Update README.md
Browse files
README.md
CHANGED
|
@@ -28,17 +28,18 @@ import torch
|
|
| 28 |
import torch.nn.functional as F
|
| 29 |
from urllib.request import urlopen
|
| 30 |
from PIL import Image
|
| 31 |
-
from open_clip import create_model_from_pretrained, get_tokenizer
|
| 32 |
|
| 33 |
-
model, preprocess = create_model_from_pretrained('hf-hub:ViT-L-16-SigLIP-384')
|
| 34 |
-
tokenizer = get_tokenizer('hf-hub:ViT-L-16-SigLIP-384')
|
| 35 |
|
| 36 |
image = Image.open(urlopen(
|
| 37 |
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
| 38 |
))
|
| 39 |
image = preprocess(image).unsqueeze(0)
|
| 40 |
|
| 41 |
-
|
|
|
|
| 42 |
|
| 43 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
| 44 |
image_features = model.encode_image(image)
|
|
@@ -46,9 +47,10 @@ with torch.no_grad(), torch.cuda.amp.autocast():
|
|
| 46 |
image_features = F.normalize(image_features, dim=-1)
|
| 47 |
text_features = F.normalize(text_features, dim=-1)
|
| 48 |
|
| 49 |
-
text_probs = (
|
| 50 |
|
| 51 |
-
|
|
|
|
| 52 |
```
|
| 53 |
|
| 54 |
### With `timm` (for image embeddings)
|
|
|
|
| 28 |
import torch.nn.functional as F
|
| 29 |
from urllib.request import urlopen
|
| 30 |
from PIL import Image
|
| 31 |
+
from open_clip import create_model_from_pretrained, get_tokenizer # works on open-clip-torch>=2.23.0, timm>=0.9.8
|
| 32 |
|
| 33 |
+
model, preprocess = create_model_from_pretrained('hf-hub:timm/ViT-L-16-SigLIP-384')
|
| 34 |
+
tokenizer = get_tokenizer('hf-hub:timm/ViT-L-16-SigLIP-384')
|
| 35 |
|
| 36 |
image = Image.open(urlopen(
|
| 37 |
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
| 38 |
))
|
| 39 |
image = preprocess(image).unsqueeze(0)
|
| 40 |
|
| 41 |
+
labels_list = ["a dog", "a cat", "a donut", "a beignet"]
|
| 42 |
+
text = tokenizer(labels_list, context_length=model.context_length)
|
| 43 |
|
| 44 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
| 45 |
image_features = model.encode_image(image)
|
|
|
|
| 47 |
image_features = F.normalize(image_features, dim=-1)
|
| 48 |
text_features = F.normalize(text_features, dim=-1)
|
| 49 |
|
| 50 |
+
text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
|
| 51 |
|
| 52 |
+
zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]]))
|
| 53 |
+
print("Label probabilities: ", zipped_list)
|
| 54 |
```
|
| 55 |
|
| 56 |
### With `timm` (for image embeddings)
|