danielhanchen commited on
Commit
b845724
·
verified ·
1 Parent(s): ad638c5

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ medgemma-27b-text-it-UD-IQ1_S.gguf filter=lfs diff=lfs merge=lfs -text
37
+ medgemma-27b-text-it-UD-Q2_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
38
+ medgemma-27b-text-it-UD-Q3_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
39
+ medgemma-27b-text-it-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
40
+ medgemma-27b-text-it-UD-Q4_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
41
+ medgemma-27b-text-it-UD-Q5_K_XL.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: health-ai-developer-foundations
4
+ license_link: https://developers.google.com/health-ai-developer-foundations/terms
5
+ library_name: transformers
6
+ pipeline_tag: image-text-to-text
7
+ extra_gated_heading: Access MedGemma on Hugging Face
8
+ extra_gated_prompt: >-
9
+ To access MedGemma on Hugging Face, you're required to review and agree to
10
+ [Health AI Developer Foundation's terms of
11
+ use](https://developers.google.com/health-ai-developer-foundations/terms). To
12
+ do this, please ensure you're logged in to Hugging Face and click below.
13
+ Requests are processed immediately.
14
+ extra_gated_button_content: Acknowledge license
15
+ base_model:
16
+ - google/medgemma-27b-text-it
17
+ tags:
18
+ - medical
19
+ - unsloth
20
+ - clinical-reasoning
21
+ - thinking
22
+ ---
23
+ <div>
24
+ <p style="margin-top: 0;margin-bottom: 0;">
25
+ <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
26
+ </p>
27
+ <div style="display: flex; gap: 5px; align-items: center; ">
28
+ <a href="https://github.com/unslothai/unsloth/">
29
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
30
+ </a>
31
+ <a href="https://discord.gg/unsloth">
32
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
33
+ </a>
34
+ <a href="https://docs.unsloth.ai/basics/qwen3-how-to-run-and-fine-tune">
35
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
36
+ </a>
37
+ </div>
38
+ </div>
39
+
40
+
41
+ # MedGemma model card
42
+
43
+ **Model documentation:** [MedGemma](https://developers.google.com/health-ai-developer-foundations/medgemma)
44
+
45
+ **Resources:**
46
+
47
+ * Model on Google Cloud Model Garden: [MedGemma](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/medgemma)
48
+ * Model on Hugging Face: [MedGemma](https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4)
49
+ * GitHub repository (supporting code, Colab notebooks, discussions, and
50
+ issues): [MedGemma](https://github.com/google-health/medgemma)
51
+ * Quick start notebook: [GitHub](https://github.com/google-health/medgemma/blob/main/notebooks/quick_start_with_hugging_face.ipynb)
52
+ * Fine-tuning notebook: [GitHub](https://github.com/google-health/medgemma/blob/main/notebooks/fine_tune_with_hugging_face.ipynb)
53
+ * [Patient Education Demo built using MedGemma](https://huggingface.co/spaces/google/rad_explain)
54
+ * Support: See [Contact](https://developers.google.com/health-ai-developer-foundations/medgemma/get-started.md#contact)
55
+ * License: The use of MedGemma is governed by the [Health AI Developer
56
+ Foundations terms of
57
+ use](https://developers.google.com/health-ai-developer-foundations/terms).
58
+
59
+ **Author:** Google
60
+
61
+ ## Model information
62
+
63
+ This section describes the MedGemma model and how to use it.
64
+
65
+ ### Description
66
+
67
+ MedGemma is a collection of [Gemma 3](https://ai.google.dev/gemma/docs/core)
68
+ variants that are trained for performance on medical text and image
69
+ comprehension. Developers can use MedGemma to accelerate building
70
+ healthcare-based AI applications. MedGemma currently comes in two variants: a 4B
71
+ multimodal version and a 27B text-only version.
72
+
73
+ MedGemma 27B has been trained exclusively on medical text and optimized for
74
+ inference-time computation. MedGemma 27B is only available as an
75
+ instruction-tuned model.
76
+
77
+ MedGemma variants have been evaluated on a range of clinically relevant
78
+ benchmarks to illustrate their baseline performance. These include both open
79
+ benchmark datasets and curated datasets. Developers can fine-tune MedGemma
80
+ variants for improved performance. Consult the Intended Use section below for
81
+ more details.
82
+
83
+ A full technical report will be available soon.
84
+
85
+ ### How to use
86
+
87
+ Below are some example code snippets to help you quickly get started running the
88
+ model locally on GPU. If you want to use the model at scale, we recommend that
89
+ you create a production version using [Model
90
+ Garden](https://cloud.google.com/model-garden).
91
+
92
+ First, install the Transformers library. Gemma 3 is supported starting from
93
+ transformers 4.50.0.
94
+
95
+ ```sh
96
+ $ pip install -U transformers
97
+ ```
98
+
99
+ **Run model with the `pipeline` API**
100
+
101
+ ```python
102
+ from transformers import pipeline
103
+ import torch
104
+
105
+ pipe = pipeline(
106
+ "text-generation",
107
+ model="google/medgemma-27b-text-it",
108
+ torch_dtype=torch.bfloat16,
109
+ device="cuda",
110
+ )
111
+
112
+ messages = [
113
+ {
114
+ "role": "system",
115
+ "content": "You are a helpful medical assistant."
116
+ },
117
+ {
118
+ "role": "user",
119
+ "content": "How do you differentiate bacterial from viral pneumonia?"
120
+ }
121
+ ]
122
+
123
+ output = pipe(text=messages, max_new_tokens=200)
124
+ print(output[0]["generated_text"][-1]["content"])
125
+ ```
126
+
127
+ **Run the model directly**
128
+
129
+ ```python
130
+ # pip install accelerate
131
+ from transformers import AutoTokenizer, AutoModelForCausalLM
132
+ import torch
133
+
134
+ model_id = "google/medgemma-27b-text-it"
135
+
136
+ model = AutoModelForCausalLM.from_pretrained(
137
+ model_id,
138
+ torch_dtype=torch.bfloat16,
139
+ device_map="auto",
140
+ )
141
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
142
+
143
+ messages = [
144
+ {
145
+ "role": "system",
146
+ "content": "You are a helpful medical assistant."
147
+ },
148
+ {
149
+ "role": "user",
150
+ "content": "How do you differentiate bacterial from viral pneumonia?"
151
+ }
152
+ ]
153
+
154
+ inputs = tokenizer.apply_chat_template(
155
+ messages,
156
+ add_generation_prompt=True,
157
+ tokenize=True,
158
+ return_dict=True,
159
+ return_tensors="pt",
160
+ ).to(model.device)
161
+
162
+ input_len = inputs["input_ids"].shape[-1]
163
+
164
+ with torch.inference_mode():
165
+ generation = model.generate(**inputs, max_new_tokens=200, do_sample=False)
166
+ generation = generation[0][input_len:]
167
+
168
+ decoded = tokenizer.decode(generation, skip_special_tokens=True)
169
+ print(decoded)
170
+ ```
171
+
172
+ ### Examples
173
+
174
+ See the following Colab notebooks for examples of how to use MedGemma:
175
+
176
+ * To give the model a quick try, running it locally with weights from Hugging
177
+ Face, see [Quick start notebook in
178
+ Colab](https://colab.research.google.com/github/google-health/medgemma/blob/main/notebooks/quick_start_with_hugging_face.ipynb). Note that you will need to use Colab
179
+ Enterprise to run the 27B model without quantization.
180
+
181
+ * For an example of fine-tuning the model, see the [Fine-tuning notebook in
182
+ Colab](https://colab.research.google.com/github/google-health/medgemma/blob/main/notebooks/fine_tune_with_hugging_face.ipynb).
183
+
184
+ ### Model architecture overview
185
+
186
+ The MedGemma model is built based on [Gemma 3](https://ai.google.dev/gemma/) and
187
+ uses the same decoder-only transformer architecture as Gemma 3. To read more
188
+ about the architecture, consult the Gemma 3 [model
189
+ card](https://ai.google.dev/gemma/docs/core/model_card_3).
190
+
191
+ ### Technical specifications
192
+
193
+ * **Model type**: Decoder-only Transformer architecture, see the [Gemma 3
194
+ technical
195
+ report](https://storage.googleapis.com/deepmind-media/gemma/Gemma3Report.pdf)
196
+ * **Modalities**: **4B**: Text, vision; **27B**: Text only
197
+ * **Attention mechanism**: Utilizes grouped-query attention (GQA)
198
+ * **Context length**: Supports long context, at least 128K tokens
199
+ * **Key publication**: Coming soon
200
+ * **Model created**: May 20, 2025
201
+ * **Model version**: 1.0.0
202
+
203
+ ### Citation
204
+
205
+ A technical report is coming soon. In the meantime, if you publish using this
206
+ model, please cite the Hugging Face model page:
207
+
208
+ ```none
209
+ @misc{medgemma-hf,
210
+ author = {Google},
211
+ title = {MedGemma Hugging Face}
212
+ howpublished = {\url{https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4}},
213
+ year = {2025},
214
+ note = {Accessed: [Insert Date Accessed, e.g., 2025-05-20]}
215
+ }
216
+ ```
217
+
218
+ ### Inputs and outputs
219
+
220
+ **Input**:
221
+
222
+ * Text string, such as a question or prompt
223
+ * Total input length of 128K tokens
224
+
225
+ **Output**:
226
+
227
+ * Generated text in response to the input, such as an answer to a question,
228
+ analysis of image content, or a summary of a document
229
+ * Total output length of 8192 tokens
230
+
231
+ ### Performance and validation
232
+
233
+ MedGemma was evaluated across a range of different multimodal classification,
234
+ report generation, visual question answering, and text-based tasks.
235
+
236
+ ### Key performance metrics
237
+
238
+ #### Text evaluations
239
+
240
+ MedGemma 4B and text-only MedGemma 27B were evaluated across a range of
241
+ text-only benchmarks for medical knowledge and reasoning.
242
+
243
+ The MedGemma models outperform their respective base Gemma models across all
244
+ tested text-only health benchmarks.
245
+
246
+ | Metric | MedGemma 27B | Gemma 3 27B | MedGemma 4B | Gemma 3 4B |
247
+ | :---- | :---- | :---- | :---- | :---- |
248
+ | MedQA (4-op) | 89.8 (best-of-5) 87.7 (0-shot) | 74.9 | 64.4 | 50.7 |
249
+ | MedMCQA | 74.2 | 62.6 | 55.7 | 45.4 |
250
+ | PubMedQA | 76.8 | 73.4 | 73.4 | 68.4 |
251
+ | MMLU Med (text only) | 87.0 | 83.3 | 70.0 | 67.2 |
252
+ | MedXpertQA (text only) | 26.7 | 15.7 | 14.2 | 11.6 |
253
+ | AfriMed-QA | 84.0 | 72.0 | 52.0 | 48.0 |
254
+
255
+ For all MedGemma 27B results, [test-time
256
+ scaling](https://arxiv.org/abs/2501.19393) is used to improve performance.
257
+
258
+ ### Ethics and safety evaluation
259
+
260
+ #### Evaluation approach
261
+
262
+ Our evaluation methods include structured evaluations and internal red-teaming
263
+ testing of relevant content policies. Red-teaming was conducted by a number of
264
+ different teams, each with different goals and human evaluation metrics. These
265
+ models were evaluated against a number of different categories relevant to
266
+ ethics and safety, including:
267
+
268
+ * **Child safety**: Evaluation of text-to-text and image-to-text prompts
269
+ covering child safety policies, including child sexual abuse and
270
+ exploitation.
271
+ * **Content safety:** Evaluation of text-to-text and image-to-text prompts
272
+ covering safety policies, including harassment, violence and gore, and hate
273
+ speech.
274
+ * **Representational harms**: Evaluation of text-to-text and image-to-text
275
+ prompts covering safety policies, including bias, stereotyping, and harmful
276
+ associations or inaccuracies.
277
+ * **General medical harms:** Evaluation of text-to-text and image-to-text
278
+ prompts covering safety policies, including information quality and harmful
279
+ associations or inaccuracies.
280
+
281
+ In addition to development level evaluations, we conduct "assurance evaluations"
282
+ which are our "arms-length" internal evaluations for responsibility governance
283
+ decision making. They are conducted separately from the model development team,
284
+ to inform decision making about release. High-level findings are fed back to the
285
+ model team, but prompt sets are held out to prevent overfitting and preserve the
286
+ results' ability to inform decision making. Notable assurance evaluation results
287
+ are reported to our Responsibility & Safety Council as part of release review.
288
+
289
+ #### Evaluation results
290
+
291
+ For all areas of safety testing, we saw safe levels of performance across the
292
+ categories of child safety, content safety, and representational harms. All
293
+ testing was conducted without safety filters to evaluate the model capabilities
294
+ and behaviors. For text-to-text, image-to-text, and audio-to-text, and across
295
+ both MedGemma model sizes, the model produced minimal policy violations. A
296
+ limitation of our evaluations was that they included primarily English language
297
+ prompts.
298
+
299
+ ## Data card
300
+
301
+ ### Dataset overview
302
+
303
+ #### Training
304
+
305
+ The base Gemma models are pre-trained on a large corpus of text and code data.
306
+ MedGemma 4B utilizes a [SigLIP](https://arxiv.org/abs/2303.15343) image encoder
307
+ that has been specifically pre-trained on a variety of de-identified medical
308
+ data, including radiology images, histopathology images, ophthalmology images,
309
+ and dermatology images. Its LLM component is trained on a diverse set of medical
310
+ data, including medical text relevant to radiology images, chest-x rays,
311
+ histopathology patches, ophthalmology images and dermatology images.
312
+
313
+ #### Evaluation
314
+
315
+ MedGemma models have been evaluated on a comprehensive set of clinically
316
+ relevant benchmarks, including over 22 datasets across 5 different tasks and 6
317
+ medical image modalities. These include both open benchmark datasets and curated
318
+ datasets, with a focus on expert human evaluations for tasks like CXR report
319
+ generation and radiology VQA.
320
+
321
+ #### Source
322
+
323
+ MedGemma utilizes a combination of public and private datasets.
324
+
325
+ This model was trained on diverse public datasets including MIMIC-CXR (chest
326
+ X-rays and reports), Slake-VQA (multimodal medical images and questions),
327
+ PAD-UFES-20 (skin lesion images and data), SCIN (dermatology images), TCGA
328
+ (cancer genomics data), CAMELYON (lymph node histopathology images), PMC-OA
329
+ (biomedical literature with images), and Mendeley Digital Knee X-Ray (knee
330
+ X-rays).
331
+
332
+ Additionally, multiple diverse proprietary datasets were licensed and
333
+ incorporated (described next).
334
+
335
+ ### Data Ownership and Documentation
336
+
337
+ * [Mimic-CXR](https://physionet.org/content/mimic-cxr/2.1.0/): MIT Laboratory
338
+ for Computational Physiology and Beth Israel Deaconess Medical Center
339
+ (BIDMC).
340
+ * [Slake-VQA](https://www.med-vqa.com/slake/): The Hong Kong Polytechnic
341
+ University (PolyU), with collaborators including West China Hospital of
342
+ Sichuan University and Sichuan Academy of Medical Sciences / Sichuan
343
+ Provincial People's Hospital.
344
+ * [PAD-UFES-20](https://pmc.ncbi.nlm.nih.gov/articles/PMC7479321/): Federal
345
+ University of Espírito Santo (UFES), Brazil, through its Dermatological and
346
+ Surgical Assistance Program (PAD).
347
+ * [SCIN](https://github.com/google-research-datasets/scin): A collaboration
348
+ between Google Health and Stanford Medicine.
349
+ * [TCGA](https://portal.gdc.cancer.gov/) (The Cancer Genome Atlas): A joint
350
+ effort of National Cancer Institute and National Human Genome Research
351
+ Institute. Data from TCGA are available via the Genomic Data Commons (GDC)
352
+ * [CAMELYON](https://camelyon17.grand-challenge.org/Data/): The data was
353
+ collected from Radboud University Medical Center and University Medical
354
+ Center Utrecht in the Netherlands.
355
+ * [PMC-OA (PubMed Central Open Access
356
+ Subset)](https://catalog.data.gov/dataset/pubmed-central-open-access-subset-pmc-oa):
357
+ Maintained by the National Library of Medicine (NLM) and National Center for
358
+ Biotechnology Information (NCBI), which are part of the NIH.
359
+ * [MedQA](https://arxiv.org/pdf/2009.13081): This dataset was created by a
360
+ team of researchers led by Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung
361
+ Weng, Hanyi Fang, and Peter Szolovits
362
+ * [Mendeley Digital Knee
363
+ X-Ray](https://data.mendeley.com/datasets/t9ndx37v5h/1): This dataset is
364
+ from Rani Channamma University, and is hosted on Mendeley Data.
365
+ * [AfriMed-QA](https://afrimedqa.com/): This data was developed and led by
366
+ multiple collaborating organizations and researchers include key
367
+ contributors: Intron Health, SisonkeBiotik, BioRAMP, Georgia Institute of
368
+ Technology, and MasakhaneNLP.
369
+ * [VQA-RAD](https://www.nature.com/articles/sdata2018251): This dataset was
370
+ created by a research team led by Jason J. Lau, Soumya Gayen, Asma Ben
371
+ Abacha, and Dina Demner-Fushman and their affiliated institutions (the US
372
+ National Library of Medicine and National Institutes of Health)
373
+ * [MedExpQA](https://www.sciencedirect.com/science/article/pii/S0933365724001805):
374
+ This dataset was created by researchers at the HiTZ Center (Basque Center
375
+ for Language Technology and Artificial Intelligence).
376
+ * [MedXpertQA](https://huggingface.co/datasets/TsinghuaC3I/MedXpertQA): This
377
+ dataset was developed by researchers at Tsinghua University (Beijing, China)
378
+ and Shanghai Artificial Intelligence Laboratory (Shanghai, China).
379
+
380
+ In addition to the public datasets listed above, MedGemma was also trained on
381
+ de-identified datasets licensed for research or collected internally at Google
382
+ from consented participants.
383
+
384
+ * Radiology dataset 1: De-identified dataset of different CT studies across
385
+ body parts from a US-based radiology outpatient diagnostic center network.
386
+ * Ophthalmology dataset 1: De-identified dataset of fundus images from
387
+ diabetic retinopathy screening.
388
+ * Dermatology dataset 1: De-identified dataset of teledermatology skin
389
+ condition images (both clinical and dermatoscopic) from Colombia.
390
+ * Dermatology dataset 2: De-identified dataset of skin cancer images (both
391
+ clinical and dermatoscopic) from Australia.
392
+ * Dermatology dataset 3: De-identified dataset of non-diseased skin images
393
+ from an internal data collection effort.
394
+ * Pathology dataset 1: De-identified dataset of histopathology H&E whole slide
395
+ images created in collaboration with an academic research hospital and
396
+ biobank in Europe. Comprises de-identified colon, prostate, and lymph nodes.
397
+ * Pathology dataset 2: De-identified dataset of lung histopathology H&E and
398
+ IHC whole slide images created by a commercial biobank in the United States.
399
+ * Pathology dataset 3: De-identified dataset of prostate and lymph node H&E
400
+ and IHC histopathology whole slide images created by a contract research
401
+ organization in the United States.
402
+ * Pathology dataset 4: De-identified dataset of histopathology, predominantly
403
+ H\&E whole slide images created in collaboration with a large, tertiary
404
+ teaching hospital in the United States. Comprises a diverse set of tissue
405
+ and stain types, predominantly H&E.
406
+
407
+ ### Data citation
408
+
409
+ * MIMIC-CXR Johnson, A., Pollard, T., Mark, R., Berkowitz, S., & Horng, S.
410
+ (2024). MIMIC-CXR Database (version 2.1.0). PhysioNet.
411
+ * Johnson, A.E.W., Pollard, T.J., Berkowitz, S.J. et al. [MIMIC-CXR, a
412
+ de-identified publicly available database of chest radiographs with
413
+ free-text reports. Sci Data 6, 317
414
+ (2019).](https://doi.org/10.1038/s41597-019-0322-0)
415
+ * Available on Physionet Goldberger, A., Amaral, L., Glass, L., Hausdorff, J.,
416
+ Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). [PhysioBank,
417
+ PhysioToolkit, and PhysioNet: Components of a new research resource for
418
+ complex physiologic signals. Circulation \[Online\]. 101 (23), pp.
419
+ E215–e220.](https://pubmed.ncbi.nlm.nih.gov/10851218/)
420
+ * Bo Liu, Li-Ming Zhan, etc. [SLAKE: A Semantically-Labeled Knowledge-Enhanced
421
+ Dataset for Medical Visual Question
422
+ Answering](https://arxiv.org/abs/2102.09542).
423
+ * [PAD-UFES-20: A skin lesion dataset composed of patient data and clinical
424
+ images collected from
425
+ smartphones](https://pmc.ncbi.nlm.nih.gov/articles/PMC7479321/)
426
+ * [The Cancer Genome Atlas Program (TCGA)](https://www.cancer.gov/ccg/research/genome-sequencing/tcga)
427
+ * Babak Ehteshami Bejnordi, etc.: [Diagnostic Assessment of Deep Learning
428
+ Algorithms for Detection of Lymph Node Metastases in Women With Breast
429
+ Cancer](https://jamanetwork.com/journals/jama/fullarticle/2665774)
430
+ * MedQA: [https://arxiv.org/abs/2009.13081](https://arxiv.org/abs/2009.13081)
431
+ * Mendeley Digital Knee X-Ray: Gornale, Shivanand; Patravali, Pooja (2020),
432
+ "Digital Knee X-ray Images", Mendeley Data, V1, doi: 10.17632/t9ndx37v5h.1
433
+ * AfriMed-QA: [https://arxiv.org/abs/2411.15640](https://arxiv.org/abs/2411.15640)
434
+ * VQA-RAD: [Lau, J., Gayen, S., Ben Abacha, A. et al. A dataset of clinically
435
+ generated visual questions and answers about radiology images. Sci Data 5,
436
+ 180251 (2018).
437
+ https://doi.org/10.1038/sdata.2018.251](https://doi.org/10.1038/sdata.2018.251)
438
+ * [MedExpQA: Multilingual benchmarking of Large Language Models for
439
+ Medical Question
440
+ Answering](https://www.sciencedirect.com/science/article/pii/S0933365724001805)
441
+ * MedXpertQA: [arXiv:2501.18362v2](https://arxiv.org/abs/2501.18362)
442
+
443
+ ### De-identification/anonymization:
444
+
445
+ Google and partnerships utilize datasets that have been rigorously anonymized or
446
+ de-identified to ensure the protection of individual research participants and
447
+ patient privacy
448
+
449
+ ## Implementation information
450
+
451
+ Details about the model internals.
452
+
453
+ ### Software
454
+
455
+ Training was done using [JAX](https://github.com/jax-ml/jax).
456
+
457
+ JAX allows researchers to take advantage of the latest generation of hardware,
458
+ including TPUs, for faster and more efficient training of large models.
459
+
460
+ ## Use and limitations
461
+
462
+ ### Intended use
463
+
464
+ MedGemma is an open multimodal generative AI model intended to be used as a
465
+ starting point that enables more efficient development of downstream healthcare
466
+ applications involving medical text and images. MedGemma is intended for
467
+ developers in the life sciences and healthcare space. Developers are responsible
468
+ for training, adapting and making meaningful changes to MedGemma to accomplish
469
+ their specific intended use. MedGemma models can be fine-tuned by developers
470
+ using their own proprietary data for their specific tasks or solutions.
471
+
472
+ MedGemma is based on Gemma 3 and has been further trained on medical images and
473
+ text. MedGemma enables further development in any medical context (image and
474
+ textual), however the model was pre-trained using chest X-ray, pathology,
475
+ dermatology, and fundus images. Examples of tasks within MedGemma's training
476
+ include visual question answering pertaining to medical images, such as
477
+ radiographs, or providing answers to textual medical questions. Full details of
478
+ all the tasks MedGemma has been evaluated can be found in an upcoming technical
479
+ report.
480
+
481
+ ### Benefits
482
+
483
+ * Provides strong baseline medical image and text comprehension for models of
484
+ its size.
485
+ * This strong performance makes it efficient to adapt for downstream
486
+ healthcare-based use cases, compared to models of similar size without
487
+ medical data pre-training.
488
+ * This adaptation may involve prompt engineering, grounding, agentic
489
+ orchestration or fine-tuning depending on the use case, baseline validation
490
+ requirements, and desired performance characteristics.
491
+
492
+ ### Limitations
493
+
494
+ MedGemma is not intended to be used without appropriate validation, adaptation
495
+ and/or making meaningful modification by developers for their specific use case.
496
+ The outputs generated by MedGemma are not intended to directly inform clinical
497
+ diagnosis, patient management decisions, treatment recommendations, or any other
498
+ direct clinical practice applications. Performance benchmarks highlight baseline
499
+ capabilities on relevant benchmarks, but even for image and text domains that
500
+ constitute a substantial portion of training data, inaccurate model output is
501
+ possible. All outputs from MedGemma should be considered preliminary and require
502
+ independent verification, clinical correlation, and further investigation
503
+ through established research and development methodologies.
504
+
505
+ MedGemma's multimodal capabilities have been primarily evaluated on single-image
506
+ tasks. MedGemma has not been evaluated in use cases that involve comprehension
507
+ of multiple images.
508
+
509
+ MedGemma has not been evaluated or optimized for multi-turn applications.
510
+
511
+ MedGemma's training may make it more sensitive to the specific prompt used than
512
+ Gemma 3.
513
+
514
+ When adapting MedGemma developer should consider the following:
515
+
516
+ * **Bias in validation data:** As with any research, developers should ensure
517
+ that any downstream application is validated to understand performance using
518
+ data that is appropriately representative of the intended use setting for
519
+ the specific application (e.g., age, sex, gender, condition, imaging device,
520
+ etc).
521
+ * **Data contamination concerns**: When evaluating the generalization
522
+ capabilities of a large model like MedGemma in a medical context, there is a
523
+ risk of data contamination, where the model might have inadvertently seen
524
+ related medical information during its pre-training, potentially
525
+ overestimating its true ability to generalize to novel medical concepts.
526
+ Developers should validate MedGemma on datasets not publicly available or
527
+ otherwise made available to non-institutional researchers to mitigate this
528
+ risk.
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Gemma3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attn_logit_softcapping": null,
8
+ "bos_token_id": 2,
9
+ "cache_implementation": "hybrid",
10
+ "eos_token_id": 106,
11
+ "final_logit_softcapping": null,
12
+ "head_dim": 128,
13
+ "hidden_activation": "gelu_pytorch_tanh",
14
+ "hidden_size": 5376,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 21504,
17
+ "max_position_embeddings": 131072,
18
+ "model_type": "gemma3_text",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 62,
21
+ "num_key_value_heads": 16,
22
+ "pad_token_id": 0,
23
+ "query_pre_attn_scalar": 168,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_local_base_freq": 10000,
26
+ "rope_scaling": {
27
+ "factor": 8.0,
28
+ "rope_type": "linear"
29
+ },
30
+ "rope_theta": 1000000,
31
+ "sliding_window": 1024,
32
+ "sliding_window_pattern": 6,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.51.3",
35
+ "unsloth_fixed": true,
36
+ "use_cache": true,
37
+ "vocab_size": 262144
38
+ }
medgemma-27b-text-it-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:383b1c414d3f2f1a9c577a61e623d29a4ed4f7834f60b9e5412f5ff4e8aaf080
3
+ size 16546405376
medgemma-27b-text-it-UD-IQ1_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ce3c42b90f93741e080edf26f6cfe3313cba36f618a8d9f165ac62fdf6a5c29
3
+ size 6506101760
medgemma-27b-text-it-UD-Q2_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87eb60811b6d426421ed9d89ef60fa1dff72e4d54d5479e8f123f005bb0e7c0e
3
+ size 10680415232
medgemma-27b-text-it-UD-Q3_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28e62cbe89b1ae3442c51a7f6a37883c2bb3037db5f34e6bc4288f5394443d55
3
+ size 13704608768
medgemma-27b-text-it-UD-Q4_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:665719f41bdb9b84e2e730d4e8be121044f80e973056d3127eb8a986ac808f89
3
+ size 16826043392
medgemma-27b-text-it-UD-Q5_K_XL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22b8f15e0f880929e0c3bc442453e5270899f7985032d515383ac85232c1365f
3
+ size 19321195520