = (
|
| 717 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
| 730 |
|
| 731 |
if past_key_values is None:
|
| 732 |
past_key_values = tuple([None] * len(self.h))
|
| 733 |
+
else:
|
| 734 |
+
past_key_values = self._convert_to_rw_cache(past_key_values)
|
| 735 |
|
| 736 |
# Prepare head mask if needed
|
| 737 |
# 1.0 in head_mask indicate we keep the head
|
| 738 |
# attention_probs has shape batch_size x num_heads x N x N
|
| 739 |
# head_mask has shape n_layer x batch x num_heads x N x N
|
| 740 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 741 |
|
| 742 |
if inputs_embeds is None:
|
| 743 |
inputs_embeds = self.word_embeddings(input_ids)
|
|
|
|
| 749 |
all_hidden_states = () if output_hidden_states else None
|
| 750 |
|
| 751 |
# Compute alibi tensor: check build_alibi_tensor documentation
|
|
|
|
| 752 |
past_key_values_length = 0
|
| 753 |
if past_key_values[0] is not None:
|
| 754 |
+
past_key_values_length = past_key_values[0][0].shape[1] # 1 because RW-cache, not standard format
|
|
|
|
| 755 |
if attention_mask is None:
|
| 756 |
+
attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=hidden_states.device)
|
| 757 |
else:
|
| 758 |
attention_mask = attention_mask.to(hidden_states.device)
|
| 759 |
|
| 760 |
+
if self.use_alibi:
|
| 761 |
alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
| 762 |
else:
|
| 763 |
alibi = None
|
|
|
|
| 769 |
)
|
| 770 |
|
| 771 |
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
|
|
|
| 772 |
if output_hidden_states:
|
| 773 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 774 |
|
| 775 |
if self.gradient_checkpointing and self.training:
|
|
|
|
| 776 |
if use_cache:
|
| 777 |
logger.warning(
|
| 778 |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
|
|
| 817 |
if output_hidden_states:
|
| 818 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 819 |
|
| 820 |
+
if presents is not None:
|
| 821 |
+
presents = self._convert_cache_to_standard_format(presents, batch_size)
|
| 822 |
+
|
| 823 |
if not return_dict:
|
| 824 |
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
| 825 |
|
|
|
|
| 831 |
)
|
| 832 |
|
| 833 |
|
| 834 |
+
@add_start_docstrings(
|
| 835 |
+
"The Falcon Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).",
|
| 836 |
+
FALCON_START_DOCSTRING,
|
| 837 |
+
)
|
| 838 |
+
class FalconForCausalLM(FalconPreTrainedModel):
|
| 839 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 840 |
|
| 841 |
+
def __init__(self, config: FalconConfig):
|
| 842 |
super().__init__(config)
|
| 843 |
+
self.transformer = FalconModel(config)
|
| 844 |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 845 |
|
| 846 |
# Initialize weights and apply final processing
|
|
|
|
| 855 |
def prepare_inputs_for_generation(
|
| 856 |
self,
|
| 857 |
input_ids: torch.LongTensor,
|
| 858 |
+
past_key_values: Optional[torch.Tensor] = None,
|
| 859 |
attention_mask: Optional[torch.Tensor] = None,
|
| 860 |
**kwargs,
|
| 861 |
) -> dict:
|
| 862 |
+
if past_key_values is not None:
|
| 863 |
+
input_ids = input_ids[:, -1:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 864 |
|
| 865 |
return {
|
| 866 |
"input_ids": input_ids,
|
| 867 |
+
"past_key_values": past_key_values,
|
| 868 |
"use_cache": kwargs.get("use_cache"),
|
| 869 |
"attention_mask": attention_mask,
|
| 870 |
}
|
| 871 |
|
| 872 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
| 873 |
+
@add_code_sample_docstrings(
|
| 874 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 875 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
| 876 |
+
config_class=_CONFIG_FOR_DOC,
|
| 877 |
+
)
|
| 878 |
def forward(
|
| 879 |
self,
|
| 880 |
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
| 887 |
output_attentions: Optional[bool] = None,
|
| 888 |
output_hidden_states: Optional[bool] = None,
|
| 889 |
return_dict: Optional[bool] = None,
|
|
|
|
| 890 |
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
| 891 |
r"""
|
| 892 |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
|
|
| 894 |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 895 |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
| 896 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 897 |
|
| 898 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 899 |
|
|
|
|
| 946 |
|
| 947 |
Output shares the same memory storage as `past`.
|
| 948 |
"""
|
|
|
|
| 949 |
|
| 950 |
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
| 951 |
device_to_beam_idx = {
|
|
|
|
| 956 |
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
| 957 |
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
| 958 |
)
|
| 959 |
+
for layer_past in past
|
| 960 |
)
|
| 961 |
+
return reordered_past
|
| 962 |
|
| 963 |
|
| 964 |
+
@add_start_docstrings(
|
| 965 |
+
"""
|
| 966 |
+
The Falcon Model transformer with a sequence classification head on top (linear layer).
|
| 967 |
+
|
| 968 |
+
[`FalconForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 969 |
+
(e.g. GPT-1) do.
|
| 970 |
+
|
| 971 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 972 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 973 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 974 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 975 |
+
each row of the batch).
|
| 976 |
+
""",
|
| 977 |
+
FALCON_START_DOCSTRING,
|
| 978 |
+
)
|
| 979 |
+
class FalconForSequenceClassification(FalconPreTrainedModel):
|
| 980 |
+
def __init__(self, config: FalconConfig):
|
| 981 |
super().__init__(config)
|
| 982 |
self.num_labels = config.num_labels
|
| 983 |
+
self.transformer = FalconModel(config)
|
| 984 |
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
| 985 |
|
| 986 |
# Initialize weights and apply final processing
|
| 987 |
self.post_init()
|
| 988 |
|
| 989 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
| 990 |
+
@add_code_sample_docstrings(
|
| 991 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 992 |
+
output_type=SequenceClassifierOutputWithPast,
|
| 993 |
+
config_class=_CONFIG_FOR_DOC,
|
| 994 |
+
)
|
| 995 |
def forward(
|
| 996 |
self,
|
| 997 |
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
| 1004 |
output_attentions: Optional[bool] = None,
|
| 1005 |
output_hidden_states: Optional[bool] = None,
|
| 1006 |
return_dict: Optional[bool] = None,
|
|
|
|
| 1007 |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
| 1008 |
r"""
|
| 1009 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
|
| 1011 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1012 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1013 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1014 |
|
| 1015 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1016 |
|
|
|
|
| 1085 |
)
|
| 1086 |
|
| 1087 |
|
| 1088 |
+
@add_start_docstrings(
|
| 1089 |
+
"""
|
| 1090 |
+
Falcon Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
| 1091 |
+
Named-Entity-Recognition (NER) tasks.
|
| 1092 |
+
""",
|
| 1093 |
+
FALCON_START_DOCSTRING,
|
| 1094 |
+
)
|
| 1095 |
+
class FalconForTokenClassification(FalconPreTrainedModel):
|
| 1096 |
+
def __init__(self, config: FalconConfig):
|
| 1097 |
super().__init__(config)
|
| 1098 |
self.num_labels = config.num_labels
|
| 1099 |
|
| 1100 |
+
self.transformer = FalconModel(config)
|
| 1101 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
| 1102 |
classifier_dropout = config.classifier_dropout
|
| 1103 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
| 1104 |
classifier_dropout = config.hidden_dropout
|
| 1105 |
else:
|
| 1106 |
classifier_dropout = 0.1
|
|
|
|
| 1110 |
# Initialize weights and apply final processing
|
| 1111 |
self.post_init()
|
| 1112 |
|
| 1113 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
| 1114 |
+
@add_code_sample_docstrings(
|
| 1115 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1116 |
+
output_type=TokenClassifierOutput,
|
| 1117 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1118 |
+
)
|
| 1119 |
def forward(
|
| 1120 |
self,
|
| 1121 |
input_ids: Optional[torch.LongTensor] = None,
|
|
|
|
| 1128 |
output_attentions: Optional[bool] = None,
|
| 1129 |
output_hidden_states: Optional[bool] = None,
|
| 1130 |
return_dict: Optional[bool] = None,
|
|
|
|
| 1131 |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 1132 |
r"""
|
| 1133 |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
|
|
| 1135 |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1136 |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1137 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1138 |
|
| 1139 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1140 |
|
|
|
|
| 1158 |
if labels is not None:
|
| 1159 |
batch_size, seq_length = labels.shape
|
| 1160 |
loss_fct = CrossEntropyLoss()
|
| 1161 |
+
loss = loss_fct(
|
| 1162 |
+
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
| 1163 |
+
)
|
| 1164 |
|
| 1165 |
if not return_dict:
|
| 1166 |
output = (logits,) + transformer_outputs[2:]
|
|
|
|
| 1174 |
)
|
| 1175 |
|
| 1176 |
|
| 1177 |
+
@add_start_docstrings(
|
| 1178 |
+
"""
|
| 1179 |
+
The Falcon Model transformer with a span classification head on top for extractive question-answering tasks like
|
| 1180 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
| 1181 |
+
""",
|
| 1182 |
+
FALCON_START_DOCSTRING,
|
| 1183 |
+
)
|
| 1184 |
+
class FalconForQuestionAnswering(FalconPreTrainedModel):
|
| 1185 |
def __init__(self, config):
|
| 1186 |
super().__init__(config)
|
| 1187 |
+
self.transformer = FalconModel(config)
|
| 1188 |
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
| 1189 |
|
| 1190 |
# Initialize weights and apply final processing
|
| 1191 |
self.post_init()
|
| 1192 |
|
| 1193 |
+
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
|
| 1194 |
def forward(
|
| 1195 |
self,
|
| 1196 |
input_ids: Optional[torch.LongTensor] = None,
|
| 1197 |
attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
| 1198 |
head_mask: Optional[torch.FloatTensor] = None,
|
| 1199 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1200 |
start_positions: Optional[torch.LongTensor] = None,
|
|
|
|
| 1218 |
outputs = self.transformer(
|
| 1219 |
input_ids,
|
| 1220 |
attention_mask=attention_mask,
|
|
|
|
| 1221 |
head_mask=head_mask,
|
| 1222 |
inputs_embeds=inputs_embeds,
|
| 1223 |
output_attentions=output_attentions,
|
tokenizer_config.json
CHANGED
|
@@ -1,8 +1,12 @@
|
|
| 1 |
{
|
| 2 |
"add_prefix_space": false,
|
| 3 |
"eos_token": "<|endoftext|>",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"model_max_length": 2048,
|
| 5 |
"name_or_path": "tiiuae/falcon_tokenizer",
|
| 6 |
"special_tokens_map_file": null,
|
| 7 |
"tokenizer_class": "PreTrainedTokenizerFast"
|
| 8 |
-
}
|
|
|
|
| 1 |
{
|
| 2 |
"add_prefix_space": false,
|
| 3 |
"eos_token": "<|endoftext|>",
|
| 4 |
+
"model_input_names": [
|
| 5 |
+
"input_ids",
|
| 6 |
+
"attention_mask"
|
| 7 |
+
],
|
| 8 |
"model_max_length": 2048,
|
| 9 |
"name_or_path": "tiiuae/falcon_tokenizer",
|
| 10 |
"special_tokens_map_file": null,
|
| 11 |
"tokenizer_class": "PreTrainedTokenizerFast"
|
| 12 |
+
}
|