--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - moonshotai/Kimi-K2-Instruct --- This tiny model is for debugging. It is randomly initialized with the config adapted from [moonshotai/Kimi-K2-Instruct](https://huggingface.co/moonshotai/Kimi-K2-Instruct). ### Example usage: - vLLM ```bash vllm serve tiny-random/kimi-k2 --trust-remote-code ``` - Transformers ```python import torch import transformers model_id = "tiny-random/kimi-k2" pipe = transformers.pipelines.pipeline( 'text-generation', model=model_id, trust_remote_code=True, device_map='cuda', torch_dtype=torch.bfloat16, ) messages = [ {"role": "system", "content": "You are Kimi, an AI assistant created by Moonshot AI."}, {"role": "user", "content": [{"type": "text", "text": "Please give a brief self-introduction."}]}, ] print(pipe(messages, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95)) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, AutoTokenizer, GenerationConfig, set_seed, ) source_model_id = "moonshotai/Kimi-K2-Instruct" save_folder = "/tmp/tiny-random/kimi-k2" Path(save_folder).mkdir(parents=True, exist_ok=True) with open(hf_hub_download(source_model_id, filename='tokenizer_config.json', repo_type='model'), 'r', encoding='utf-8') as f: tokenizer_config_json = json.load(f) tokenizer_config_json['auto_map']['AutoTokenizer'][0] = f'{source_model_id}--' + \ tokenizer_config_json["auto_map"]["AutoTokenizer"][0] with open(f"{save_folder}/tokenizer_config.json", "w", encoding='utf-8') as f: json.dump(tokenizer_config_json, f, indent=2) hf_hub_download(source_model_id, filename='tiktoken.model', repo_type='model', local_dir=save_folder, local_dir_use_symlinks=True, cache_dir='/tmp/') with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) for k, v in config_json['auto_map'].items(): config_json['auto_map'][k] = f'{source_model_id}--{v}' config_json.update({ 'first_k_dense_replace': 1, 'num_hidden_layers': 2, 'hidden_size': 32, 'intermediate_size': 64, 'kv_lora_rank': 384, 'moe_intermediate_size': 64, 'n_routed_experts': 32, 'n_shared_experts': 1, 'num_attention_heads': 1, 'num_experts_per_tok': 8, 'num_key_value_heads': 1, 'q_lora_rank': 32, 'qk_nope_head_dim': 64, 'qk_rope_head_dim': 192, # vllm mla kernel supports 576 only, FA supports head dim <= 256 'v_head_dim': 64, 'tie_word_embeddings': False, }) config_json['rope_scaling']['rope_type'] = 'yarn' del config_json['quantization_config'] with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.2) print(name, p.shape) model.save_pretrained(save_folder) # print(model) with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: config_json = json.load(f) config_json['auto_map'] = {k: v.split('--')[-1] for k, v in config_json['auto_map'].items()} with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) # for python_file in Path(save_folder).glob('*.py'): # python_file.unlink() with open(f'{save_folder}/modeling_deepseek.py', 'r', encoding='utf-8') as f: codes = f.read() codes = codes.replace( "past_length = past_key_values.seen_tokens", "past_length = past_key_values.seen_tokens if hasattr(past_key_values, 'seen_tokens') else past_key_values.get_seq_length() # fix cache api deprecation" ) codes = codes.replace( "max_cache_length = past_key_values.get_max_length()", "max_cache_length = past_key_values.get_max_length() if hasattr(past_key_values, 'get_max_length') else past_key_values.get_max_cache_shape() # fix cache api deprecation" ) with open(f'{save_folder}/modeling_deepseek.py', 'w', encoding='utf-8') as f: f.write(codes) ``` ### Printing the model: ```text DeepseekV3ForCausalLM( (model): DeepseekV3Model( (embed_tokens): Embedding(163840, 32) (layers): ModuleList( (0): DeepseekV3DecoderLayer( (self_attn): DeepseekV3Attention( (q_a_proj): Linear(in_features=32, out_features=32, bias=False) (q_a_layernorm): DeepseekV3RMSNorm() (q_b_proj): Linear(in_features=32, out_features=256, bias=False) (kv_a_proj_with_mqa): Linear(in_features=32, out_features=576, bias=False) (kv_a_layernorm): DeepseekV3RMSNorm() (kv_b_proj): Linear(in_features=384, out_features=128, bias=False) (o_proj): Linear(in_features=64, out_features=32, bias=False) (rotary_emb): DeepseekV3YarnRotaryEmbedding() ) (mlp): DeepseekV3MLP( (gate_proj): Linear(in_features=32, out_features=64, bias=False) (up_proj): Linear(in_features=32, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=32, bias=False) (act_fn): SiLU() ) (input_layernorm): DeepseekV3RMSNorm() (post_attention_layernorm): DeepseekV3RMSNorm() ) (1): DeepseekV3DecoderLayer( (self_attn): DeepseekV3Attention( (q_a_proj): Linear(in_features=32, out_features=32, bias=False) (q_a_layernorm): DeepseekV3RMSNorm() (q_b_proj): Linear(in_features=32, out_features=256, bias=False) (kv_a_proj_with_mqa): Linear(in_features=32, out_features=576, bias=False) (kv_a_layernorm): DeepseekV3RMSNorm() (kv_b_proj): Linear(in_features=384, out_features=128, bias=False) (o_proj): Linear(in_features=64, out_features=32, bias=False) (rotary_emb): DeepseekV3YarnRotaryEmbedding() ) (mlp): DeepseekV3MoE( (experts): ModuleList( (0-31): 32 x DeepseekV3MLP( (gate_proj): Linear(in_features=32, out_features=64, bias=False) (up_proj): Linear(in_features=32, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=32, bias=False) (act_fn): SiLU() ) ) (gate): MoEGate() (shared_experts): DeepseekV3MLP( (gate_proj): Linear(in_features=32, out_features=64, bias=False) (up_proj): Linear(in_features=32, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=32, bias=False) (act_fn): SiLU() ) ) (input_layernorm): DeepseekV3RMSNorm() (post_attention_layernorm): DeepseekV3RMSNorm() ) ) (norm): DeepseekV3RMSNorm() ) (lm_head): Linear(in_features=32, out_features=163840, bias=False) ) ```