tmt3103 commited on
Commit
93b9d90
·
verified ·
1 Parent(s): 6c1bf7a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -15
README.md CHANGED
@@ -1,8 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # BioASQ Yes/No Question Classifier
2
 
3
  ---
4
  ## Model Details
5
-
6
  - **Model architecture:** BERT
7
  - **Pretrained base:** `microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext`
8
  - **Fine-tuned on:** BioASQ Phase B Yes/No question dataset
@@ -10,28 +42,22 @@
10
  - **Input format:** Concatenated question and supporting context passages
11
  - **Output:** Probability distribution over two classes ("Yes", "No")
12
  - **Tokenizer:** Depends on base model (WordPiece or SentencePiece)
13
-
14
  ---
15
  ## Dataset
16
-
17
  - **Name:** BioASQ Task B Phase B Yes/No dataset
18
  - **Domain:** Biomedical question answering
19
  - **Data format:** Each sample consists of a yes/no question paired with one or more relevant context snippets extracted from biomedical abstracts
20
  - **Split:** Standard train/dev split from BioASQ
21
-
22
  ---
23
  ## Performance
24
-
25
  | Metric | Value |
26
  |----------|-----------------------------|
27
- | Accuracy | 91% |
28
- | F1 Score | 89% |
29
 
30
  _Evaluation performed on the BioASQ dev set._
31
-
32
  ---
33
  ## Usage Example
34
-
35
  ```python
36
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
37
  import torch
@@ -51,22 +77,16 @@ question = "Does aspirin reduce inflammation?"
51
  context = "Aspirin is widely used as an anti-inflammatory medication in clinical practice."
52
  print(f"Question: {question}\nPredicted answer: {predict_yesno(question, context)}")
53
  ```
54
-
55
  ---
56
  ## Future Work & Maintenance
57
-
58
  * Retrain regularly with updated BioASQ datasets to maintain relevance.
59
  * Implement uncertainty estimation for safer decision support.
60
  * Expand to multi-class or multi-label biomedical QA tasks.
61
  * Optimize for deployment efficiency and latency reduction.
62
-
63
  ---
64
  ## Contact & Support
65
-
66
  For questions, issues, or collaboration inquiries, please contact:
67
-
68
  * **Author / Maintainer:** \Minh Tien
69
  * **Email:** \[[[email protected]](mailto:[email protected])]
70
  * **GitHub:** [TMTien31](https://github.com/TMTien31)
71
-
72
  ---
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - question-answering
5
+ - biomedical
6
+ - yesno-classification
7
+ - transformer
8
+ - text-classification
9
+ language:
10
+ - en
11
+ datasets:
12
+ - bioasq
13
+ metrics:
14
+ - type: accuracy
15
+ value: 91.44
16
+ - type: f1
17
+ value: 89.36
18
+ model-index:
19
+ - name: BioASQ Yes/No Classifier
20
+ results:
21
+ - task:
22
+ type: question-answering
23
+ name: Yes/No Question Classification
24
+ dataset:
25
+ name: BioASQ Phase B Yes/No Dataset
26
+ type: bioasq
27
+ metrics:
28
+ - type: accuracy
29
+ value: 91.44
30
+ - type: f1
31
+ value: 89.36
32
+ ---
33
+
34
  # BioASQ Yes/No Question Classifier
35
 
36
  ---
37
  ## Model Details
 
38
  - **Model architecture:** BERT
39
  - **Pretrained base:** `microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext`
40
  - **Fine-tuned on:** BioASQ Phase B Yes/No question dataset
 
42
  - **Input format:** Concatenated question and supporting context passages
43
  - **Output:** Probability distribution over two classes ("Yes", "No")
44
  - **Tokenizer:** Depends on base model (WordPiece or SentencePiece)
 
45
  ---
46
  ## Dataset
 
47
  - **Name:** BioASQ Task B Phase B Yes/No dataset
48
  - **Domain:** Biomedical question answering
49
  - **Data format:** Each sample consists of a yes/no question paired with one or more relevant context snippets extracted from biomedical abstracts
50
  - **Split:** Standard train/dev split from BioASQ
 
51
  ---
52
  ## Performance
 
53
  | Metric | Value |
54
  |----------|-----------------------------|
55
+ | Accuracy | 91.44% |
56
+ | F1 Score | 89.36% |
57
 
58
  _Evaluation performed on the BioASQ dev set._
 
59
  ---
60
  ## Usage Example
 
61
  ```python
62
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
63
  import torch
 
77
  context = "Aspirin is widely used as an anti-inflammatory medication in clinical practice."
78
  print(f"Question: {question}\nPredicted answer: {predict_yesno(question, context)}")
79
  ```
 
80
  ---
81
  ## Future Work & Maintenance
 
82
  * Retrain regularly with updated BioASQ datasets to maintain relevance.
83
  * Implement uncertainty estimation for safer decision support.
84
  * Expand to multi-class or multi-label biomedical QA tasks.
85
  * Optimize for deployment efficiency and latency reduction.
 
86
  ---
87
  ## Contact & Support
 
88
  For questions, issues, or collaboration inquiries, please contact:
 
89
  * **Author / Maintainer:** \Minh Tien
90
  * **Email:** \[[[email protected]](mailto:[email protected])]
91
  * **GitHub:** [TMTien31](https://github.com/TMTien31)
 
92
  ---