Initial commit with copied model
Browse files- .gitattributes +1 -0
- added_tokens.json +29 -0
- config.json +35 -0
- generation_config.json +6 -0
- global_step3290/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step3290/mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- rng_state_0.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +25 -0
- tokenizer.json +3 -0
- tokenizer_config.json +249 -0
- trainer_state.json +1222 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</think>": 151668,
|
| 3 |
+
"</tool_call>": 151658,
|
| 4 |
+
"</tool_response>": 151666,
|
| 5 |
+
"<think>": 151667,
|
| 6 |
+
"<tool_call>": 151657,
|
| 7 |
+
"<tool_response>": 151665,
|
| 8 |
+
"<|box_end|>": 151649,
|
| 9 |
+
"<|box_start|>": 151648,
|
| 10 |
+
"<|endoftext|>": 151643,
|
| 11 |
+
"<|file_sep|>": 151664,
|
| 12 |
+
"<|fim_middle|>": 151660,
|
| 13 |
+
"<|fim_pad|>": 151662,
|
| 14 |
+
"<|fim_prefix|>": 151659,
|
| 15 |
+
"<|fim_suffix|>": 151661,
|
| 16 |
+
"<|im_end|>": 151645,
|
| 17 |
+
"<|im_start|>": 151644,
|
| 18 |
+
"<|image_pad|>": 151655,
|
| 19 |
+
"<|object_ref_end|>": 151647,
|
| 20 |
+
"<|object_ref_start|>": 151646,
|
| 21 |
+
"<|quad_end|>": 151651,
|
| 22 |
+
"<|quad_start|>": 151650,
|
| 23 |
+
"<|repo_name|>": 151663,
|
| 24 |
+
"<|video_pad|>": 151656,
|
| 25 |
+
"<|vision_end|>": 151653,
|
| 26 |
+
"<|vision_pad|>": 151654,
|
| 27 |
+
"<|vision_start|>": 151652,
|
| 28 |
+
"[PAD]": 151669
|
| 29 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Qwen3ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151643,
|
| 9 |
+
"head_dim": 128,
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 1024,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 3072,
|
| 14 |
+
"max_position_embeddings": 32768,
|
| 15 |
+
"max_window_layers": 28,
|
| 16 |
+
"model_type": "qwen3",
|
| 17 |
+
"num_attention_heads": 16,
|
| 18 |
+
"num_hidden_layers": 28,
|
| 19 |
+
"num_key_value_heads": 8,
|
| 20 |
+
"parallel_config": {
|
| 21 |
+
"parallel_style": "none",
|
| 22 |
+
"pipeline_parallel": 1,
|
| 23 |
+
"tensor_parallel": 1
|
| 24 |
+
},
|
| 25 |
+
"rms_norm_eps": 1e-06,
|
| 26 |
+
"rope_scaling": null,
|
| 27 |
+
"rope_theta": 1000000,
|
| 28 |
+
"sliding_window": null,
|
| 29 |
+
"tie_word_embeddings": true,
|
| 30 |
+
"torch_dtype": "bfloat16",
|
| 31 |
+
"transformers_version": "4.51.3",
|
| 32 |
+
"use_cache": false,
|
| 33 |
+
"use_sliding_window": false,
|
| 34 |
+
"vocab_size": 151936
|
| 35 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"eos_token_id": 151643,
|
| 4 |
+
"max_new_tokens": 2048,
|
| 5 |
+
"transformers_version": "4.51.3"
|
| 6 |
+
}
|
global_step3290/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3a624e108def6d9b6e5f79d65e016767c64279fa06340d33ce8c9aaac122b507
|
| 3 |
+
size 894080304
|
global_step3290/mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0e07ed15aebd22a73ecc47b886681de6325383497b853fb19bd527d5a8632329
|
| 3 |
+
size 1192188984
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step3290
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bf80bd478e6f9fa957d71bd9ffb37f7be681d3aff710158e1e7c65b64e847c34
|
| 3 |
+
size 1503300328
|
rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:92cc13315f24c28015d695b6cde08bb1cd6fea4cbc435998485ed6fbe4c91285
|
| 3 |
+
size 15024
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8594aab587aa802e1e2bcfff77510f83c4ab060c0fa208567fb10200d8e606f9
|
| 3 |
+
size 1064
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": "<|endoftext|>",
|
| 18 |
+
"pad_token": {
|
| 19 |
+
"content": "[PAD]",
|
| 20 |
+
"lstrip": false,
|
| 21 |
+
"normalized": false,
|
| 22 |
+
"rstrip": false,
|
| 23 |
+
"single_word": false
|
| 24 |
+
}
|
| 25 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ea50a7b472ec8fecfd70e281c476f75a704a92a72cbeb4efbb880e1a9e3a67d
|
| 3 |
+
size 11422836
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "<tool_response>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"151666": {
|
| 190 |
+
"content": "</tool_response>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"151667": {
|
| 198 |
+
"content": "<think>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"151668": {
|
| 206 |
+
"content": "</think>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
},
|
| 213 |
+
"151669": {
|
| 214 |
+
"content": "[PAD]",
|
| 215 |
+
"lstrip": false,
|
| 216 |
+
"normalized": false,
|
| 217 |
+
"rstrip": false,
|
| 218 |
+
"single_word": false,
|
| 219 |
+
"special": true
|
| 220 |
+
}
|
| 221 |
+
},
|
| 222 |
+
"additional_special_tokens": [
|
| 223 |
+
"<|im_start|>",
|
| 224 |
+
"<|im_end|>",
|
| 225 |
+
"<|object_ref_start|>",
|
| 226 |
+
"<|object_ref_end|>",
|
| 227 |
+
"<|box_start|>",
|
| 228 |
+
"<|box_end|>",
|
| 229 |
+
"<|quad_start|>",
|
| 230 |
+
"<|quad_end|>",
|
| 231 |
+
"<|vision_start|>",
|
| 232 |
+
"<|vision_end|>",
|
| 233 |
+
"<|vision_pad|>",
|
| 234 |
+
"<|image_pad|>",
|
| 235 |
+
"<|video_pad|>"
|
| 236 |
+
],
|
| 237 |
+
"bos_token": null,
|
| 238 |
+
"chat_template": "{% for message in messages %}\n<|im_start|>{{ message.role }}\n{{ message.content }}<|im_end|>\n{% endfor %}\n{% if add_generation_prompt %}\n<|im_start|>assistant\n{% endif %}",
|
| 239 |
+
"clean_up_tokenization_spaces": false,
|
| 240 |
+
"eos_token": "<|endoftext|>",
|
| 241 |
+
"errors": "replace",
|
| 242 |
+
"extra_special_tokens": {},
|
| 243 |
+
"model_max_length": 131072,
|
| 244 |
+
"pad_token": "[PAD]",
|
| 245 |
+
"padding_side": "right",
|
| 246 |
+
"split_special_tokens": false,
|
| 247 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 248 |
+
"unk_token": null
|
| 249 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,1222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": null,
|
| 3 |
+
"best_metric": null,
|
| 4 |
+
"best_model_checkpoint": null,
|
| 5 |
+
"epoch": 0.9999240179317681,
|
| 6 |
+
"eval_steps": 160,
|
| 7 |
+
"global_step": 3290,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0.0003039282729275891,
|
| 14 |
+
"grad_norm": 5.229409217834473,
|
| 15 |
+
"learning_rate": 0.0,
|
| 16 |
+
"loss": 1.2164,
|
| 17 |
+
"mean_token_accuracy": 0.7386507540941238,
|
| 18 |
+
"num_tokens": 87378.0,
|
| 19 |
+
"step": 1
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"epoch": 0.007598206823189727,
|
| 23 |
+
"grad_norm": 4.077776908874512,
|
| 24 |
+
"learning_rate": 1.2121212121212122e-06,
|
| 25 |
+
"loss": 1.3951,
|
| 26 |
+
"mean_token_accuracy": 0.7043480854481459,
|
| 27 |
+
"num_tokens": 2555177.0,
|
| 28 |
+
"step": 25
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"epoch": 0.015196413646379454,
|
| 32 |
+
"grad_norm": 3.2261855602264404,
|
| 33 |
+
"learning_rate": 2.474747474747475e-06,
|
| 34 |
+
"loss": 1.3716,
|
| 35 |
+
"mean_token_accuracy": 0.7009463596343994,
|
| 36 |
+
"num_tokens": 5171296.0,
|
| 37 |
+
"step": 50
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.02279462046956918,
|
| 41 |
+
"grad_norm": 1.221886396408081,
|
| 42 |
+
"learning_rate": 3.737373737373738e-06,
|
| 43 |
+
"loss": 1.2697,
|
| 44 |
+
"mean_token_accuracy": 0.7165025919675827,
|
| 45 |
+
"num_tokens": 7791520.0,
|
| 46 |
+
"step": 75
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"epoch": 0.030392827292758908,
|
| 50 |
+
"grad_norm": 1.2025024890899658,
|
| 51 |
+
"learning_rate": 5e-06,
|
| 52 |
+
"loss": 1.2611,
|
| 53 |
+
"mean_token_accuracy": 0.7154420650005341,
|
| 54 |
+
"num_tokens": 10428214.0,
|
| 55 |
+
"step": 100
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"epoch": 0.03799103411594864,
|
| 59 |
+
"grad_norm": 1.2315771579742432,
|
| 60 |
+
"learning_rate": 4.960827326856785e-06,
|
| 61 |
+
"loss": 1.2618,
|
| 62 |
+
"mean_token_accuracy": 0.7133645015954971,
|
| 63 |
+
"num_tokens": 13035315.0,
|
| 64 |
+
"step": 125
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"epoch": 0.04558924093913836,
|
| 68 |
+
"grad_norm": 1.1814574003219604,
|
| 69 |
+
"learning_rate": 4.92165465371357e-06,
|
| 70 |
+
"loss": 1.2494,
|
| 71 |
+
"mean_token_accuracy": 0.7152758586406708,
|
| 72 |
+
"num_tokens": 15555229.0,
|
| 73 |
+
"step": 150
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.05318744776232809,
|
| 77 |
+
"grad_norm": 1.0967789888381958,
|
| 78 |
+
"learning_rate": 4.882481980570354e-06,
|
| 79 |
+
"loss": 1.1929,
|
| 80 |
+
"mean_token_accuracy": 0.7268460893630981,
|
| 81 |
+
"num_tokens": 18110892.0,
|
| 82 |
+
"step": 175
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"epoch": 0.060785654585517816,
|
| 86 |
+
"grad_norm": 1.38316011428833,
|
| 87 |
+
"learning_rate": 4.843309307427139e-06,
|
| 88 |
+
"loss": 1.2274,
|
| 89 |
+
"mean_token_accuracy": 0.7177506709098815,
|
| 90 |
+
"num_tokens": 20638485.0,
|
| 91 |
+
"step": 200
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"epoch": 0.06838386140870754,
|
| 95 |
+
"grad_norm": 1.1938471794128418,
|
| 96 |
+
"learning_rate": 4.804136634283924e-06,
|
| 97 |
+
"loss": 1.2036,
|
| 98 |
+
"mean_token_accuracy": 0.7217154312133789,
|
| 99 |
+
"num_tokens": 23186502.0,
|
| 100 |
+
"step": 225
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.07598206823189728,
|
| 104 |
+
"grad_norm": 1.2482621669769287,
|
| 105 |
+
"learning_rate": 4.764963961140708e-06,
|
| 106 |
+
"loss": 1.1962,
|
| 107 |
+
"mean_token_accuracy": 0.7237263369560242,
|
| 108 |
+
"num_tokens": 25737398.0,
|
| 109 |
+
"step": 250
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"epoch": 0.083580275055087,
|
| 113 |
+
"grad_norm": 0.9959760308265686,
|
| 114 |
+
"learning_rate": 4.725791287997493e-06,
|
| 115 |
+
"loss": 1.1908,
|
| 116 |
+
"mean_token_accuracy": 0.7237645584344864,
|
| 117 |
+
"num_tokens": 28386635.0,
|
| 118 |
+
"step": 275
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"epoch": 0.09117848187827672,
|
| 122 |
+
"grad_norm": 1.1848807334899902,
|
| 123 |
+
"learning_rate": 4.686618614854278e-06,
|
| 124 |
+
"loss": 1.1968,
|
| 125 |
+
"mean_token_accuracy": 0.7229974180459976,
|
| 126 |
+
"num_tokens": 30963803.0,
|
| 127 |
+
"step": 300
|
| 128 |
+
},
|
| 129 |
+
{
|
| 130 |
+
"epoch": 0.09877668870146646,
|
| 131 |
+
"grad_norm": 1.3056175708770752,
|
| 132 |
+
"learning_rate": 4.647445941711063e-06,
|
| 133 |
+
"loss": 1.1937,
|
| 134 |
+
"mean_token_accuracy": 0.7229531377553939,
|
| 135 |
+
"num_tokens": 33594219.0,
|
| 136 |
+
"step": 325
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"epoch": 0.10637489552465618,
|
| 140 |
+
"grad_norm": 1.135485053062439,
|
| 141 |
+
"learning_rate": 4.608273268567847e-06,
|
| 142 |
+
"loss": 1.1815,
|
| 143 |
+
"mean_token_accuracy": 0.724581116437912,
|
| 144 |
+
"num_tokens": 36131516.0,
|
| 145 |
+
"step": 350
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"epoch": 0.11397310234784591,
|
| 149 |
+
"grad_norm": 0.9885596036911011,
|
| 150 |
+
"learning_rate": 4.569100595424632e-06,
|
| 151 |
+
"loss": 1.1588,
|
| 152 |
+
"mean_token_accuracy": 0.7286039453744888,
|
| 153 |
+
"num_tokens": 38679243.0,
|
| 154 |
+
"step": 375
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"epoch": 0.12157130917103563,
|
| 158 |
+
"grad_norm": 0.9995855093002319,
|
| 159 |
+
"learning_rate": 4.529927922281417e-06,
|
| 160 |
+
"loss": 1.1754,
|
| 161 |
+
"mean_token_accuracy": 0.7271614295244216,
|
| 162 |
+
"num_tokens": 41253914.0,
|
| 163 |
+
"step": 400
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.12916951599422535,
|
| 167 |
+
"grad_norm": 0.9095941185951233,
|
| 168 |
+
"learning_rate": 4.490755249138202e-06,
|
| 169 |
+
"loss": 1.2398,
|
| 170 |
+
"mean_token_accuracy": 0.7160615402460099,
|
| 171 |
+
"num_tokens": 43939124.0,
|
| 172 |
+
"step": 425
|
| 173 |
+
},
|
| 174 |
+
{
|
| 175 |
+
"epoch": 0.1367677228174151,
|
| 176 |
+
"grad_norm": 1.0696874856948853,
|
| 177 |
+
"learning_rate": 4.451582575994986e-06,
|
| 178 |
+
"loss": 1.183,
|
| 179 |
+
"mean_token_accuracy": 0.7253994250297546,
|
| 180 |
+
"num_tokens": 46572312.0,
|
| 181 |
+
"step": 450
|
| 182 |
+
},
|
| 183 |
+
{
|
| 184 |
+
"epoch": 0.14436592964060482,
|
| 185 |
+
"grad_norm": 1.0358718633651733,
|
| 186 |
+
"learning_rate": 4.41240990285177e-06,
|
| 187 |
+
"loss": 1.1931,
|
| 188 |
+
"mean_token_accuracy": 0.7237947028875351,
|
| 189 |
+
"num_tokens": 49064213.0,
|
| 190 |
+
"step": 475
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"epoch": 0.15196413646379456,
|
| 194 |
+
"grad_norm": 0.9893081784248352,
|
| 195 |
+
"learning_rate": 4.373237229708556e-06,
|
| 196 |
+
"loss": 1.1951,
|
| 197 |
+
"mean_token_accuracy": 0.7238883310556412,
|
| 198 |
+
"num_tokens": 51663643.0,
|
| 199 |
+
"step": 500
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"epoch": 0.15956234328698427,
|
| 203 |
+
"grad_norm": 1.0677660703659058,
|
| 204 |
+
"learning_rate": 4.334064556565341e-06,
|
| 205 |
+
"loss": 1.1721,
|
| 206 |
+
"mean_token_accuracy": 0.7265544033050537,
|
| 207 |
+
"num_tokens": 54161634.0,
|
| 208 |
+
"step": 525
|
| 209 |
+
},
|
| 210 |
+
{
|
| 211 |
+
"epoch": 0.167160550110174,
|
| 212 |
+
"grad_norm": 0.8927258849143982,
|
| 213 |
+
"learning_rate": 4.294891883422124e-06,
|
| 214 |
+
"loss": 1.1685,
|
| 215 |
+
"mean_token_accuracy": 0.7285602086782456,
|
| 216 |
+
"num_tokens": 56784150.0,
|
| 217 |
+
"step": 550
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"epoch": 0.17475875693336373,
|
| 221 |
+
"grad_norm": 0.9111976027488708,
|
| 222 |
+
"learning_rate": 4.25571921027891e-06,
|
| 223 |
+
"loss": 1.1562,
|
| 224 |
+
"mean_token_accuracy": 0.7312729161977768,
|
| 225 |
+
"num_tokens": 59382430.0,
|
| 226 |
+
"step": 575
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.18235696375655344,
|
| 230 |
+
"grad_norm": 0.8939260244369507,
|
| 231 |
+
"learning_rate": 4.216546537135695e-06,
|
| 232 |
+
"loss": 1.1818,
|
| 233 |
+
"mean_token_accuracy": 0.7256826394796372,
|
| 234 |
+
"num_tokens": 61928694.0,
|
| 235 |
+
"step": 600
|
| 236 |
+
},
|
| 237 |
+
{
|
| 238 |
+
"epoch": 0.18995517057974318,
|
| 239 |
+
"grad_norm": 0.9611142873764038,
|
| 240 |
+
"learning_rate": 4.177373863992479e-06,
|
| 241 |
+
"loss": 1.1793,
|
| 242 |
+
"mean_token_accuracy": 0.7260627967119216,
|
| 243 |
+
"num_tokens": 64496365.0,
|
| 244 |
+
"step": 625
|
| 245 |
+
},
|
| 246 |
+
{
|
| 247 |
+
"epoch": 0.1975533774029329,
|
| 248 |
+
"grad_norm": 0.9116730690002441,
|
| 249 |
+
"learning_rate": 4.138201190849264e-06,
|
| 250 |
+
"loss": 1.149,
|
| 251 |
+
"mean_token_accuracy": 0.7322022247314454,
|
| 252 |
+
"num_tokens": 67108712.0,
|
| 253 |
+
"step": 650
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"epoch": 0.20515158422612265,
|
| 257 |
+
"grad_norm": 0.9878592491149902,
|
| 258 |
+
"learning_rate": 4.099028517706049e-06,
|
| 259 |
+
"loss": 1.1509,
|
| 260 |
+
"mean_token_accuracy": 0.7325534474849701,
|
| 261 |
+
"num_tokens": 69702021.0,
|
| 262 |
+
"step": 675
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"epoch": 0.21274979104931235,
|
| 266 |
+
"grad_norm": 0.9378741979598999,
|
| 267 |
+
"learning_rate": 4.059855844562833e-06,
|
| 268 |
+
"loss": 1.1801,
|
| 269 |
+
"mean_token_accuracy": 0.727109580039978,
|
| 270 |
+
"num_tokens": 72301699.0,
|
| 271 |
+
"step": 700
|
| 272 |
+
},
|
| 273 |
+
{
|
| 274 |
+
"epoch": 0.2203479978725021,
|
| 275 |
+
"grad_norm": 1.0023488998413086,
|
| 276 |
+
"learning_rate": 4.020683171419618e-06,
|
| 277 |
+
"loss": 1.1814,
|
| 278 |
+
"mean_token_accuracy": 0.7265605771541596,
|
| 279 |
+
"num_tokens": 74824515.0,
|
| 280 |
+
"step": 725
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"epoch": 0.22794620469569182,
|
| 284 |
+
"grad_norm": 0.9925772547721863,
|
| 285 |
+
"learning_rate": 3.981510498276403e-06,
|
| 286 |
+
"loss": 1.1932,
|
| 287 |
+
"mean_token_accuracy": 0.7241325139999389,
|
| 288 |
+
"num_tokens": 77468439.0,
|
| 289 |
+
"step": 750
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.23554441151888153,
|
| 293 |
+
"grad_norm": 1.0404661893844604,
|
| 294 |
+
"learning_rate": 3.942337825133187e-06,
|
| 295 |
+
"loss": 1.1525,
|
| 296 |
+
"mean_token_accuracy": 0.7301458239555358,
|
| 297 |
+
"num_tokens": 80143332.0,
|
| 298 |
+
"step": 775
|
| 299 |
+
},
|
| 300 |
+
{
|
| 301 |
+
"epoch": 0.24314261834207127,
|
| 302 |
+
"grad_norm": 0.9634000062942505,
|
| 303 |
+
"learning_rate": 3.903165151989972e-06,
|
| 304 |
+
"loss": 1.1691,
|
| 305 |
+
"mean_token_accuracy": 0.7280007082223893,
|
| 306 |
+
"num_tokens": 82731678.0,
|
| 307 |
+
"step": 800
|
| 308 |
+
},
|
| 309 |
+
{
|
| 310 |
+
"epoch": 0.25074082516526097,
|
| 311 |
+
"grad_norm": 0.9083330631256104,
|
| 312 |
+
"learning_rate": 3.863992478846757e-06,
|
| 313 |
+
"loss": 1.1272,
|
| 314 |
+
"mean_token_accuracy": 0.7353595513105392,
|
| 315 |
+
"num_tokens": 85345821.0,
|
| 316 |
+
"step": 825
|
| 317 |
+
},
|
| 318 |
+
{
|
| 319 |
+
"epoch": 0.2583390319884507,
|
| 320 |
+
"grad_norm": 0.9275352358818054,
|
| 321 |
+
"learning_rate": 3.824819805703541e-06,
|
| 322 |
+
"loss": 1.1558,
|
| 323 |
+
"mean_token_accuracy": 0.7300055593252182,
|
| 324 |
+
"num_tokens": 87948235.0,
|
| 325 |
+
"step": 850
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 0.26593723881164044,
|
| 329 |
+
"grad_norm": 0.9232833385467529,
|
| 330 |
+
"learning_rate": 3.785647132560326e-06,
|
| 331 |
+
"loss": 1.162,
|
| 332 |
+
"mean_token_accuracy": 0.7284415501356125,
|
| 333 |
+
"num_tokens": 90574681.0,
|
| 334 |
+
"step": 875
|
| 335 |
+
},
|
| 336 |
+
{
|
| 337 |
+
"epoch": 0.2735354456348302,
|
| 338 |
+
"grad_norm": 1.131739854812622,
|
| 339 |
+
"learning_rate": 3.746474459417111e-06,
|
| 340 |
+
"loss": 1.1697,
|
| 341 |
+
"mean_token_accuracy": 0.7278369426727295,
|
| 342 |
+
"num_tokens": 93215297.0,
|
| 343 |
+
"step": 900
|
| 344 |
+
},
|
| 345 |
+
{
|
| 346 |
+
"epoch": 0.2811336524580199,
|
| 347 |
+
"grad_norm": 0.9522098898887634,
|
| 348 |
+
"learning_rate": 3.7073017862738957e-06,
|
| 349 |
+
"loss": 1.1846,
|
| 350 |
+
"mean_token_accuracy": 0.7259439510107041,
|
| 351 |
+
"num_tokens": 95791861.0,
|
| 352 |
+
"step": 925
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.28873185928120965,
|
| 356 |
+
"grad_norm": 1.0696117877960205,
|
| 357 |
+
"learning_rate": 3.66812911313068e-06,
|
| 358 |
+
"loss": 1.1394,
|
| 359 |
+
"mean_token_accuracy": 0.733702262043953,
|
| 360 |
+
"num_tokens": 98410562.0,
|
| 361 |
+
"step": 950
|
| 362 |
+
},
|
| 363 |
+
{
|
| 364 |
+
"epoch": 0.2963300661043994,
|
| 365 |
+
"grad_norm": 0.9875262379646301,
|
| 366 |
+
"learning_rate": 3.628956439987465e-06,
|
| 367 |
+
"loss": 1.1214,
|
| 368 |
+
"mean_token_accuracy": 0.7367280977964401,
|
| 369 |
+
"num_tokens": 101018834.0,
|
| 370 |
+
"step": 975
|
| 371 |
+
},
|
| 372 |
+
{
|
| 373 |
+
"epoch": 0.3039282729275891,
|
| 374 |
+
"grad_norm": 1.0046495199203491,
|
| 375 |
+
"learning_rate": 3.5897837668442497e-06,
|
| 376 |
+
"loss": 1.1471,
|
| 377 |
+
"mean_token_accuracy": 0.7323124688863755,
|
| 378 |
+
"num_tokens": 103548660.0,
|
| 379 |
+
"step": 1000
|
| 380 |
+
},
|
| 381 |
+
{
|
| 382 |
+
"epoch": 0.3115264797507788,
|
| 383 |
+
"grad_norm": 0.9220812320709229,
|
| 384 |
+
"learning_rate": 3.550611093701035e-06,
|
| 385 |
+
"loss": 1.1144,
|
| 386 |
+
"mean_token_accuracy": 0.7385808283090591,
|
| 387 |
+
"num_tokens": 106144886.0,
|
| 388 |
+
"step": 1025
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.31912468657396853,
|
| 392 |
+
"grad_norm": 0.84840327501297,
|
| 393 |
+
"learning_rate": 3.511438420557819e-06,
|
| 394 |
+
"loss": 1.1292,
|
| 395 |
+
"mean_token_accuracy": 0.7352547180652619,
|
| 396 |
+
"num_tokens": 108737841.0,
|
| 397 |
+
"step": 1050
|
| 398 |
+
},
|
| 399 |
+
{
|
| 400 |
+
"epoch": 0.32672289339715826,
|
| 401 |
+
"grad_norm": 0.9784463047981262,
|
| 402 |
+
"learning_rate": 3.4722657474146037e-06,
|
| 403 |
+
"loss": 1.1397,
|
| 404 |
+
"mean_token_accuracy": 0.7329702425003052,
|
| 405 |
+
"num_tokens": 111263726.0,
|
| 406 |
+
"step": 1075
|
| 407 |
+
},
|
| 408 |
+
{
|
| 409 |
+
"epoch": 0.334321100220348,
|
| 410 |
+
"grad_norm": 0.9851428270339966,
|
| 411 |
+
"learning_rate": 3.433093074271389e-06,
|
| 412 |
+
"loss": 1.1522,
|
| 413 |
+
"mean_token_accuracy": 0.7319200646877289,
|
| 414 |
+
"num_tokens": 113862710.0,
|
| 415 |
+
"step": 1100
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.34191930704353773,
|
| 419 |
+
"grad_norm": 1.0207332372665405,
|
| 420 |
+
"learning_rate": 3.3939204011281735e-06,
|
| 421 |
+
"loss": 1.1596,
|
| 422 |
+
"mean_token_accuracy": 0.7311873000860214,
|
| 423 |
+
"num_tokens": 116455029.0,
|
| 424 |
+
"step": 1125
|
| 425 |
+
},
|
| 426 |
+
{
|
| 427 |
+
"epoch": 0.34951751386672747,
|
| 428 |
+
"grad_norm": 1.057591199874878,
|
| 429 |
+
"learning_rate": 3.3547477279849577e-06,
|
| 430 |
+
"loss": 1.1469,
|
| 431 |
+
"mean_token_accuracy": 0.7317946165800094,
|
| 432 |
+
"num_tokens": 119016227.0,
|
| 433 |
+
"step": 1150
|
| 434 |
+
},
|
| 435 |
+
{
|
| 436 |
+
"epoch": 0.3571157206899172,
|
| 437 |
+
"grad_norm": 0.8993873596191406,
|
| 438 |
+
"learning_rate": 3.3155750548417424e-06,
|
| 439 |
+
"loss": 1.166,
|
| 440 |
+
"mean_token_accuracy": 0.7290427106618881,
|
| 441 |
+
"num_tokens": 121623537.0,
|
| 442 |
+
"step": 1175
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
"epoch": 0.3647139275131069,
|
| 446 |
+
"grad_norm": 0.9834045171737671,
|
| 447 |
+
"learning_rate": 3.2764023816985275e-06,
|
| 448 |
+
"loss": 1.1433,
|
| 449 |
+
"mean_token_accuracy": 0.7334721457958221,
|
| 450 |
+
"num_tokens": 124161994.0,
|
| 451 |
+
"step": 1200
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.3723121343362966,
|
| 455 |
+
"grad_norm": 0.9397407174110413,
|
| 456 |
+
"learning_rate": 3.237229708555312e-06,
|
| 457 |
+
"loss": 1.1613,
|
| 458 |
+
"mean_token_accuracy": 0.7288734668493271,
|
| 459 |
+
"num_tokens": 126771313.0,
|
| 460 |
+
"step": 1225
|
| 461 |
+
},
|
| 462 |
+
{
|
| 463 |
+
"epoch": 0.37991034115948635,
|
| 464 |
+
"grad_norm": 0.8688826560974121,
|
| 465 |
+
"learning_rate": 3.1980570354120964e-06,
|
| 466 |
+
"loss": 1.1314,
|
| 467 |
+
"mean_token_accuracy": 0.7348222607374191,
|
| 468 |
+
"num_tokens": 129372256.0,
|
| 469 |
+
"step": 1250
|
| 470 |
+
},
|
| 471 |
+
{
|
| 472 |
+
"epoch": 0.3875085479826761,
|
| 473 |
+
"grad_norm": 0.9596332311630249,
|
| 474 |
+
"learning_rate": 3.1588843622688815e-06,
|
| 475 |
+
"loss": 1.1771,
|
| 476 |
+
"mean_token_accuracy": 0.7289222145080566,
|
| 477 |
+
"num_tokens": 132004952.0,
|
| 478 |
+
"step": 1275
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 0.3951067548058658,
|
| 482 |
+
"grad_norm": 0.8962276577949524,
|
| 483 |
+
"learning_rate": 3.119711689125666e-06,
|
| 484 |
+
"loss": 1.13,
|
| 485 |
+
"mean_token_accuracy": 0.7361785328388214,
|
| 486 |
+
"num_tokens": 134597308.0,
|
| 487 |
+
"step": 1300
|
| 488 |
+
},
|
| 489 |
+
{
|
| 490 |
+
"epoch": 0.40270496162905556,
|
| 491 |
+
"grad_norm": 0.9526214599609375,
|
| 492 |
+
"learning_rate": 3.0805390159824512e-06,
|
| 493 |
+
"loss": 1.1279,
|
| 494 |
+
"mean_token_accuracy": 0.7370401775836944,
|
| 495 |
+
"num_tokens": 137154477.0,
|
| 496 |
+
"step": 1325
|
| 497 |
+
},
|
| 498 |
+
{
|
| 499 |
+
"epoch": 0.4103031684522453,
|
| 500 |
+
"grad_norm": 0.9959564208984375,
|
| 501 |
+
"learning_rate": 3.0413663428392355e-06,
|
| 502 |
+
"loss": 1.1501,
|
| 503 |
+
"mean_token_accuracy": 0.7321191453933715,
|
| 504 |
+
"num_tokens": 139811600.0,
|
| 505 |
+
"step": 1350
|
| 506 |
+
},
|
| 507 |
+
{
|
| 508 |
+
"epoch": 0.41790137527543497,
|
| 509 |
+
"grad_norm": 0.8501905798912048,
|
| 510 |
+
"learning_rate": 3.00219366969602e-06,
|
| 511 |
+
"loss": 1.1509,
|
| 512 |
+
"mean_token_accuracy": 0.7308077716827392,
|
| 513 |
+
"num_tokens": 142453993.0,
|
| 514 |
+
"step": 1375
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"epoch": 0.4254995820986247,
|
| 518 |
+
"grad_norm": 0.913529098033905,
|
| 519 |
+
"learning_rate": 2.9630209965528052e-06,
|
| 520 |
+
"loss": 1.1338,
|
| 521 |
+
"mean_token_accuracy": 0.7351639837026596,
|
| 522 |
+
"num_tokens": 144957196.0,
|
| 523 |
+
"step": 1400
|
| 524 |
+
},
|
| 525 |
+
{
|
| 526 |
+
"epoch": 0.43309778892181444,
|
| 527 |
+
"grad_norm": 0.9400737285614014,
|
| 528 |
+
"learning_rate": 2.92384832340959e-06,
|
| 529 |
+
"loss": 1.1322,
|
| 530 |
+
"mean_token_accuracy": 0.7360527998209,
|
| 531 |
+
"num_tokens": 147574322.0,
|
| 532 |
+
"step": 1425
|
| 533 |
+
},
|
| 534 |
+
{
|
| 535 |
+
"epoch": 0.4406959957450042,
|
| 536 |
+
"grad_norm": 0.9140069484710693,
|
| 537 |
+
"learning_rate": 2.884675650266374e-06,
|
| 538 |
+
"loss": 1.1359,
|
| 539 |
+
"mean_token_accuracy": 0.7348436897993088,
|
| 540 |
+
"num_tokens": 150085697.0,
|
| 541 |
+
"step": 1450
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.4482942025681939,
|
| 545 |
+
"grad_norm": 0.9307470321655273,
|
| 546 |
+
"learning_rate": 2.8455029771231592e-06,
|
| 547 |
+
"loss": 1.1537,
|
| 548 |
+
"mean_token_accuracy": 0.7332108038663864,
|
| 549 |
+
"num_tokens": 152693678.0,
|
| 550 |
+
"step": 1475
|
| 551 |
+
},
|
| 552 |
+
{
|
| 553 |
+
"epoch": 0.45589240939138365,
|
| 554 |
+
"grad_norm": 0.9836713671684265,
|
| 555 |
+
"learning_rate": 2.806330303979944e-06,
|
| 556 |
+
"loss": 1.1398,
|
| 557 |
+
"mean_token_accuracy": 0.7350041055679322,
|
| 558 |
+
"num_tokens": 155307631.0,
|
| 559 |
+
"step": 1500
|
| 560 |
+
},
|
| 561 |
+
{
|
| 562 |
+
"epoch": 0.4634906162145734,
|
| 563 |
+
"grad_norm": 0.9581474661827087,
|
| 564 |
+
"learning_rate": 2.7671576308367286e-06,
|
| 565 |
+
"loss": 1.1213,
|
| 566 |
+
"mean_token_accuracy": 0.7367819517850875,
|
| 567 |
+
"num_tokens": 157931564.0,
|
| 568 |
+
"step": 1525
|
| 569 |
+
},
|
| 570 |
+
{
|
| 571 |
+
"epoch": 0.47108882303776306,
|
| 572 |
+
"grad_norm": 0.9196196794509888,
|
| 573 |
+
"learning_rate": 2.727984957693513e-06,
|
| 574 |
+
"loss": 1.1416,
|
| 575 |
+
"mean_token_accuracy": 0.7337223035097122,
|
| 576 |
+
"num_tokens": 160523557.0,
|
| 577 |
+
"step": 1550
|
| 578 |
+
},
|
| 579 |
+
{
|
| 580 |
+
"epoch": 0.4786870298609528,
|
| 581 |
+
"grad_norm": 1.0535234212875366,
|
| 582 |
+
"learning_rate": 2.688812284550298e-06,
|
| 583 |
+
"loss": 1.1376,
|
| 584 |
+
"mean_token_accuracy": 0.7336768537759781,
|
| 585 |
+
"num_tokens": 163117027.0,
|
| 586 |
+
"step": 1575
|
| 587 |
+
},
|
| 588 |
+
{
|
| 589 |
+
"epoch": 0.48628523668414253,
|
| 590 |
+
"grad_norm": 0.9108763337135315,
|
| 591 |
+
"learning_rate": 2.6496396114070826e-06,
|
| 592 |
+
"loss": 1.1186,
|
| 593 |
+
"mean_token_accuracy": 0.7363489520549774,
|
| 594 |
+
"num_tokens": 165577284.0,
|
| 595 |
+
"step": 1600
|
| 596 |
+
},
|
| 597 |
+
{
|
| 598 |
+
"epoch": 0.49388344350733226,
|
| 599 |
+
"grad_norm": 0.914046585559845,
|
| 600 |
+
"learning_rate": 2.6104669382638677e-06,
|
| 601 |
+
"loss": 1.1193,
|
| 602 |
+
"mean_token_accuracy": 0.7358357053995133,
|
| 603 |
+
"num_tokens": 168176206.0,
|
| 604 |
+
"step": 1625
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.5014816503305219,
|
| 608 |
+
"grad_norm": 0.9301220774650574,
|
| 609 |
+
"learning_rate": 2.571294265120652e-06,
|
| 610 |
+
"loss": 1.1359,
|
| 611 |
+
"mean_token_accuracy": 0.7337970972061157,
|
| 612 |
+
"num_tokens": 170860276.0,
|
| 613 |
+
"step": 1650
|
| 614 |
+
},
|
| 615 |
+
{
|
| 616 |
+
"epoch": 0.5090798571537117,
|
| 617 |
+
"grad_norm": 1.1479674577713013,
|
| 618 |
+
"learning_rate": 2.5321215919774366e-06,
|
| 619 |
+
"loss": 1.1339,
|
| 620 |
+
"mean_token_accuracy": 0.7356235873699188,
|
| 621 |
+
"num_tokens": 173397712.0,
|
| 622 |
+
"step": 1675
|
| 623 |
+
},
|
| 624 |
+
{
|
| 625 |
+
"epoch": 0.5166780639769014,
|
| 626 |
+
"grad_norm": 0.9349409937858582,
|
| 627 |
+
"learning_rate": 2.4929489188342217e-06,
|
| 628 |
+
"loss": 1.1381,
|
| 629 |
+
"mean_token_accuracy": 0.7338095015287399,
|
| 630 |
+
"num_tokens": 175907043.0,
|
| 631 |
+
"step": 1700
|
| 632 |
+
},
|
| 633 |
+
{
|
| 634 |
+
"epoch": 0.5242762708000912,
|
| 635 |
+
"grad_norm": 0.9135065078735352,
|
| 636 |
+
"learning_rate": 2.453776245691006e-06,
|
| 637 |
+
"loss": 1.1424,
|
| 638 |
+
"mean_token_accuracy": 0.7341409718990326,
|
| 639 |
+
"num_tokens": 178454221.0,
|
| 640 |
+
"step": 1725
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"epoch": 0.5318744776232809,
|
| 644 |
+
"grad_norm": 0.8928455710411072,
|
| 645 |
+
"learning_rate": 2.414603572547791e-06,
|
| 646 |
+
"loss": 1.1486,
|
| 647 |
+
"mean_token_accuracy": 0.7311108547449112,
|
| 648 |
+
"num_tokens": 181045005.0,
|
| 649 |
+
"step": 1750
|
| 650 |
+
},
|
| 651 |
+
{
|
| 652 |
+
"epoch": 0.5394726844464707,
|
| 653 |
+
"grad_norm": 0.980609118938446,
|
| 654 |
+
"learning_rate": 2.3754308994045757e-06,
|
| 655 |
+
"loss": 1.1368,
|
| 656 |
+
"mean_token_accuracy": 0.7330597722530365,
|
| 657 |
+
"num_tokens": 183666329.0,
|
| 658 |
+
"step": 1775
|
| 659 |
+
},
|
| 660 |
+
{
|
| 661 |
+
"epoch": 0.5470708912696604,
|
| 662 |
+
"grad_norm": 0.9772244691848755,
|
| 663 |
+
"learning_rate": 2.3362582262613603e-06,
|
| 664 |
+
"loss": 1.1105,
|
| 665 |
+
"mean_token_accuracy": 0.7395724445581436,
|
| 666 |
+
"num_tokens": 186221096.0,
|
| 667 |
+
"step": 1800
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 0.55466909809285,
|
| 671 |
+
"grad_norm": 0.9453775882720947,
|
| 672 |
+
"learning_rate": 2.297085553118145e-06,
|
| 673 |
+
"loss": 1.1207,
|
| 674 |
+
"mean_token_accuracy": 0.737914999127388,
|
| 675 |
+
"num_tokens": 188781580.0,
|
| 676 |
+
"step": 1825
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"epoch": 0.5622673049160398,
|
| 680 |
+
"grad_norm": 0.9014413952827454,
|
| 681 |
+
"learning_rate": 2.2579128799749297e-06,
|
| 682 |
+
"loss": 1.1436,
|
| 683 |
+
"mean_token_accuracy": 0.7317037135362625,
|
| 684 |
+
"num_tokens": 191380677.0,
|
| 685 |
+
"step": 1850
|
| 686 |
+
},
|
| 687 |
+
{
|
| 688 |
+
"epoch": 0.5698655117392295,
|
| 689 |
+
"grad_norm": 0.8946366310119629,
|
| 690 |
+
"learning_rate": 2.2187402068317143e-06,
|
| 691 |
+
"loss": 1.1548,
|
| 692 |
+
"mean_token_accuracy": 0.7314022815227509,
|
| 693 |
+
"num_tokens": 193996266.0,
|
| 694 |
+
"step": 1875
|
| 695 |
+
},
|
| 696 |
+
{
|
| 697 |
+
"epoch": 0.5774637185624193,
|
| 698 |
+
"grad_norm": 0.9767251014709473,
|
| 699 |
+
"learning_rate": 2.179567533688499e-06,
|
| 700 |
+
"loss": 1.1258,
|
| 701 |
+
"mean_token_accuracy": 0.737195520401001,
|
| 702 |
+
"num_tokens": 196548577.0,
|
| 703 |
+
"step": 1900
|
| 704 |
+
},
|
| 705 |
+
{
|
| 706 |
+
"epoch": 0.585061925385609,
|
| 707 |
+
"grad_norm": 1.0095189809799194,
|
| 708 |
+
"learning_rate": 2.1403948605452837e-06,
|
| 709 |
+
"loss": 1.1481,
|
| 710 |
+
"mean_token_accuracy": 0.7341015815734864,
|
| 711 |
+
"num_tokens": 199121126.0,
|
| 712 |
+
"step": 1925
|
| 713 |
+
},
|
| 714 |
+
{
|
| 715 |
+
"epoch": 0.5926601322087988,
|
| 716 |
+
"grad_norm": 0.9052937030792236,
|
| 717 |
+
"learning_rate": 2.1012221874020688e-06,
|
| 718 |
+
"loss": 1.1309,
|
| 719 |
+
"mean_token_accuracy": 0.7348120081424713,
|
| 720 |
+
"num_tokens": 201731098.0,
|
| 721 |
+
"step": 1950
|
| 722 |
+
},
|
| 723 |
+
{
|
| 724 |
+
"epoch": 0.6002583390319884,
|
| 725 |
+
"grad_norm": 0.9695770144462585,
|
| 726 |
+
"learning_rate": 2.062049514258853e-06,
|
| 727 |
+
"loss": 1.1248,
|
| 728 |
+
"mean_token_accuracy": 0.7372716355323792,
|
| 729 |
+
"num_tokens": 204324674.0,
|
| 730 |
+
"step": 1975
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 0.6078565458551782,
|
| 734 |
+
"grad_norm": 0.9187005758285522,
|
| 735 |
+
"learning_rate": 2.022876841115638e-06,
|
| 736 |
+
"loss": 1.1275,
|
| 737 |
+
"mean_token_accuracy": 0.7356339997053146,
|
| 738 |
+
"num_tokens": 206937271.0,
|
| 739 |
+
"step": 2000
|
| 740 |
+
},
|
| 741 |
+
{
|
| 742 |
+
"epoch": 0.6154547526783679,
|
| 743 |
+
"grad_norm": 0.9396357536315918,
|
| 744 |
+
"learning_rate": 1.9837041679724223e-06,
|
| 745 |
+
"loss": 1.1475,
|
| 746 |
+
"mean_token_accuracy": 0.7320456486940384,
|
| 747 |
+
"num_tokens": 209530276.0,
|
| 748 |
+
"step": 2025
|
| 749 |
+
},
|
| 750 |
+
{
|
| 751 |
+
"epoch": 0.6230529595015576,
|
| 752 |
+
"grad_norm": 0.9308034181594849,
|
| 753 |
+
"learning_rate": 1.9445314948292074e-06,
|
| 754 |
+
"loss": 1.107,
|
| 755 |
+
"mean_token_accuracy": 0.7407030069828033,
|
| 756 |
+
"num_tokens": 212127023.0,
|
| 757 |
+
"step": 2050
|
| 758 |
+
},
|
| 759 |
+
{
|
| 760 |
+
"epoch": 0.6306511663247474,
|
| 761 |
+
"grad_norm": 0.9127600193023682,
|
| 762 |
+
"learning_rate": 1.9053588216859919e-06,
|
| 763 |
+
"loss": 1.117,
|
| 764 |
+
"mean_token_accuracy": 0.7379663151502609,
|
| 765 |
+
"num_tokens": 214698253.0,
|
| 766 |
+
"step": 2075
|
| 767 |
+
},
|
| 768 |
+
{
|
| 769 |
+
"epoch": 0.6382493731479371,
|
| 770 |
+
"grad_norm": 1.0522152185440063,
|
| 771 |
+
"learning_rate": 1.8661861485427768e-06,
|
| 772 |
+
"loss": 1.1134,
|
| 773 |
+
"mean_token_accuracy": 0.738114013671875,
|
| 774 |
+
"num_tokens": 217256660.0,
|
| 775 |
+
"step": 2100
|
| 776 |
+
},
|
| 777 |
+
{
|
| 778 |
+
"epoch": 0.6458475799711269,
|
| 779 |
+
"grad_norm": 1.1676892042160034,
|
| 780 |
+
"learning_rate": 1.8270134753995614e-06,
|
| 781 |
+
"loss": 1.1501,
|
| 782 |
+
"mean_token_accuracy": 0.7336319923400879,
|
| 783 |
+
"num_tokens": 219876024.0,
|
| 784 |
+
"step": 2125
|
| 785 |
+
},
|
| 786 |
+
{
|
| 787 |
+
"epoch": 0.6534457867943165,
|
| 788 |
+
"grad_norm": 0.950326144695282,
|
| 789 |
+
"learning_rate": 1.7878408022563463e-06,
|
| 790 |
+
"loss": 1.1027,
|
| 791 |
+
"mean_token_accuracy": 0.7408947384357453,
|
| 792 |
+
"num_tokens": 222494174.0,
|
| 793 |
+
"step": 2150
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 0.6610439936175063,
|
| 797 |
+
"grad_norm": 0.9229258298873901,
|
| 798 |
+
"learning_rate": 1.7486681291131308e-06,
|
| 799 |
+
"loss": 1.149,
|
| 800 |
+
"mean_token_accuracy": 0.7321878397464752,
|
| 801 |
+
"num_tokens": 225084016.0,
|
| 802 |
+
"step": 2175
|
| 803 |
+
},
|
| 804 |
+
{
|
| 805 |
+
"epoch": 0.668642200440696,
|
| 806 |
+
"grad_norm": 0.8653574585914612,
|
| 807 |
+
"learning_rate": 1.7094954559699156e-06,
|
| 808 |
+
"loss": 1.1264,
|
| 809 |
+
"mean_token_accuracy": 0.7363163530826569,
|
| 810 |
+
"num_tokens": 227745579.0,
|
| 811 |
+
"step": 2200
|
| 812 |
+
},
|
| 813 |
+
{
|
| 814 |
+
"epoch": 0.6762404072638857,
|
| 815 |
+
"grad_norm": 0.8321031332015991,
|
| 816 |
+
"learning_rate": 1.6703227828267e-06,
|
| 817 |
+
"loss": 1.1262,
|
| 818 |
+
"mean_token_accuracy": 0.7373967486619949,
|
| 819 |
+
"num_tokens": 230365604.0,
|
| 820 |
+
"step": 2225
|
| 821 |
+
},
|
| 822 |
+
{
|
| 823 |
+
"epoch": 0.6838386140870755,
|
| 824 |
+
"grad_norm": 0.9620904326438904,
|
| 825 |
+
"learning_rate": 1.631150109683485e-06,
|
| 826 |
+
"loss": 1.104,
|
| 827 |
+
"mean_token_accuracy": 0.7394238811731338,
|
| 828 |
+
"num_tokens": 232943997.0,
|
| 829 |
+
"step": 2250
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"epoch": 0.6914368209102651,
|
| 833 |
+
"grad_norm": 0.9633401036262512,
|
| 834 |
+
"learning_rate": 1.5919774365402697e-06,
|
| 835 |
+
"loss": 1.1312,
|
| 836 |
+
"mean_token_accuracy": 0.7345698297023773,
|
| 837 |
+
"num_tokens": 235514397.0,
|
| 838 |
+
"step": 2275
|
| 839 |
+
},
|
| 840 |
+
{
|
| 841 |
+
"epoch": 0.6990350277334549,
|
| 842 |
+
"grad_norm": 1.049621343612671,
|
| 843 |
+
"learning_rate": 1.5528047633970545e-06,
|
| 844 |
+
"loss": 1.1038,
|
| 845 |
+
"mean_token_accuracy": 0.7410222667455674,
|
| 846 |
+
"num_tokens": 237958000.0,
|
| 847 |
+
"step": 2300
|
| 848 |
+
},
|
| 849 |
+
{
|
| 850 |
+
"epoch": 0.7066332345566446,
|
| 851 |
+
"grad_norm": 0.8942002654075623,
|
| 852 |
+
"learning_rate": 1.513632090253839e-06,
|
| 853 |
+
"loss": 1.128,
|
| 854 |
+
"mean_token_accuracy": 0.7355525487661362,
|
| 855 |
+
"num_tokens": 240563561.0,
|
| 856 |
+
"step": 2325
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 0.7142314413798344,
|
| 860 |
+
"grad_norm": 1.0083601474761963,
|
| 861 |
+
"learning_rate": 1.4744594171106239e-06,
|
| 862 |
+
"loss": 1.1763,
|
| 863 |
+
"mean_token_accuracy": 0.7265212672948838,
|
| 864 |
+
"num_tokens": 243194983.0,
|
| 865 |
+
"step": 2350
|
| 866 |
+
},
|
| 867 |
+
{
|
| 868 |
+
"epoch": 0.7218296482030241,
|
| 869 |
+
"grad_norm": 0.8960743546485901,
|
| 870 |
+
"learning_rate": 1.4352867439674083e-06,
|
| 871 |
+
"loss": 1.1586,
|
| 872 |
+
"mean_token_accuracy": 0.7288067770004273,
|
| 873 |
+
"num_tokens": 245824173.0,
|
| 874 |
+
"step": 2375
|
| 875 |
+
},
|
| 876 |
+
{
|
| 877 |
+
"epoch": 0.7294278550262138,
|
| 878 |
+
"grad_norm": 0.9686855673789978,
|
| 879 |
+
"learning_rate": 1.3961140708241932e-06,
|
| 880 |
+
"loss": 1.1404,
|
| 881 |
+
"mean_token_accuracy": 0.732091948390007,
|
| 882 |
+
"num_tokens": 248428880.0,
|
| 883 |
+
"step": 2400
|
| 884 |
+
},
|
| 885 |
+
{
|
| 886 |
+
"epoch": 0.7370260618494036,
|
| 887 |
+
"grad_norm": 0.8258799910545349,
|
| 888 |
+
"learning_rate": 1.3569413976809779e-06,
|
| 889 |
+
"loss": 1.1119,
|
| 890 |
+
"mean_token_accuracy": 0.7375982666015625,
|
| 891 |
+
"num_tokens": 251034901.0,
|
| 892 |
+
"step": 2425
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"epoch": 0.7446242686725932,
|
| 896 |
+
"grad_norm": 0.9364578127861023,
|
| 897 |
+
"learning_rate": 1.3177687245377627e-06,
|
| 898 |
+
"loss": 1.162,
|
| 899 |
+
"mean_token_accuracy": 0.7280535787343979,
|
| 900 |
+
"num_tokens": 253656324.0,
|
| 901 |
+
"step": 2450
|
| 902 |
+
},
|
| 903 |
+
{
|
| 904 |
+
"epoch": 0.752222475495783,
|
| 905 |
+
"grad_norm": 0.8600585460662842,
|
| 906 |
+
"learning_rate": 1.2785960513945472e-06,
|
| 907 |
+
"loss": 1.0984,
|
| 908 |
+
"mean_token_accuracy": 0.7421051144599915,
|
| 909 |
+
"num_tokens": 256255282.0,
|
| 910 |
+
"step": 2475
|
| 911 |
+
},
|
| 912 |
+
{
|
| 913 |
+
"epoch": 0.7598206823189727,
|
| 914 |
+
"grad_norm": 0.955594003200531,
|
| 915 |
+
"learning_rate": 1.2394233782513319e-06,
|
| 916 |
+
"loss": 1.1248,
|
| 917 |
+
"mean_token_accuracy": 0.7350970155000687,
|
| 918 |
+
"num_tokens": 258805575.0,
|
| 919 |
+
"step": 2500
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"epoch": 0.7674188891421625,
|
| 923 |
+
"grad_norm": 0.8654617667198181,
|
| 924 |
+
"learning_rate": 1.2002507051081167e-06,
|
| 925 |
+
"loss": 1.139,
|
| 926 |
+
"mean_token_accuracy": 0.7342792183160782,
|
| 927 |
+
"num_tokens": 261394940.0,
|
| 928 |
+
"step": 2525
|
| 929 |
+
},
|
| 930 |
+
{
|
| 931 |
+
"epoch": 0.7750170959653522,
|
| 932 |
+
"grad_norm": 0.9037804007530212,
|
| 933 |
+
"learning_rate": 1.1610780319649014e-06,
|
| 934 |
+
"loss": 1.1507,
|
| 935 |
+
"mean_token_accuracy": 0.731409004330635,
|
| 936 |
+
"num_tokens": 264013243.0,
|
| 937 |
+
"step": 2550
|
| 938 |
+
},
|
| 939 |
+
{
|
| 940 |
+
"epoch": 0.7826153027885419,
|
| 941 |
+
"grad_norm": 0.9133325815200806,
|
| 942 |
+
"learning_rate": 1.121905358821686e-06,
|
| 943 |
+
"loss": 1.097,
|
| 944 |
+
"mean_token_accuracy": 0.7419029778242111,
|
| 945 |
+
"num_tokens": 266628788.0,
|
| 946 |
+
"step": 2575
|
| 947 |
+
},
|
| 948 |
+
{
|
| 949 |
+
"epoch": 0.7902135096117316,
|
| 950 |
+
"grad_norm": 0.960132360458374,
|
| 951 |
+
"learning_rate": 1.0827326856784708e-06,
|
| 952 |
+
"loss": 1.1012,
|
| 953 |
+
"mean_token_accuracy": 0.7402530944347382,
|
| 954 |
+
"num_tokens": 269174466.0,
|
| 955 |
+
"step": 2600
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"epoch": 0.7978117164349213,
|
| 959 |
+
"grad_norm": 1.2616750001907349,
|
| 960 |
+
"learning_rate": 1.0435600125352554e-06,
|
| 961 |
+
"loss": 1.1035,
|
| 962 |
+
"mean_token_accuracy": 0.7417422020435334,
|
| 963 |
+
"num_tokens": 271735962.0,
|
| 964 |
+
"step": 2625
|
| 965 |
+
},
|
| 966 |
+
{
|
| 967 |
+
"epoch": 0.8054099232581111,
|
| 968 |
+
"grad_norm": 0.9597173929214478,
|
| 969 |
+
"learning_rate": 1.00438733939204e-06,
|
| 970 |
+
"loss": 1.0966,
|
| 971 |
+
"mean_token_accuracy": 0.7435225594043732,
|
| 972 |
+
"num_tokens": 274392874.0,
|
| 973 |
+
"step": 2650
|
| 974 |
+
},
|
| 975 |
+
{
|
| 976 |
+
"epoch": 0.8130081300813008,
|
| 977 |
+
"grad_norm": 0.8417394161224365,
|
| 978 |
+
"learning_rate": 9.65214666248825e-07,
|
| 979 |
+
"loss": 1.1347,
|
| 980 |
+
"mean_token_accuracy": 0.7362286591529846,
|
| 981 |
+
"num_tokens": 276982423.0,
|
| 982 |
+
"step": 2675
|
| 983 |
+
},
|
| 984 |
+
{
|
| 985 |
+
"epoch": 0.8206063369044906,
|
| 986 |
+
"grad_norm": 0.8907487392425537,
|
| 987 |
+
"learning_rate": 9.260419931056095e-07,
|
| 988 |
+
"loss": 1.1112,
|
| 989 |
+
"mean_token_accuracy": 0.7379048210382462,
|
| 990 |
+
"num_tokens": 279629729.0,
|
| 991 |
+
"step": 2700
|
| 992 |
+
},
|
| 993 |
+
{
|
| 994 |
+
"epoch": 0.8282045437276803,
|
| 995 |
+
"grad_norm": 0.9732270240783691,
|
| 996 |
+
"learning_rate": 8.868693199623943e-07,
|
| 997 |
+
"loss": 1.1219,
|
| 998 |
+
"mean_token_accuracy": 0.7383491581678391,
|
| 999 |
+
"num_tokens": 282200981.0,
|
| 1000 |
+
"step": 2725
|
| 1001 |
+
},
|
| 1002 |
+
{
|
| 1003 |
+
"epoch": 0.8358027505508699,
|
| 1004 |
+
"grad_norm": 0.8799415230751038,
|
| 1005 |
+
"learning_rate": 8.47696646819179e-07,
|
| 1006 |
+
"loss": 1.1059,
|
| 1007 |
+
"mean_token_accuracy": 0.7389830541610718,
|
| 1008 |
+
"num_tokens": 284699697.0,
|
| 1009 |
+
"step": 2750
|
| 1010 |
+
},
|
| 1011 |
+
{
|
| 1012 |
+
"epoch": 0.8434009573740597,
|
| 1013 |
+
"grad_norm": 0.8372652530670166,
|
| 1014 |
+
"learning_rate": 8.085239736759637e-07,
|
| 1015 |
+
"loss": 1.123,
|
| 1016 |
+
"mean_token_accuracy": 0.7350180590152741,
|
| 1017 |
+
"num_tokens": 287274170.0,
|
| 1018 |
+
"step": 2775
|
| 1019 |
+
},
|
| 1020 |
+
{
|
| 1021 |
+
"epoch": 0.8509991641972494,
|
| 1022 |
+
"grad_norm": 0.8474750518798828,
|
| 1023 |
+
"learning_rate": 7.693513005327484e-07,
|
| 1024 |
+
"loss": 1.1316,
|
| 1025 |
+
"mean_token_accuracy": 0.735204011797905,
|
| 1026 |
+
"num_tokens": 289905267.0,
|
| 1027 |
+
"step": 2800
|
| 1028 |
+
},
|
| 1029 |
+
{
|
| 1030 |
+
"epoch": 0.8585973710204392,
|
| 1031 |
+
"grad_norm": 0.9228349924087524,
|
| 1032 |
+
"learning_rate": 7.301786273895331e-07,
|
| 1033 |
+
"loss": 1.1276,
|
| 1034 |
+
"mean_token_accuracy": 0.7360332900285721,
|
| 1035 |
+
"num_tokens": 292531690.0,
|
| 1036 |
+
"step": 2825
|
| 1037 |
+
},
|
| 1038 |
+
{
|
| 1039 |
+
"epoch": 0.8661955778436289,
|
| 1040 |
+
"grad_norm": 0.9425334334373474,
|
| 1041 |
+
"learning_rate": 6.910059542463178e-07,
|
| 1042 |
+
"loss": 1.1446,
|
| 1043 |
+
"mean_token_accuracy": 0.7327738231420518,
|
| 1044 |
+
"num_tokens": 295102204.0,
|
| 1045 |
+
"step": 2850
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"epoch": 0.8737937846668187,
|
| 1049 |
+
"grad_norm": 0.8812386393547058,
|
| 1050 |
+
"learning_rate": 6.518332811031025e-07,
|
| 1051 |
+
"loss": 1.1197,
|
| 1052 |
+
"mean_token_accuracy": 0.7385855436325073,
|
| 1053 |
+
"num_tokens": 297696866.0,
|
| 1054 |
+
"step": 2875
|
| 1055 |
+
},
|
| 1056 |
+
{
|
| 1057 |
+
"epoch": 0.8813919914900084,
|
| 1058 |
+
"grad_norm": 0.8696539998054504,
|
| 1059 |
+
"learning_rate": 6.126606079598872e-07,
|
| 1060 |
+
"loss": 1.1084,
|
| 1061 |
+
"mean_token_accuracy": 0.740631007552147,
|
| 1062 |
+
"num_tokens": 300294510.0,
|
| 1063 |
+
"step": 2900
|
| 1064 |
+
},
|
| 1065 |
+
{
|
| 1066 |
+
"epoch": 0.888990198313198,
|
| 1067 |
+
"grad_norm": 0.9522122144699097,
|
| 1068 |
+
"learning_rate": 5.73487934816672e-07,
|
| 1069 |
+
"loss": 1.1582,
|
| 1070 |
+
"mean_token_accuracy": 0.7323483002185821,
|
| 1071 |
+
"num_tokens": 302898731.0,
|
| 1072 |
+
"step": 2925
|
| 1073 |
+
},
|
| 1074 |
+
{
|
| 1075 |
+
"epoch": 0.8965884051363878,
|
| 1076 |
+
"grad_norm": 0.9082636833190918,
|
| 1077 |
+
"learning_rate": 5.343152616734566e-07,
|
| 1078 |
+
"loss": 1.1264,
|
| 1079 |
+
"mean_token_accuracy": 0.7359338957071304,
|
| 1080 |
+
"num_tokens": 305410011.0,
|
| 1081 |
+
"step": 2950
|
| 1082 |
+
},
|
| 1083 |
+
{
|
| 1084 |
+
"epoch": 0.9041866119595775,
|
| 1085 |
+
"grad_norm": 0.9275860786437988,
|
| 1086 |
+
"learning_rate": 4.951425885302413e-07,
|
| 1087 |
+
"loss": 1.1528,
|
| 1088 |
+
"mean_token_accuracy": 0.7339082890748978,
|
| 1089 |
+
"num_tokens": 308110984.0,
|
| 1090 |
+
"step": 2975
|
| 1091 |
+
},
|
| 1092 |
+
{
|
| 1093 |
+
"epoch": 0.9117848187827673,
|
| 1094 |
+
"grad_norm": 1.0664831399917603,
|
| 1095 |
+
"learning_rate": 4.55969915387026e-07,
|
| 1096 |
+
"loss": 1.1404,
|
| 1097 |
+
"mean_token_accuracy": 0.7343163812160491,
|
| 1098 |
+
"num_tokens": 310767815.0,
|
| 1099 |
+
"step": 3000
|
| 1100 |
+
},
|
| 1101 |
+
{
|
| 1102 |
+
"epoch": 0.919383025605957,
|
| 1103 |
+
"grad_norm": 0.9530277252197266,
|
| 1104 |
+
"learning_rate": 4.1679724224381073e-07,
|
| 1105 |
+
"loss": 1.1293,
|
| 1106 |
+
"mean_token_accuracy": 0.7350982189178467,
|
| 1107 |
+
"num_tokens": 313289189.0,
|
| 1108 |
+
"step": 3025
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"epoch": 0.9269812324291468,
|
| 1112 |
+
"grad_norm": 0.8777811527252197,
|
| 1113 |
+
"learning_rate": 3.7762456910059545e-07,
|
| 1114 |
+
"loss": 1.1222,
|
| 1115 |
+
"mean_token_accuracy": 0.7371740919351578,
|
| 1116 |
+
"num_tokens": 315885578.0,
|
| 1117 |
+
"step": 3050
|
| 1118 |
+
},
|
| 1119 |
+
{
|
| 1120 |
+
"epoch": 0.9345794392523364,
|
| 1121 |
+
"grad_norm": 0.9783887267112732,
|
| 1122 |
+
"learning_rate": 3.3845189595738017e-07,
|
| 1123 |
+
"loss": 1.1018,
|
| 1124 |
+
"mean_token_accuracy": 0.7426222825050354,
|
| 1125 |
+
"num_tokens": 318443917.0,
|
| 1126 |
+
"step": 3075
|
| 1127 |
+
},
|
| 1128 |
+
{
|
| 1129 |
+
"epoch": 0.9421776460755261,
|
| 1130 |
+
"grad_norm": 0.8978294730186462,
|
| 1131 |
+
"learning_rate": 2.9927922281416484e-07,
|
| 1132 |
+
"loss": 1.1463,
|
| 1133 |
+
"mean_token_accuracy": 0.7316457951068878,
|
| 1134 |
+
"num_tokens": 321002620.0,
|
| 1135 |
+
"step": 3100
|
| 1136 |
+
},
|
| 1137 |
+
{
|
| 1138 |
+
"epoch": 0.9497758528987159,
|
| 1139 |
+
"grad_norm": 0.9735873937606812,
|
| 1140 |
+
"learning_rate": 2.6010654967094956e-07,
|
| 1141 |
+
"loss": 1.1119,
|
| 1142 |
+
"mean_token_accuracy": 0.7383992117643357,
|
| 1143 |
+
"num_tokens": 323561038.0,
|
| 1144 |
+
"step": 3125
|
| 1145 |
+
},
|
| 1146 |
+
{
|
| 1147 |
+
"epoch": 0.9573740597219056,
|
| 1148 |
+
"grad_norm": 0.8766360282897949,
|
| 1149 |
+
"learning_rate": 2.2093387652773425e-07,
|
| 1150 |
+
"loss": 1.0943,
|
| 1151 |
+
"mean_token_accuracy": 0.7416167676448822,
|
| 1152 |
+
"num_tokens": 326152504.0,
|
| 1153 |
+
"step": 3150
|
| 1154 |
+
},
|
| 1155 |
+
{
|
| 1156 |
+
"epoch": 0.9649722665450954,
|
| 1157 |
+
"grad_norm": 0.8869988322257996,
|
| 1158 |
+
"learning_rate": 1.8176120338451897e-07,
|
| 1159 |
+
"loss": 1.1099,
|
| 1160 |
+
"mean_token_accuracy": 0.7376412642002106,
|
| 1161 |
+
"num_tokens": 328738142.0,
|
| 1162 |
+
"step": 3175
|
| 1163 |
+
},
|
| 1164 |
+
{
|
| 1165 |
+
"epoch": 0.9725704733682851,
|
| 1166 |
+
"grad_norm": 0.9266097545623779,
|
| 1167 |
+
"learning_rate": 1.4258853024130367e-07,
|
| 1168 |
+
"loss": 1.1165,
|
| 1169 |
+
"mean_token_accuracy": 0.7394632256031036,
|
| 1170 |
+
"num_tokens": 331295732.0,
|
| 1171 |
+
"step": 3200
|
| 1172 |
+
},
|
| 1173 |
+
{
|
| 1174 |
+
"epoch": 0.9801686801914749,
|
| 1175 |
+
"grad_norm": 0.9964390993118286,
|
| 1176 |
+
"learning_rate": 1.0341585709808838e-07,
|
| 1177 |
+
"loss": 1.1191,
|
| 1178 |
+
"mean_token_accuracy": 0.7373811560869217,
|
| 1179 |
+
"num_tokens": 333891414.0,
|
| 1180 |
+
"step": 3225
|
| 1181 |
+
},
|
| 1182 |
+
{
|
| 1183 |
+
"epoch": 0.9877668870146645,
|
| 1184 |
+
"grad_norm": 0.9817653298377991,
|
| 1185 |
+
"learning_rate": 6.424318395487308e-08,
|
| 1186 |
+
"loss": 1.1356,
|
| 1187 |
+
"mean_token_accuracy": 0.7354251599311828,
|
| 1188 |
+
"num_tokens": 336538563.0,
|
| 1189 |
+
"step": 3250
|
| 1190 |
+
},
|
| 1191 |
+
{
|
| 1192 |
+
"epoch": 0.9953650938378543,
|
| 1193 |
+
"grad_norm": 0.8675805330276489,
|
| 1194 |
+
"learning_rate": 2.507051081165779e-08,
|
| 1195 |
+
"loss": 1.1482,
|
| 1196 |
+
"mean_token_accuracy": 0.7319550043344498,
|
| 1197 |
+
"num_tokens": 339216210.0,
|
| 1198 |
+
"step": 3275
|
| 1199 |
+
}
|
| 1200 |
+
],
|
| 1201 |
+
"logging_steps": 25,
|
| 1202 |
+
"max_steps": 3290,
|
| 1203 |
+
"num_input_tokens_seen": 0,
|
| 1204 |
+
"num_train_epochs": 1,
|
| 1205 |
+
"save_steps": 1000,
|
| 1206 |
+
"stateful_callbacks": {
|
| 1207 |
+
"TrainerControl": {
|
| 1208 |
+
"args": {
|
| 1209 |
+
"should_epoch_stop": false,
|
| 1210 |
+
"should_evaluate": false,
|
| 1211 |
+
"should_log": false,
|
| 1212 |
+
"should_save": true,
|
| 1213 |
+
"should_training_stop": true
|
| 1214 |
+
},
|
| 1215 |
+
"attributes": {}
|
| 1216 |
+
}
|
| 1217 |
+
},
|
| 1218 |
+
"total_flos": 1.8698621709430292e+18,
|
| 1219 |
+
"train_batch_size": 4,
|
| 1220 |
+
"trial_name": null,
|
| 1221 |
+
"trial_params": null
|
| 1222 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:56ed8a20d75838e68b4b9c64cec17c2d7ad2d9597671b5bf4a16124c4f707494
|
| 3 |
+
size 7352
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import gc
|
| 25 |
+
import json
|
| 26 |
+
import numpy as np
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
from collections import OrderedDict
|
| 29 |
+
from dataclasses import dataclass
|
| 30 |
+
|
| 31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 33 |
+
from deepspeed.utils import logger
|
| 34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class zero_model_state:
|
| 41 |
+
buffers: dict()
|
| 42 |
+
param_shapes: dict()
|
| 43 |
+
shared_params: list
|
| 44 |
+
ds_version: int
|
| 45 |
+
frozen_param_shapes: dict()
|
| 46 |
+
frozen_param_fragments: dict()
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
debug = 0
|
| 50 |
+
|
| 51 |
+
# load to cpu
|
| 52 |
+
device = torch.device('cpu')
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def atoi(text):
|
| 56 |
+
return int(text) if text.isdigit() else text
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def natural_keys(text):
|
| 60 |
+
'''
|
| 61 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 63 |
+
(See Toothy's implementation in the comments)
|
| 64 |
+
'''
|
| 65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 69 |
+
if not os.path.isdir(checkpoint_dir):
|
| 70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 71 |
+
|
| 72 |
+
# there should be only one file
|
| 73 |
+
if zero_stage <= 2:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 75 |
+
elif zero_stage == 3:
|
| 76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 77 |
+
|
| 78 |
+
if not os.path.exists(file):
|
| 79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 80 |
+
|
| 81 |
+
return file
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 87 |
+
|
| 88 |
+
if len(ckpt_files) == 0:
|
| 89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 90 |
+
|
| 91 |
+
return ckpt_files
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def get_optim_files(checkpoint_dir):
|
| 95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_model_state_files(checkpoint_dir):
|
| 99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def parse_model_states(files):
|
| 103 |
+
zero_model_states = []
|
| 104 |
+
for file in files:
|
| 105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
| 106 |
+
|
| 107 |
+
if BUFFER_NAMES not in state_dict:
|
| 108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 110 |
+
if debug:
|
| 111 |
+
print("Found buffers:", buffer_names)
|
| 112 |
+
|
| 113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 116 |
+
|
| 117 |
+
# collect parameters that are included in param_shapes
|
| 118 |
+
param_names = []
|
| 119 |
+
for s in param_shapes:
|
| 120 |
+
for name in s.keys():
|
| 121 |
+
param_names.append(name)
|
| 122 |
+
|
| 123 |
+
# update with frozen parameters
|
| 124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 125 |
+
if frozen_param_shapes is not None:
|
| 126 |
+
if debug:
|
| 127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 128 |
+
param_names += list(frozen_param_shapes.keys())
|
| 129 |
+
|
| 130 |
+
# handle shared params
|
| 131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 132 |
+
|
| 133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 134 |
+
|
| 135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 136 |
+
|
| 137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 138 |
+
param_shapes=param_shapes,
|
| 139 |
+
shared_params=shared_params,
|
| 140 |
+
ds_version=ds_version,
|
| 141 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 142 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 143 |
+
zero_model_states.append(z_model_state)
|
| 144 |
+
|
| 145 |
+
return zero_model_states
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 149 |
+
total_files = len(files)
|
| 150 |
+
state_dicts = []
|
| 151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
| 152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
| 153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 154 |
+
# and also handle the case where it was already removed by another helper script
|
| 155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 156 |
+
state_dicts.append(state_dict)
|
| 157 |
+
|
| 158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 162 |
+
|
| 163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 165 |
+
# use the max of the partition_count to get the dp world_size.
|
| 166 |
+
|
| 167 |
+
if type(world_size) is list:
|
| 168 |
+
world_size = max(world_size)
|
| 169 |
+
|
| 170 |
+
if world_size != total_files:
|
| 171 |
+
raise ValueError(
|
| 172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
# the groups are named differently in each stage
|
| 177 |
+
if zero_stage <= 2:
|
| 178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 179 |
+
elif zero_stage == 3:
|
| 180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 181 |
+
else:
|
| 182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 183 |
+
|
| 184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 185 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 189 |
+
"""
|
| 190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 194 |
+
|
| 195 |
+
"""
|
| 196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 197 |
+
|
| 198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 201 |
+
|
| 202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 203 |
+
|
| 204 |
+
zero_model_states = parse_model_states(model_files)
|
| 205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 206 |
+
|
| 207 |
+
if zero_stage <= 2:
|
| 208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 209 |
+
exclude_frozen_parameters)
|
| 210 |
+
elif zero_stage == 3:
|
| 211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 212 |
+
exclude_frozen_parameters)
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
+
return
|
| 218 |
+
|
| 219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
+
|
| 222 |
+
if debug:
|
| 223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
+
|
| 226 |
+
wanted_params = len(frozen_param_shapes)
|
| 227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
+
|
| 232 |
+
total_params = 0
|
| 233 |
+
total_numel = 0
|
| 234 |
+
for name, shape in frozen_param_shapes.items():
|
| 235 |
+
total_params += 1
|
| 236 |
+
unpartitioned_numel = shape.numel()
|
| 237 |
+
total_numel += unpartitioned_numel
|
| 238 |
+
|
| 239 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
+
|
| 241 |
+
if debug:
|
| 242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
+
|
| 244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _has_callable(obj, fn):
|
| 248 |
+
attr = getattr(obj, fn, None)
|
| 249 |
+
return callable(attr)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 253 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 254 |
+
|
| 255 |
+
# Reconstruction protocol:
|
| 256 |
+
#
|
| 257 |
+
# XXX: document this
|
| 258 |
+
|
| 259 |
+
if debug:
|
| 260 |
+
for i in range(world_size):
|
| 261 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 263 |
+
|
| 264 |
+
# XXX: memory usage doubles here (zero2)
|
| 265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 266 |
+
merged_single_partition_of_fp32_groups = []
|
| 267 |
+
for i in range(num_param_groups):
|
| 268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 271 |
+
avail_numel = sum(
|
| 272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 273 |
+
|
| 274 |
+
if debug:
|
| 275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 277 |
+
# not asserting if there is a mismatch due to possible padding
|
| 278 |
+
print(f"Have {avail_numel} numels to process.")
|
| 279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 280 |
+
|
| 281 |
+
# params
|
| 282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 283 |
+
# out-of-core computing solution
|
| 284 |
+
total_numel = 0
|
| 285 |
+
total_params = 0
|
| 286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 287 |
+
offset = 0
|
| 288 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 289 |
+
for name, shape in shapes.items():
|
| 290 |
+
|
| 291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 292 |
+
total_numel += unpartitioned_numel
|
| 293 |
+
total_params += 1
|
| 294 |
+
|
| 295 |
+
if debug:
|
| 296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 298 |
+
offset += unpartitioned_numel
|
| 299 |
+
|
| 300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 304 |
+
align_to = 2 * world_size
|
| 305 |
+
|
| 306 |
+
def zero2_align(x):
|
| 307 |
+
return align_to * math.ceil(x / align_to)
|
| 308 |
+
|
| 309 |
+
if debug:
|
| 310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 311 |
+
|
| 312 |
+
offset = zero2_align(offset)
|
| 313 |
+
avail_numel = zero2_align(avail_numel)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
# Sanity check
|
| 319 |
+
if offset != avail_numel:
|
| 320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 321 |
+
|
| 322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 326 |
+
exclude_frozen_parameters):
|
| 327 |
+
state_dict = OrderedDict()
|
| 328 |
+
|
| 329 |
+
# buffers
|
| 330 |
+
buffers = zero_model_states[0].buffers
|
| 331 |
+
state_dict.update(buffers)
|
| 332 |
+
if debug:
|
| 333 |
+
print(f"added {len(buffers)} buffers")
|
| 334 |
+
|
| 335 |
+
if not exclude_frozen_parameters:
|
| 336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 337 |
+
|
| 338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 339 |
+
|
| 340 |
+
# recover shared parameters
|
| 341 |
+
for pair in zero_model_states[0].shared_params:
|
| 342 |
+
if pair[1] in state_dict:
|
| 343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 344 |
+
|
| 345 |
+
return state_dict
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 349 |
+
remainder = unpartitioned_numel % world_size
|
| 350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 352 |
+
return partitioned_numel, padding_numel
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
if debug:
|
| 360 |
+
for i in range(world_size):
|
| 361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 363 |
+
|
| 364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 365 |
+
wanted_params = len(frozen_param_shapes)
|
| 366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 370 |
+
|
| 371 |
+
total_params = 0
|
| 372 |
+
total_numel = 0
|
| 373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 374 |
+
total_params += 1
|
| 375 |
+
unpartitioned_numel = shape.numel()
|
| 376 |
+
total_numel += unpartitioned_numel
|
| 377 |
+
|
| 378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 380 |
+
|
| 381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 382 |
+
|
| 383 |
+
if debug:
|
| 384 |
+
print(
|
| 385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
class GatheredTensor:
|
| 392 |
+
"""
|
| 393 |
+
A pseudo tensor that collects partitioned weights.
|
| 394 |
+
It is more memory efficient when there are multiple groups.
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
| 398 |
+
self.flat_groups = flat_groups
|
| 399 |
+
self.flat_groups_offset = flat_groups_offset
|
| 400 |
+
self.offset = offset
|
| 401 |
+
self.partitioned_numel = partitioned_numel
|
| 402 |
+
self.shape = shape
|
| 403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
| 404 |
+
|
| 405 |
+
def contiguous(self):
|
| 406 |
+
"""
|
| 407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
| 408 |
+
"""
|
| 409 |
+
end_idx = self.offset + self.partitioned_numel
|
| 410 |
+
world_size = len(self.flat_groups)
|
| 411 |
+
pad_flat_param_chunks = []
|
| 412 |
+
|
| 413 |
+
for rank_i in range(world_size):
|
| 414 |
+
# for each rank, we need to collect weights from related group/groups
|
| 415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
| 416 |
+
start_group_id = None
|
| 417 |
+
end_group_id = None
|
| 418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
| 419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
| 420 |
+
start_group_id = group_id
|
| 421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
| 422 |
+
end_group_id = group_id
|
| 423 |
+
break
|
| 424 |
+
# collect weights from related group/groups
|
| 425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
| 426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
| 427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
| 428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
| 429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
| 430 |
+
|
| 431 |
+
# collect weights from all ranks
|
| 432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
| 433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
| 434 |
+
return param
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 438 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
| 440 |
+
|
| 441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 443 |
+
|
| 444 |
+
# merge list of dicts, preserving order
|
| 445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 446 |
+
|
| 447 |
+
if debug:
|
| 448 |
+
for i in range(world_size):
|
| 449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 450 |
+
|
| 451 |
+
wanted_params = len(param_shapes)
|
| 452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 453 |
+
# not asserting if there is a mismatch due to possible padding
|
| 454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 457 |
+
|
| 458 |
+
# params
|
| 459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 460 |
+
# out-of-core computing solution
|
| 461 |
+
offset = 0
|
| 462 |
+
total_numel = 0
|
| 463 |
+
total_params = 0
|
| 464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
| 465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
| 466 |
+
unpartitioned_numel = shape.numel()
|
| 467 |
+
total_numel += unpartitioned_numel
|
| 468 |
+
total_params += 1
|
| 469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 470 |
+
|
| 471 |
+
if debug:
|
| 472 |
+
print(
|
| 473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# memory efficient tensor
|
| 477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
| 478 |
+
state_dict[name] = tensor
|
| 479 |
+
offset += partitioned_numel
|
| 480 |
+
|
| 481 |
+
offset *= world_size
|
| 482 |
+
|
| 483 |
+
# Sanity check
|
| 484 |
+
if offset != avail_numel:
|
| 485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 486 |
+
|
| 487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 491 |
+
exclude_frozen_parameters):
|
| 492 |
+
state_dict = OrderedDict()
|
| 493 |
+
|
| 494 |
+
# buffers
|
| 495 |
+
buffers = zero_model_states[0].buffers
|
| 496 |
+
state_dict.update(buffers)
|
| 497 |
+
if debug:
|
| 498 |
+
print(f"added {len(buffers)} buffers")
|
| 499 |
+
|
| 500 |
+
if not exclude_frozen_parameters:
|
| 501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 502 |
+
|
| 503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 504 |
+
|
| 505 |
+
# recover shared parameters
|
| 506 |
+
for pair in zero_model_states[0].shared_params:
|
| 507 |
+
if pair[1] in state_dict:
|
| 508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 509 |
+
|
| 510 |
+
return state_dict
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
| 514 |
+
"""
|
| 515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
| 516 |
+
"""
|
| 517 |
+
torch_state_dict = {}
|
| 518 |
+
converted_tensors = {}
|
| 519 |
+
for name, tensor in state_dict.items():
|
| 520 |
+
tensor_id = id(tensor)
|
| 521 |
+
if tensor_id in converted_tensors: # shared tensors
|
| 522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
| 523 |
+
torch_state_dict[name] = shared_tensor
|
| 524 |
+
else:
|
| 525 |
+
converted_tensors[tensor_id] = name
|
| 526 |
+
if return_empty_tensor:
|
| 527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
| 528 |
+
else:
|
| 529 |
+
torch_state_dict[name] = tensor.contiguous()
|
| 530 |
+
return torch_state_dict
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 534 |
+
tag=None,
|
| 535 |
+
exclude_frozen_parameters=False,
|
| 536 |
+
lazy_mode=False):
|
| 537 |
+
"""
|
| 538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 540 |
+
via a model hub.
|
| 541 |
+
|
| 542 |
+
Args:
|
| 543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
| 547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
| 548 |
+
|
| 549 |
+
Returns:
|
| 550 |
+
- pytorch ``state_dict``
|
| 551 |
+
|
| 552 |
+
A typical usage might be ::
|
| 553 |
+
|
| 554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 555 |
+
# do the training and checkpoint saving
|
| 556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 557 |
+
model = model.cpu() # move to cpu
|
| 558 |
+
model.load_state_dict(state_dict)
|
| 559 |
+
# submit to model hub or save the model to share with others
|
| 560 |
+
|
| 561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 564 |
+
|
| 565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 566 |
+
|
| 567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
| 568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
| 570 |
+
|
| 571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
| 573 |
+
for name, lazy_tensor in state_dict.item():
|
| 574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
| 575 |
+
print(name, tensor)
|
| 576 |
+
# del tensor to release memory if it no longer in use
|
| 577 |
+
"""
|
| 578 |
+
if tag is None:
|
| 579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 580 |
+
if os.path.isfile(latest_path):
|
| 581 |
+
with open(latest_path, 'r') as fd:
|
| 582 |
+
tag = fd.read().strip()
|
| 583 |
+
else:
|
| 584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 585 |
+
|
| 586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 587 |
+
|
| 588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 590 |
+
|
| 591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 592 |
+
if lazy_mode:
|
| 593 |
+
return state_dict
|
| 594 |
+
else:
|
| 595 |
+
return to_torch_tensor(state_dict)
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 599 |
+
output_dir,
|
| 600 |
+
max_shard_size="5GB",
|
| 601 |
+
safe_serialization=False,
|
| 602 |
+
tag=None,
|
| 603 |
+
exclude_frozen_parameters=False):
|
| 604 |
+
"""
|
| 605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 607 |
+
|
| 608 |
+
Args:
|
| 609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
# Dependency pre-check
|
| 618 |
+
if safe_serialization:
|
| 619 |
+
try:
|
| 620 |
+
from safetensors.torch import save_file
|
| 621 |
+
except ImportError:
|
| 622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 623 |
+
raise
|
| 624 |
+
if max_shard_size is not None:
|
| 625 |
+
try:
|
| 626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 627 |
+
except ImportError:
|
| 628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 629 |
+
raise
|
| 630 |
+
|
| 631 |
+
# Convert zero checkpoint to state_dict
|
| 632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
| 633 |
+
tag,
|
| 634 |
+
exclude_frozen_parameters,
|
| 635 |
+
lazy_mode=True)
|
| 636 |
+
|
| 637 |
+
# Shard the model if it is too big.
|
| 638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 639 |
+
if max_shard_size is not None:
|
| 640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 641 |
+
# an memory-efficient approach for sharding
|
| 642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
| 643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
| 644 |
+
filename_pattern=filename_pattern,
|
| 645 |
+
max_shard_size=max_shard_size)
|
| 646 |
+
else:
|
| 647 |
+
from collections import namedtuple
|
| 648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 651 |
+
|
| 652 |
+
# Save the model by shard
|
| 653 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
| 657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
| 658 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 659 |
+
if safe_serialization:
|
| 660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
| 661 |
+
else:
|
| 662 |
+
torch.save(shard_state_dict, output_path)
|
| 663 |
+
# release the memory of current shard
|
| 664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
| 665 |
+
del state_dict[tensor_name]
|
| 666 |
+
del shard_state_dict[tensor_name]
|
| 667 |
+
del shard_state_dict
|
| 668 |
+
gc.collect()
|
| 669 |
+
|
| 670 |
+
# Save index if sharded
|
| 671 |
+
if state_dict_split.is_sharded:
|
| 672 |
+
index = {
|
| 673 |
+
"metadata": state_dict_split.metadata,
|
| 674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 675 |
+
}
|
| 676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 680 |
+
f.write(content)
|
| 681 |
+
|
| 682 |
+
|
| 683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 684 |
+
"""
|
| 685 |
+
1. Put the provided model to cpu
|
| 686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 687 |
+
3. Load it into the provided model
|
| 688 |
+
|
| 689 |
+
Args:
|
| 690 |
+
- ``model``: the model object to update
|
| 691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 693 |
+
|
| 694 |
+
Returns:
|
| 695 |
+
- ``model`: modified model
|
| 696 |
+
|
| 697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 699 |
+
conveniently placed for you in the checkpoint folder.
|
| 700 |
+
|
| 701 |
+
A typical usage might be ::
|
| 702 |
+
|
| 703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 705 |
+
# submit to model hub or save the model to share with others
|
| 706 |
+
|
| 707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 710 |
+
|
| 711 |
+
"""
|
| 712 |
+
logger.info(f"Extracting fp32 weights")
|
| 713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 714 |
+
|
| 715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 716 |
+
model = model.cpu()
|
| 717 |
+
model.load_state_dict(state_dict, strict=False)
|
| 718 |
+
|
| 719 |
+
return model
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
if __name__ == "__main__":
|
| 723 |
+
parser = argparse.ArgumentParser()
|
| 724 |
+
parser.add_argument("checkpoint_dir",
|
| 725 |
+
type=str,
|
| 726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 727 |
+
parser.add_argument("output_dir",
|
| 728 |
+
type=str,
|
| 729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 730 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 731 |
+
parser.add_argument(
|
| 732 |
+
"--max_shard_size",
|
| 733 |
+
type=str,
|
| 734 |
+
default="5GB",
|
| 735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 738 |
+
"without CPU OOM issues.")
|
| 739 |
+
parser.add_argument(
|
| 740 |
+
"--safe_serialization",
|
| 741 |
+
default=False,
|
| 742 |
+
action='store_true',
|
| 743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 744 |
+
parser.add_argument("-t",
|
| 745 |
+
"--tag",
|
| 746 |
+
type=str,
|
| 747 |
+
default=None,
|
| 748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 751 |
+
args = parser.parse_args()
|
| 752 |
+
|
| 753 |
+
debug = args.debug
|
| 754 |
+
|
| 755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 756 |
+
args.output_dir,
|
| 757 |
+
max_shard_size=args.max_shard_size,
|
| 758 |
+
safe_serialization=args.safe_serialization,
|
| 759 |
+
tag=args.tag,
|
| 760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|