datnguyentien204 commited on
Commit
0f52c9d
·
verified ·
1 Parent(s): 1793304

Upload 147 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -35
  2. .idea/.gitignore +8 -0
  3. .idea/CR-Net.iml +12 -0
  4. .idea/deployment.xml +14 -0
  5. .idea/inspectionProfiles/Project_Default.xml +166 -0
  6. .idea/inspectionProfiles/profiles_settings.xml +6 -0
  7. .idea/modules.xml +8 -0
  8. .idea/vcs.xml +6 -0
  9. .idea/workspace.xml +87 -0
  10. LICENSE +22 -0
  11. README.md +140 -3
  12. data/__init__.py +45 -0
  13. data/__pycache__/__init__.cpython-310.pyc +0 -0
  14. data/__pycache__/base_dataset.cpython-310.pyc +0 -0
  15. data/__pycache__/image_folder.cpython-310.pyc +0 -0
  16. data/__pycache__/n2h_dataset.cpython-310.pyc +0 -0
  17. data/__pycache__/pix2pix_dataset.cpython-310.pyc +0 -0
  18. data/__pycache__/single_folder_dataset.cpython-310.pyc +0 -0
  19. data/__pycache__/summer2winteryosemite_dataset.cpython-310.pyc +0 -0
  20. data/__pycache__/unaligned_day_night_dataset.cpython-310.pyc +0 -0
  21. data/ade20k_dataset.py +48 -0
  22. data/base_dataset.py +125 -0
  23. data/cityscapes_dataset.py +46 -0
  24. data/custom_dataset.py +45 -0
  25. data/day2night_dataset.py +43 -0
  26. data/image_folder.py +93 -0
  27. data/n2h_dataset.py +86 -0
  28. data/photo2art_dataset.py +43 -0
  29. data/pix2pix_dataset.py +107 -0
  30. data/single_folder_dataset.py +51 -0
  31. data/summer2winteryosemite_dataset.py +42 -0
  32. data/sunny2diffweathers_dataset.py +54 -0
  33. data/unaligned_day_night_dataset.py +53 -0
  34. datasets/bdd100k_lists/day2night/day_test.txt +1764 -0
  35. datasets/bdd100k_lists/day2night/day_train.txt +0 -0
  36. datasets/bdd100k_lists/day2night/night_test.txt +0 -0
  37. datasets/bdd100k_lists/day2night/night_train.txt +0 -0
  38. datasets/bdd100k_lists/sunny2diffweathers/cloudy_test.txt +50 -0
  39. datasets/bdd100k_lists/sunny2diffweathers/cloudy_train.txt +0 -0
  40. datasets/bdd100k_lists/sunny2diffweathers/night_test.txt +50 -0
  41. datasets/bdd100k_lists/sunny2diffweathers/night_train.txt +0 -0
  42. datasets/bdd100k_lists/sunny2diffweathers/rainy_test.txt +50 -0
  43. datasets/bdd100k_lists/sunny2diffweathers/rainy_train.txt +0 -0
  44. datasets/bdd100k_lists/sunny2diffweathers/snowy_test.txt +50 -0
  45. datasets/bdd100k_lists/sunny2diffweathers/snowy_train.txt +0 -0
  46. datasets/bdd100k_lists/sunny2diffweathers/sunny_test.txt +200 -0
  47. datasets/bdd100k_lists/sunny2diffweathers/sunny_train.txt +0 -0
  48. datasets/prepare_ade20k.sh +7 -0
  49. datasets/prepare_bdd100k.sh +8 -0
  50. datasets/prepare_cityscapes.sh +7 -0
.gitattributes CHANGED
@@ -1,35 +1,2 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ *.gif filter=lfs diff=lfs merge=lfs -text
2
+ preview/structures.jpg filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.idea/.gitignore ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # Default ignored files
2
+ /shelf/
3
+ /workspace.xml
4
+ # Editor-based HTTP Client requests
5
+ /httpRequests/
6
+ # Datasource local storage ignored files
7
+ /dataSources/
8
+ /dataSources.local.xml
.idea/CR-Net.iml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <module type="PYTHON_MODULE" version="4">
3
+ <component name="NewModuleRootManager">
4
+ <content url="file://$MODULE_DIR$" />
5
+ <orderEntry type="inheritedJdk" />
6
+ <orderEntry type="sourceFolder" forTests="false" />
7
+ </component>
8
+ <component name="PyDocumentationSettings">
9
+ <option name="format" value="GOOGLE" />
10
+ <option name="myDocStringFormat" value="Google" />
11
+ </component>
12
+ </module>
.idea/deployment.xml ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="PublishConfigData" remoteFilesAllowedToDisappearOnAutoupload="false">
4
+ <serverData>
5
+ <paths name="[email protected]:8888 password">
6
+ <serverdata>
7
+ <mappings>
8
+ <mapping local="$PROJECT_DIR$" web="/" />
9
+ </mappings>
10
+ </serverdata>
11
+ </paths>
12
+ </serverData>
13
+ </component>
14
+ </project>
.idea/inspectionProfiles/Project_Default.xml ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <profile version="1.0">
3
+ <option name="myName" value="Project Default" />
4
+ <inspection_tool class="Eslint" enabled="true" level="WARNING" enabled_by_default="true" />
5
+ <inspection_tool class="JupyterPackageInspection" enabled="false" level="WARNING" enabled_by_default="false" />
6
+ <inspection_tool class="MicroPythonRequirements" enabled="false" level="WARNING" enabled_by_default="false" />
7
+ <inspection_tool class="PyInterpreterInspection" enabled="true" level="INFORMATION" enabled_by_default="true" />
8
+ <inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
9
+ <option name="ignoredPackages">
10
+ <value>
11
+ <list size="149">
12
+ <item index="0" class="java.lang.String" itemvalue="scipy" />
13
+ <item index="1" class="java.lang.String" itemvalue="tensorflow" />
14
+ <item index="2" class="java.lang.String" itemvalue="h5py" />
15
+ <item index="3" class="java.lang.String" itemvalue="keras" />
16
+ <item index="4" class="java.lang.String" itemvalue="pandas" />
17
+ <item index="5" class="java.lang.String" itemvalue="filterpy" />
18
+ <item index="6" class="java.lang.String" itemvalue="opencv-python" />
19
+ <item index="7" class="java.lang.String" itemvalue="ultralytics" />
20
+ <item index="8" class="java.lang.String" itemvalue="easyocr" />
21
+ <item index="9" class="java.lang.String" itemvalue="numpy" />
22
+ <item index="10" class="java.lang.String" itemvalue="numba" />
23
+ <item index="11" class="java.lang.String" itemvalue="protobuf" />
24
+ <item index="12" class="java.lang.String" itemvalue="tensorflow-estimator" />
25
+ <item index="13" class="java.lang.String" itemvalue="joblib" />
26
+ <item index="14" class="java.lang.String" itemvalue="threadpoolctl" />
27
+ <item index="15" class="java.lang.String" itemvalue="cython" />
28
+ <item index="16" class="java.lang.String" itemvalue="validators" />
29
+ <item index="17" class="java.lang.String" itemvalue="extra-streamlit-components" />
30
+ <item index="18" class="java.lang.String" itemvalue="lapx" />
31
+ <item index="19" class="java.lang.String" itemvalue="filelock" />
32
+ <item index="20" class="java.lang.String" itemvalue="certifi" />
33
+ <item index="21" class="java.lang.String" itemvalue="imutils" />
34
+ <item index="22" class="java.lang.String" itemvalue="gitpython" />
35
+ <item index="23" class="java.lang.String" itemvalue="jsonschema" />
36
+ <item index="24" class="java.lang.String" itemvalue="jax" />
37
+ <item index="25" class="java.lang.String" itemvalue="libclang" />
38
+ <item index="26" class="java.lang.String" itemvalue="werkzeug" />
39
+ <item index="27" class="java.lang.String" itemvalue="tensorboard-data-server" />
40
+ <item index="28" class="java.lang.String" itemvalue="wrapt" />
41
+ <item index="29" class="java.lang.String" itemvalue="kiwisolver" />
42
+ <item index="30" class="java.lang.String" itemvalue="typing-extensions" />
43
+ <item index="31" class="java.lang.String" itemvalue="click" />
44
+ <item index="32" class="java.lang.String" itemvalue="altair" />
45
+ <item index="33" class="java.lang.String" itemvalue="contourpy" />
46
+ <item index="34" class="java.lang.String" itemvalue="pyyaml" />
47
+ <item index="35" class="java.lang.String" itemvalue="fonttools" />
48
+ <item index="36" class="java.lang.String" itemvalue="imageio" />
49
+ <item index="37" class="java.lang.String" itemvalue="matplotlib" />
50
+ <item index="38" class="java.lang.String" itemvalue="charset-normalizer" />
51
+ <item index="39" class="java.lang.String" itemvalue="referencing" />
52
+ <item index="40" class="java.lang.String" itemvalue="decorator" />
53
+ <item index="41" class="java.lang.String" itemvalue="llvmlite" />
54
+ <item index="42" class="java.lang.String" itemvalue="importlib-metadata" />
55
+ <item index="43" class="java.lang.String" itemvalue="rpds-py" />
56
+ <item index="44" class="java.lang.String" itemvalue="sv-ttk" />
57
+ <item index="45" class="java.lang.String" itemvalue="zipp" />
58
+ <item index="46" class="java.lang.String" itemvalue="tenacity" />
59
+ <item index="47" class="java.lang.String" itemvalue="flask-cors" />
60
+ <item index="48" class="java.lang.String" itemvalue="markdown" />
61
+ <item index="49" class="java.lang.String" itemvalue="pygments" />
62
+ <item index="50" class="java.lang.String" itemvalue="pyarrow" />
63
+ <item index="51" class="java.lang.String" itemvalue="pyzbar" />
64
+ <item index="52" class="java.lang.String" itemvalue="tornado" />
65
+ <item index="53" class="java.lang.String" itemvalue="plotly" />
66
+ <item index="54" class="java.lang.String" itemvalue="termcolor" />
67
+ <item index="55" class="java.lang.String" itemvalue="importlib-resources" />
68
+ <item index="56" class="java.lang.String" itemvalue="grpcio" />
69
+ <item index="57" class="java.lang.String" itemvalue="forest-ttk" />
70
+ <item index="58" class="java.lang.String" itemvalue="pytz" />
71
+ <item index="59" class="java.lang.String" itemvalue="google-auth" />
72
+ <item index="60" class="java.lang.String" itemvalue="sklearn" />
73
+ <item index="61" class="java.lang.String" itemvalue="pyvi" />
74
+ <item index="62" class="java.lang.String" itemvalue="gunicorn" />
75
+ <item index="63" class="java.lang.String" itemvalue="torch" />
76
+ <item index="64" class="java.lang.String" itemvalue="scikit_learn" />
77
+ <item index="65" class="java.lang.String" itemvalue="streamlit" />
78
+ <item index="66" class="java.lang.String" itemvalue="scikit-learn" />
79
+ <item index="67" class="java.lang.String" itemvalue="regex" />
80
+ <item index="68" class="java.lang.String" itemvalue="seaborn" />
81
+ <item index="69" class="java.lang.String" itemvalue="tabulate" />
82
+ <item index="70" class="java.lang.String" itemvalue="gdown" />
83
+ <item index="71" class="java.lang.String" itemvalue="Keras" />
84
+ <item index="72" class="java.lang.String" itemvalue="thop" />
85
+ <item index="73" class="java.lang.String" itemvalue="ruamel.yaml" />
86
+ <item index="74" class="java.lang.String" itemvalue="timm" />
87
+ <item index="75" class="java.lang.String" itemvalue="underthesea" />
88
+ <item index="76" class="java.lang.String" itemvalue="tqdm" />
89
+ <item index="77" class="java.lang.String" itemvalue="dill" />
90
+ <item index="78" class="java.lang.String" itemvalue="Pillow" />
91
+ <item index="79" class="java.lang.String" itemvalue="beautifulsoup4" />
92
+ <item index="80" class="java.lang.String" itemvalue="python-dateutil" />
93
+ <item index="81" class="java.lang.String" itemvalue="lxml" />
94
+ <item index="82" class="java.lang.String" itemvalue="soupsieve" />
95
+ <item index="83" class="java.lang.String" itemvalue="cycler" />
96
+ <item index="84" class="java.lang.String" itemvalue="pyparsing" />
97
+ <item index="85" class="java.lang.String" itemvalue="torchtext" />
98
+ <item index="86" class="java.lang.String" itemvalue="pytorch-lightning" />
99
+ <item index="87" class="java.lang.String" itemvalue="torchvision" />
100
+ <item index="88" class="java.lang.String" itemvalue="torchaudio" />
101
+ <item index="89" class="java.lang.String" itemvalue="scikit-image" />
102
+ <item index="90" class="java.lang.String" itemvalue="pythreejs" />
103
+ <item index="91" class="java.lang.String" itemvalue="cupy" />
104
+ <item index="92" class="java.lang.String" itemvalue="torchviz" />
105
+ <item index="93" class="java.lang.String" itemvalue="tensorboardX" />
106
+ <item index="94" class="java.lang.String" itemvalue="graphviz" />
107
+ <item index="95" class="java.lang.String" itemvalue="torchview" />
108
+ <item index="96" class="java.lang.String" itemvalue="einops" />
109
+ <item index="97" class="java.lang.String" itemvalue="dominate" />
110
+ <item index="98" class="java.lang.String" itemvalue="torchinfo" />
111
+ <item index="99" class="java.lang.String" itemvalue="mediapipe" />
112
+ <item index="100" class="java.lang.String" itemvalue="PyQt5" />
113
+ <item index="101" class="java.lang.String" itemvalue="pip" />
114
+ <item index="102" class="java.lang.String" itemvalue="onnxruntime-gpu" />
115
+ <item index="103" class="java.lang.String" itemvalue="onnxruntime" />
116
+ <item index="104" class="java.lang.String" itemvalue="onnxslim" />
117
+ <item index="105" class="java.lang.String" itemvalue="gradio" />
118
+ <item index="106" class="java.lang.String" itemvalue="huggingface-hub" />
119
+ <item index="107" class="java.lang.String" itemvalue="PyYAML" />
120
+ <item index="108" class="java.lang.String" itemvalue="safetensors" />
121
+ <item index="109" class="java.lang.String" itemvalue="py-cpuinfo" />
122
+ <item index="110" class="java.lang.String" itemvalue="onnx" />
123
+ <item index="111" class="java.lang.String" itemvalue="pycocotools" />
124
+ <item index="112" class="java.lang.String" itemvalue="psutil" />
125
+ <item index="113" class="java.lang.String" itemvalue="absl-py" />
126
+ <item index="114" class="java.lang.String" itemvalue="rsa" />
127
+ <item index="115" class="java.lang.String" itemvalue="pygame" />
128
+ <item index="116" class="java.lang.String" itemvalue="cffi" />
129
+ <item index="117" class="java.lang.String" itemvalue="setuptools" />
130
+ <item index="118" class="java.lang.String" itemvalue="gast" />
131
+ <item index="119" class="java.lang.String" itemvalue="pyasn1" />
132
+ <item index="120" class="java.lang.String" itemvalue="pycparser" />
133
+ <item index="121" class="java.lang.String" itemvalue="Jinja2" />
134
+ <item index="122" class="java.lang.String" itemvalue="ultralytics-thop" />
135
+ <item index="123" class="java.lang.String" itemvalue="dlib" />
136
+ <item index="124" class="java.lang.String" itemvalue="fsspec" />
137
+ <item index="125" class="java.lang.String" itemvalue="requests-oauthlib" />
138
+ <item index="126" class="java.lang.String" itemvalue="Keras-Preprocessing" />
139
+ <item index="127" class="java.lang.String" itemvalue="PyQt5-Qt5" />
140
+ <item index="128" class="java.lang.String" itemvalue="sounddevice" />
141
+ <item index="129" class="java.lang.String" itemvalue="tensorboard-plugin-wit" />
142
+ <item index="130" class="java.lang.String" itemvalue="sentencepiece" />
143
+ <item index="131" class="java.lang.String" itemvalue="oauthlib" />
144
+ <item index="132" class="java.lang.String" itemvalue="PyQt5_sip" />
145
+ <item index="133" class="java.lang.String" itemvalue="urllib3" />
146
+ <item index="134" class="java.lang.String" itemvalue="Markdown" />
147
+ <item index="135" class="java.lang.String" itemvalue="opencv-contrib-python" />
148
+ <item index="136" class="java.lang.String" itemvalue="six" />
149
+ <item index="137" class="java.lang.String" itemvalue="google-auth-oauthlib" />
150
+ <item index="138" class="java.lang.String" itemvalue="pyasn1_modules" />
151
+ <item index="139" class="java.lang.String" itemvalue="wheel" />
152
+ <item index="140" class="java.lang.String" itemvalue="ml_dtypes" />
153
+ <item index="141" class="java.lang.String" itemvalue="tzdata" />
154
+ <item index="142" class="java.lang.String" itemvalue="attrs" />
155
+ <item index="143" class="java.lang.String" itemvalue="flatbuffers" />
156
+ <item index="144" class="java.lang.String" itemvalue="tensorboard" />
157
+ <item index="145" class="java.lang.String" itemvalue="jaxlib" />
158
+ <item index="146" class="java.lang.String" itemvalue="cmake" />
159
+ <item index="147" class="java.lang.String" itemvalue="cachetools" />
160
+ <item index="148" class="java.lang.String" itemvalue="pillow" />
161
+ </list>
162
+ </value>
163
+ </option>
164
+ </inspection_tool>
165
+ </profile>
166
+ </component>
.idea/inspectionProfiles/profiles_settings.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <settings>
3
+ <option name="USE_PROJECT_PROFILE" value="false" />
4
+ <version value="1.0" />
5
+ </settings>
6
+ </component>
.idea/modules.xml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectModuleManager">
4
+ <modules>
5
+ <module fileurl="file://$PROJECT_DIR$/.idea/CR-Net.iml" filepath="$PROJECT_DIR$/.idea/CR-Net.iml" />
6
+ </modules>
7
+ </component>
8
+ </project>
.idea/vcs.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="VcsDirectoryMappings">
4
+ <mapping directory="$PROJECT_DIR$" vcs="Git" />
5
+ </component>
6
+ </project>
.idea/workspace.xml ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="AutoImportSettings">
4
+ <option name="autoReloadType" value="SELECTIVE" />
5
+ </component>
6
+ <component name="ChangeListManager">
7
+ <list default="true" id="f894eb76-c26d-46f5-b7f4-0c360e23d7fc" name="Changes" comment="">
8
+ <change beforePath="$PROJECT_DIR$/README.md" beforeDir="false" afterPath="$PROJECT_DIR$/README.md" afterDir="false" />
9
+ </list>
10
+ <option name="SHOW_DIALOG" value="false" />
11
+ <option name="HIGHLIGHT_CONFLICTS" value="true" />
12
+ <option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
13
+ <option name="LAST_RESOLUTION" value="IGNORE" />
14
+ </component>
15
+ <component name="Git.Settings">
16
+ <option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
17
+ </component>
18
+ <component name="GitHubPullRequestSearchHistory">{
19
+ &quot;lastFilter&quot;: {
20
+ &quot;state&quot;: &quot;OPEN&quot;,
21
+ &quot;assignee&quot;: &quot;datnguyen-tien204&quot;
22
+ }
23
+ }</component>
24
+ <component name="GithubPullRequestsUISettings">{
25
+ &quot;selectedUrlAndAccountId&quot;: {
26
+ &quot;url&quot;: &quot;https://github.com/val-utehy/CR-Net.git&quot;,
27
+ &quot;accountId&quot;: &quot;0c95b572-1320-4e73-9184-1b0b292b6f8d&quot;
28
+ }
29
+ }</component>
30
+ <component name="ProjectColorInfo">{
31
+ &quot;associatedIndex&quot;: 6
32
+ }</component>
33
+ <component name="ProjectId" id="325dXfj7InNCP6QqKCtpxkWO7jA" />
34
+ <component name="ProjectViewState">
35
+ <option name="hideEmptyMiddlePackages" value="true" />
36
+ <option name="showLibraryContents" value="true" />
37
+ </component>
38
+ <component name="PropertiesComponent">{
39
+ &quot;keyToString&quot;: {
40
+ &quot;RunOnceActivity.ShowReadmeOnStart&quot;: &quot;true&quot;,
41
+ &quot;RunOnceActivity.git.unshallow&quot;: &quot;true&quot;,
42
+ &quot;git-widget-placeholder&quot;: &quot;main&quot;,
43
+ &quot;last_opened_file_path&quot;: &quot;E:/CR-Net/preview&quot;,
44
+ &quot;node.js.detected.package.eslint&quot;: &quot;true&quot;,
45
+ &quot;node.js.detected.package.tslint&quot;: &quot;true&quot;,
46
+ &quot;node.js.selected.package.eslint&quot;: &quot;(autodetect)&quot;,
47
+ &quot;node.js.selected.package.tslint&quot;: &quot;(autodetect)&quot;,
48
+ &quot;nodejs_package_manager_path&quot;: &quot;npm&quot;,
49
+ &quot;vue.rearranger.settings.migration&quot;: &quot;true&quot;
50
+ }
51
+ }</component>
52
+ <component name="RecentsManager">
53
+ <key name="CopyFile.RECENT_KEYS">
54
+ <recent name="E:\CR-Net\preview" />
55
+ <recent name="E:\CR-Net" />
56
+ </key>
57
+ <key name="MoveFile.RECENT_KEYS">
58
+ <recent name="E:\CR-Net" />
59
+ </key>
60
+ </component>
61
+ <component name="SharedIndexes">
62
+ <attachedChunks>
63
+ <set>
64
+ <option value="bundled-js-predefined-d6986cc7102b-822845ee3bb5-JavaScript-PY-243.23654.177" />
65
+ <option value="bundled-python-sdk-91d3a02ef49d-43b77aa2d136-com.jetbrains.pycharm.pro.sharedIndexes.bundled-PY-243.23654.177" />
66
+ </set>
67
+ </attachedChunks>
68
+ </component>
69
+ <component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
70
+ <component name="TaskManager">
71
+ <task active="true" id="Default" summary="Default task">
72
+ <changelist id="f894eb76-c26d-46f5-b7f4-0c360e23d7fc" name="Changes" comment="" />
73
+ <created>1756714407739</created>
74
+ <option name="number" value="Default" />
75
+ <option name="presentableId" value="Default" />
76
+ <updated>1756714407739</updated>
77
+ <workItem from="1756714408892" duration="8828000" />
78
+ <workItem from="1756736192871" duration="2177000" />
79
+ <workItem from="1756758579128" duration="136000" />
80
+ <workItem from="1756914782264" duration="299000" />
81
+ </task>
82
+ <servers />
83
+ </component>
84
+ <component name="TypeScriptGeneratedFilesManager">
85
+ <option name="version" value="3" />
86
+ </component>
87
+ </project>
LICENSE ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (c) 2025 Vision and Learning Laboratory.
2
+
3
+ Permission is hereby granted, free of charge, to any person
4
+ obtaining a copy of this software and associated documentation
5
+ files (the "Software"), to deal in the Software without
6
+ restriction, including without limitation the rights to use,
7
+ copy, modify, merge, publish, distribute, sublicense, and/or sell
8
+ copies of the Software, and to permit persons to whom the
9
+ Software is furnished to do so, subject to the following
10
+ conditions:
11
+
12
+ The above copyright notice and this permission notice shall be
13
+ included in all copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16
+ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
17
+ OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18
+ NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
19
+ HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
20
+ WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21
+ FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22
+ OTHER DEALINGS IN THE SOFTWARE.
README.md CHANGED
@@ -1,3 +1,140 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # CR-Net: A Continuous Rendering Network for Enhancing Processing in Low-Light Environments
2
+
3
+ <p align="center">
4
+ 📄 <a href="link-to-your-paper"><b>Paper</b></a>&nbsp;&nbsp; | &nbsp;&nbsp;
5
+ 💻 <a href="https://github.com/val-utehy/CR-Net"><b>Source Code</b></a>&nbsp;&nbsp; | &nbsp;&nbsp;
6
+ 🤗 <a href="https://huggingface.co/datasets/datnguyentien204/CR-Net"><b>Hugging Face</b></a>
7
+ </p>
8
+
9
+ <p align="center">
10
+ <img src="preview/structures.jpg" width="800"/>
11
+ <p>
12
+
13
+ <p align="center">
14
+ <em>Architecture of the CR-Net model.</em>
15
+ <p>
16
+
17
+ ## Introduction
18
+
19
+ **CR-Net** is a model enhance the quality of images and videos captured under low-light conditions.
20
+ By learning a continuous rendering process, CR-Net effectively improves brightness, producing natural and sharp results even in challenging dark environments.
21
+ To learn more about CR-Net, feel free to read our documentation [English](../README.md) | [Tiếng Việt](preview/README-vi.md) | [中文](preview/README-zh.md).
22
+
23
+
24
+ ### Key Features
25
+
26
+ * **Low-light image/video enhancement:** Significantly improves brightness and contrast for images and videos captured in dim lighting.
27
+ * **Continuous rendering network:** Employs a novel architecture to deliver smoother and more natural results compared to traditional methods.
28
+ * **Flexible applications:** Supports both video processing and directories containing multiple still images.
29
+
30
+ ## Demo
31
+
32
+ ![CR-Net Demo](preview/video_demo.gif)
33
+
34
+ ## Installation and Requirements
35
+
36
+ To run this model, you need the proper environment. We recommend the following versions:
37
+
38
+ * **Python:** `Python >= 3.10` (Recommended `Python 3.10`)
39
+ * **PyTorch:** `PyTorch >= 1.12` (Recommended `PyTorch 2.1.2`)
40
+
41
+ **Step 1: Clone the repository**
42
+
43
+ ```shell
44
+ git clone https://github.com/val-utehy/CR-Net.git
45
+ cd CR-Net
46
+ ```
47
+ **Step 2: Install dependencies**
48
+
49
+ ```shell
50
+ pip install -r requirements.txt
51
+ ```
52
+
53
+ > [!NOTE]
54
+ > Make sure you have installed the compatible versions of **torch** and **torchvision** with your **CUDA driver** to leverage GPU.
55
+ ## Pretrained Models
56
+ You can download the pretrained models from this [link](https://huggingface.co/datasets/datnguyentien204/CR-Net).
57
+ You can use latest checkpoint `latest_net_G.pth` for inference.
58
+ > [!NOTE]
59
+ > Please ensure your path to the checkpoint is correct in the script files before running.
60
+
61
+ ## Usage Guide
62
+
63
+ ### 1. Model Training
64
+
65
+ Training file will be updated soon!
66
+
67
+ [//]: # (To train the CR-Net model on your own dataset, follow these steps:)
68
+
69
+ [//]: # ()
70
+ [//]: # (**a. Configure the training script file:**)
71
+
72
+ [//]: # ()
73
+ [//]: # (Open and edit the file `train_scripts/ast_n2h.sh`. In this file, you need to specify important paths such as the dataset path and the checkpoint saving directory.)
74
+
75
+ [//]: # ()
76
+ [//]: # (**b. Run the training script:**)
77
+
78
+ [//]: # ()
79
+ [//]: # (After finishing the configuration, navigate to the project’s root directory and execute the following command:)
80
+
81
+ [//]: # ()
82
+ [//]: # (```shell)
83
+
84
+ [//]: # ( bash train_scripts/ast_n2h_dat.sh)
85
+
86
+ [//]: # (```)
87
+ ### 2. Testing and Inference
88
+
89
+ **a. Video Processing:**
90
+
91
+ #### 1. Configure the script file:
92
+ Open and edit the file `test_scripts/ast_inference_video.sh`. Here, you need to provide the path to the trained checkpoint and the input/output video paths.
93
+
94
+ #### 2. Run the video processing script:
95
+ After completing the configuration, navigate to the project’s root directory and execute the following command:
96
+
97
+ ```shell
98
+ bash test_scripts/ast_inference_video.sh
99
+ ```
100
+
101
+ **b. Image Directory Processing:**
102
+ #### 1. Configure the script file:
103
+ Open and edit the file `test_scripts/ast_n2h_dat.sh`. Here, you need to provide the path to the trained checkpoint and the input/output image directory paths.
104
+
105
+ #### 2. Run the image directory processing script:
106
+ After completing the configuration, navigate to the project’s root directory and execute the following command:
107
+
108
+ ```shell
109
+ bash test_scripts/ast_n2h.sh
110
+ ```
111
+
112
+ ## Citation
113
+
114
+
115
+ [//]: # (```bibtex)
116
+
117
+ [//]: # (@article{crnet2025,)
118
+
119
+ [//]: # ( title={CR-Net: A Continuous Rendering Network for Improving Robustness to Low-illumination},)
120
+
121
+ [//]: # ( author={},)
122
+
123
+ [//]: # ( journal={},)
124
+
125
+ [//]: # ( year={2025})
126
+
127
+ [//]: # (})
128
+
129
+ [//]: # (```)
130
+ ## References
131
+
132
+ 1. https://github.com/EndlessSora/TSIT
133
+
134
+ 2. https://github.com/astra-vision/CoMoGAN
135
+
136
+ 3. https://github.com/AlienZhang1996/S2WAT
137
+
138
+
139
+ ## License
140
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
data/__init__.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --- START OF FILE data/__init__.py ---
2
+ import importlib
3
+ import torch.utils.data
4
+ from data.base_dataset import BaseDataset
5
+
6
+
7
+ def find_dataset_using_name(dataset_name):
8
+ dataset_filename = "data." + dataset_name + "_dataset"
9
+
10
+ datasetlib = importlib.import_module(dataset_filename)
11
+
12
+ dataset = None
13
+ target_dataset_name = dataset_name.replace('_', '') + 'dataset'
14
+ for name, cls in datasetlib.__dict__.items():
15
+ if name.lower() == target_dataset_name.lower() \
16
+ and issubclass(cls, BaseDataset):
17
+ dataset = cls
18
+
19
+ if dataset is None:
20
+ raise ValueError("In %s.py, there should be a subclass of BaseDataset "
21
+ "with class name that matches %s in lowercase." %
22
+ (dataset_filename, target_dataset_name))
23
+
24
+ return dataset
25
+
26
+
27
+ def get_option_setter(dataset_name):
28
+ dataset_class = find_dataset_using_name(dataset_name)
29
+ return dataset_class.modify_commandline_options
30
+
31
+
32
+ def create_dataloader(opt):
33
+ dataset = find_dataset_using_name(opt.dataset_mode)
34
+ instance = dataset(opt)
35
+
36
+ print("dataset [%s] of size %d was created" %
37
+ (type(instance).__name__, len(instance)))
38
+ dataloader = torch.utils.data.DataLoader(
39
+ instance,
40
+ batch_size=opt.batchSize,
41
+ shuffle=not opt.serial_batches,
42
+ num_workers=int(opt.nThreads),
43
+ drop_last=opt.isTrain
44
+ )
45
+ return dataloader
data/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.42 kB). View file
 
data/__pycache__/base_dataset.cpython-310.pyc ADDED
Binary file (4.49 kB). View file
 
data/__pycache__/image_folder.cpython-310.pyc ADDED
Binary file (2.81 kB). View file
 
data/__pycache__/n2h_dataset.cpython-310.pyc ADDED
Binary file (2.78 kB). View file
 
data/__pycache__/pix2pix_dataset.cpython-310.pyc ADDED
Binary file (3.32 kB). View file
 
data/__pycache__/single_folder_dataset.cpython-310.pyc ADDED
Binary file (1.89 kB). View file
 
data/__pycache__/summer2winteryosemite_dataset.cpython-310.pyc ADDED
Binary file (1.65 kB). View file
 
data/__pycache__/unaligned_day_night_dataset.cpython-310.pyc ADDED
Binary file (2.21 kB). View file
 
data/ade20k_dataset.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from data.pix2pix_dataset import Pix2pixDataset
2
+ from data.image_folder import make_dataset
3
+
4
+
5
+ class ADE20KDataset(Pix2pixDataset):
6
+
7
+ @staticmethod
8
+ def modify_commandline_options(parser, is_train):
9
+ parser = Pix2pixDataset.modify_commandline_options(parser, is_train)
10
+ parser.set_defaults(preprocess_mode='resize_and_crop')
11
+ if is_train:
12
+ parser.set_defaults(load_size=286)
13
+ else:
14
+ parser.set_defaults(load_size=256)
15
+ parser.set_defaults(crop_size=256)
16
+ parser.set_defaults(display_winsize=256)
17
+ parser.set_defaults(label_nc=150)
18
+ parser.set_defaults(contain_dontcare_label=True)
19
+ parser.set_defaults(cache_filelist_read=False)
20
+ parser.set_defaults(cache_filelist_write=False)
21
+ parser.set_defaults(no_instance=True)
22
+ return parser
23
+
24
+ def get_paths(self, opt):
25
+ root = opt.croot
26
+ phase = 'val' if opt.phase == 'test' else 'train'
27
+
28
+ all_images = make_dataset(root, recursive=True, read_cache=False, write_cache=False)
29
+ image_paths = []
30
+ label_paths = []
31
+ for p in all_images:
32
+ if '_%s_' % phase not in p:
33
+ continue
34
+ if p.endswith('.jpg'):
35
+ image_paths.append(p)
36
+ elif p.endswith('.png'):
37
+ label_paths.append(p)
38
+
39
+ instance_paths = [] # don't use instance map for ade20k
40
+
41
+ return label_paths, image_paths, instance_paths
42
+
43
+ # In ADE20k, 'unknown' label is of value 0.
44
+ # Change the 'unknown' label to the last label to match other datasets.
45
+ def postprocess(self, input_dict):
46
+ label = input_dict['label']
47
+ label = label - 1
48
+ label[label == -1] = self.opt.label_nc
data/base_dataset.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.utils.data as data
2
+ from PIL import Image
3
+ import torchvision.transforms as transforms
4
+ import numpy as np
5
+ import random
6
+
7
+
8
+ class BaseDataset(data.Dataset):
9
+ def __init__(self,opt=None):
10
+ super(BaseDataset, self).__init__()
11
+ if opt is not None:
12
+ self.opt = opt
13
+
14
+ @staticmethod
15
+ def modify_commandline_options(parser, is_train):
16
+ return parser
17
+
18
+ def initialize(self, opt):
19
+ pass
20
+
21
+
22
+ def get_params(opt, size):
23
+ w, h = size
24
+ new_h = h
25
+ new_w = w
26
+ if opt.preprocess_mode == 'resize_and_crop':
27
+ new_h = new_w = opt.load_size
28
+ elif opt.preprocess_mode == 'scale_width_and_crop':
29
+ new_w = opt.load_size
30
+ new_h = opt.load_size * h // w
31
+ elif opt.preprocess_mode == 'scale_shortside_and_crop':
32
+ ss, ls = min(w, h), max(w, h) # shortside and longside
33
+ width_is_shorter = w == ss
34
+ ls = int(opt.load_size * ls / ss)
35
+ new_w, new_h = (ss, ls) if width_is_shorter else (ls, ss)
36
+
37
+ x = random.randint(0, np.maximum(0, new_w - opt.crop_size))
38
+ y = random.randint(0, np.maximum(0, new_h - opt.crop_size))
39
+
40
+ flip = random.random() > 0.5
41
+ return {'crop_pos': (x, y), 'flip': flip}
42
+
43
+
44
+ def get_transform(opt, params, method=Image.BICUBIC, normalize=True, toTensor=True):
45
+ transform_list = []
46
+ if 'resize' in opt.preprocess_mode:
47
+ osize = [opt.load_size, opt.load_size]
48
+ transform_list.append(transforms.Resize(osize, interpolation=method))
49
+ elif 'scale_width' in opt.preprocess_mode:
50
+ transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, method)))
51
+ elif 'scale_shortside' in opt.preprocess_mode:
52
+ transform_list.append(transforms.Lambda(lambda img: __scale_shortside(img, opt.load_size, method)))
53
+
54
+ if 'crop' in opt.preprocess_mode:
55
+ transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size)))
56
+
57
+ if opt.preprocess_mode == 'none':
58
+ base = 32
59
+ transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base, method)))
60
+
61
+ if opt.preprocess_mode == 'fixed':
62
+ w = opt.crop_size
63
+ h = round(opt.crop_size / opt.aspect_ratio)
64
+ transform_list.append(transforms.Lambda(lambda img: __resize(img, w, h, method)))
65
+
66
+ if opt.isTrain and not opt.no_flip:
67
+ transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip'])))
68
+
69
+ if toTensor:
70
+ transform_list += [transforms.ToTensor()]
71
+
72
+ if normalize:
73
+ transform_list += [transforms.Normalize((0.5, 0.5, 0.5),
74
+ (0.5, 0.5, 0.5))]
75
+ return transforms.Compose(transform_list)
76
+
77
+
78
+ def normalize():
79
+ return transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
80
+
81
+
82
+ def __resize(img, w, h, method=Image.BICUBIC):
83
+ return img.resize((w, h), method)
84
+
85
+
86
+ def __make_power_2(img, base, method=Image.BICUBIC):
87
+ ow, oh = img.size
88
+ h = int(round(oh / base) * base)
89
+ w = int(round(ow / base) * base)
90
+ if (h == oh) and (w == ow):
91
+ return img
92
+ return img.resize((w, h), method)
93
+
94
+
95
+ def __scale_width(img, target_width, method=Image.BICUBIC):
96
+ ow, oh = img.size
97
+ if (ow == target_width):
98
+ return img
99
+ w = target_width
100
+ h = int(target_width * oh / ow)
101
+ return img.resize((w, h), method)
102
+
103
+
104
+ def __scale_shortside(img, target_width, method=Image.BICUBIC):
105
+ ow, oh = img.size
106
+ ss, ls = min(ow, oh), max(ow, oh) # shortside and longside
107
+ width_is_shorter = ow == ss
108
+ if (ss == target_width):
109
+ return img
110
+ ls = int(target_width * ls / ss)
111
+ nw, nh = (ss, ls) if width_is_shorter else (ls, ss)
112
+ return img.resize((nw, nh), method)
113
+
114
+
115
+ def __crop(img, pos, size):
116
+ ow, oh = img.size
117
+ x1, y1 = pos
118
+ tw = th = size
119
+ return img.crop((x1, y1, x1 + tw, y1 + th))
120
+
121
+
122
+ def __flip(img, flip):
123
+ if flip:
124
+ return img.transpose(Image.FLIP_LEFT_RIGHT)
125
+ return img
data/cityscapes_dataset.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from data.pix2pix_dataset import Pix2pixDataset
3
+ from data.image_folder import make_dataset
4
+
5
+
6
+ class CityscapesDataset(Pix2pixDataset):
7
+
8
+ @staticmethod
9
+ def modify_commandline_options(parser, is_train):
10
+ parser = Pix2pixDataset.modify_commandline_options(parser, is_train)
11
+ parser.set_defaults(preprocess_mode='fixed')
12
+ parser.set_defaults(load_size=512)
13
+ parser.set_defaults(crop_size=512)
14
+ parser.set_defaults(display_winsize=512)
15
+ parser.set_defaults(label_nc=35)
16
+ parser.set_defaults(aspect_ratio=2.0)
17
+ parser.set_defaults(batchSize=16)
18
+ opt, _ = parser.parse_known_args()
19
+ if hasattr(opt, 'num_upsampling_layers'):
20
+ parser.set_defaults(num_upsampling_layers='more')
21
+ return parser
22
+
23
+ def get_paths(self, opt):
24
+ root = opt.croot
25
+ phase = 'val' if opt.phase == 'test' else 'train'
26
+
27
+ label_dir = os.path.join(root, 'gtFine', phase)
28
+ label_paths_all = make_dataset(label_dir, recursive=True)
29
+ label_paths = [p for p in label_paths_all if p.endswith('_labelIds.png')]
30
+
31
+ image_dir = os.path.join(root, 'leftImg8bit', phase)
32
+ image_paths = make_dataset(image_dir, recursive=True)
33
+
34
+ if not opt.no_instance:
35
+ instance_paths = [p for p in label_paths_all if p.endswith('_instanceIds.png')]
36
+ else:
37
+ instance_paths = []
38
+
39
+ return label_paths, image_paths, instance_paths
40
+
41
+ def paths_match(self, path1, path2):
42
+ name1 = os.path.basename(path1)
43
+ name2 = os.path.basename(path2)
44
+ # compare the first 3 components, [city]_[id1]_[id2]
45
+ return '_'.join(name1.split('_')[:3]) == \
46
+ '_'.join(name2.split('_')[:3])
data/custom_dataset.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from data.pix2pix_dataset import Pix2pixDataset
2
+ from data.image_folder import make_dataset
3
+
4
+
5
+ class CustomDataset(Pix2pixDataset):
6
+ """ Dataset that loads images from directories
7
+ Use option --label_dir, --image_dir, --instance_dir to specify the directories.
8
+ The images in the directories are sorted in alphabetical order and paired in order.
9
+ """
10
+
11
+ @staticmethod
12
+ def modify_commandline_options(parser, is_train):
13
+ parser = Pix2pixDataset.modify_commandline_options(parser, is_train)
14
+ parser.set_defaults(preprocess_mode='resize_and_crop')
15
+ load_size = 286 if is_train else 256
16
+ parser.set_defaults(load_size=load_size)
17
+ parser.set_defaults(crop_size=256)
18
+ parser.set_defaults(display_winsize=256)
19
+ parser.set_defaults(label_nc=13)
20
+ parser.set_defaults(contain_dontcare_label=False)
21
+
22
+ parser.add_argument('--label_dir', type=str, required=True,
23
+ help='path to the directory that contains label images')
24
+ parser.add_argument('--image_dir', type=str, required=True,
25
+ help='path to the directory that contains photo images')
26
+ parser.add_argument('--instance_dir', type=str, default='',
27
+ help='path to the directory that contains instance maps. Leave black if not exists')
28
+ return parser
29
+
30
+ def get_paths(self, opt):
31
+ label_dir = opt.label_dir
32
+ label_paths = make_dataset(label_dir, recursive=False, read_cache=True)
33
+
34
+ image_dir = opt.image_dir
35
+ image_paths = make_dataset(image_dir, recursive=False, read_cache=True)
36
+
37
+ if len(opt.instance_dir) > 0:
38
+ instance_dir = opt.instance_dir
39
+ instance_paths = make_dataset(instance_dir, recursive=False, read_cache=True)
40
+ else:
41
+ instance_paths = []
42
+
43
+ assert len(label_paths) == len(image_paths), "The #images in %s and %s do not match. Is there something wrong?"
44
+
45
+ return label_paths, image_paths, instance_paths
data/day2night_dataset.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from data.pix2pix_dataset import Pix2pixDataset
3
+
4
+
5
+ class Day2NightDataset(Pix2pixDataset):
6
+
7
+ @staticmethod
8
+ def modify_commandline_options(parser, is_train):
9
+ parser = Pix2pixDataset.modify_commandline_options(parser, is_train)
10
+ parser.set_defaults(preprocess_mode='fixed')
11
+ parser.set_defaults(load_size=512)
12
+ parser.set_defaults(crop_size=512)
13
+ parser.set_defaults(display_winsize=512)
14
+ parser.set_defaults(aspect_ratio=2.0)
15
+ opt, _ = parser.parse_known_args()
16
+ if hasattr(opt, 'num_upsampling_layers'):
17
+ parser.set_defaults(num_upsampling_layers='more')
18
+ return parser
19
+
20
+ def get_paths(self, opt):
21
+ croot = opt.croot
22
+ sroot = opt.sroot
23
+
24
+ with open(os.path.join(croot, 'bdd100k_lists/day2night/day_%s.txt' % opt.phase)) as c_list:
25
+ c_image_paths_read = c_list.read().splitlines()
26
+ c_image_paths = [os.path.join(croot, p) for p in c_image_paths_read if p != '']
27
+
28
+ with open(os.path.join(sroot, 'bdd100k_lists/day2night/night_%s.txt' % opt.phase)) as s_list:
29
+ s_image_paths_read = s_list.read().splitlines()
30
+ s_image_paths = [os.path.join(sroot, p) for p in s_image_paths_read if p != '']
31
+
32
+ if opt.phase == 'train':
33
+ c_image_paths = c_image_paths + c_image_paths
34
+
35
+ instance_paths = []
36
+
37
+ length = min(len(c_image_paths), len(s_image_paths))
38
+ c_image_paths = c_image_paths[:length]
39
+ s_image_paths = s_image_paths[:length]
40
+ return c_image_paths, s_image_paths, instance_paths
41
+
42
+ def paths_match(self, path1, path2):
43
+ return True
data/image_folder.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ###############################################################################
2
+ # Code from
3
+ # https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py
4
+ # Modified the original code so that it also loads images from the current
5
+ # directory as well as the subdirectories
6
+ ###############################################################################
7
+ import torch.utils.data as data
8
+ from PIL import Image
9
+ import os
10
+
11
+ IMG_EXTENSIONS = [
12
+ '.jpg', '.JPG', '.jpeg', '.JPEG',
13
+ '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tiff', '.webp'
14
+ ]
15
+
16
+
17
+ def is_image_file(filename):
18
+ return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
19
+
20
+
21
+ def make_dataset_rec(dir, images):
22
+ assert os.path.isdir(dir), '%s is not a valid directory' % dir
23
+
24
+ for root, dnames, fnames in sorted(os.walk(dir, followlinks=True)):
25
+ for fname in fnames:
26
+ if is_image_file(fname):
27
+ path = os.path.join(root, fname)
28
+ images.append(path)
29
+
30
+
31
+ def make_dataset(dir, recursive=False, read_cache=False, write_cache=False):
32
+ images = []
33
+
34
+ if read_cache:
35
+ possible_filelist = os.path.join(dir, 'files.list')
36
+ if os.path.isfile(possible_filelist):
37
+ with open(possible_filelist, 'r') as f:
38
+ images = f.read().splitlines()
39
+ return images
40
+
41
+ if recursive:
42
+ make_dataset_rec(dir, images)
43
+ else:
44
+ assert os.path.isdir(dir) or os.path.islink(dir), '%s is not a valid directory' % dir
45
+
46
+ for root, dnames, fnames in sorted(os.walk(dir)):
47
+ for fname in fnames:
48
+ if is_image_file(fname):
49
+ path = os.path.join(root, fname)
50
+ images.append(path)
51
+
52
+ if write_cache:
53
+ filelist_cache = os.path.join(dir, 'files.list')
54
+ with open(filelist_cache, 'w') as f:
55
+ for path in images:
56
+ f.write("%s\n" % path)
57
+ print('wrote filelist cache at %s' % filelist_cache)
58
+
59
+ return images
60
+
61
+
62
+ def default_loader(path):
63
+ return Image.open(path).convert('RGB')
64
+
65
+
66
+ class ImageFolder(data.Dataset):
67
+
68
+ def __init__(self, root, transform=None, return_paths=False,
69
+ loader=default_loader):
70
+ imgs = make_dataset(root)
71
+ if len(imgs) == 0:
72
+ raise(RuntimeError("Found 0 images in: " + root + "\n"
73
+ "Supported image extensions are: " +
74
+ ",".join(IMG_EXTENSIONS)))
75
+
76
+ self.root = root
77
+ self.imgs = imgs
78
+ self.transform = transform
79
+ self.return_paths = return_paths
80
+ self.loader = loader
81
+
82
+ def __getitem__(self, index):
83
+ path = self.imgs[index]
84
+ img = self.loader(path)
85
+ if self.transform is not None:
86
+ img = self.transform(img)
87
+ if self.return_paths:
88
+ return img, path
89
+ else:
90
+ return img
91
+
92
+ def __len__(self):
93
+ return len(self.imgs)
data/n2h_dataset.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --- START OF FILE data/n2h_dataset.py (Sửa lỗi AttributeError) ---
2
+ import os
3
+ from data.pix2pix_dataset import Pix2pixDataset
4
+ from data.image_folder import make_dataset
5
+ from PIL import Image
6
+ import random
7
+ from data.base_dataset import get_params, get_transform
8
+
9
+
10
+ class N2HDataset(Pix2pixDataset):
11
+
12
+ def __init__(self, opt):
13
+ """Initialize this dataset class.
14
+
15
+ A_paths and B_paths are defined here, and we call the initialize
16
+ method of the parent class (Pix2pixDataset) to set up the rest.
17
+ """
18
+ # Gọi __init__ của lớp cha gần nhất (Pix2pixDataset)
19
+ # Pix2pixDataset không có __init__, nên nó sẽ gọi BaseDataset.__init__(self, opt)
20
+ # Điều này là đúng với bản sửa lỗi trước của chúng ta.
21
+ super().__init__(opt)
22
+
23
+ # Gọi hàm initialize của lớp cha để thiết lập self.label_paths, self.image_paths, và self.dataset_size
24
+ self.initialize(opt)
25
+
26
+ @staticmethod
27
+ def modify_commandline_options(parser, is_train):
28
+ parser = Pix2pixDataset.modify_commandline_options(parser, is_train)
29
+ parser.set_defaults(preprocess_mode='resize_and_crop')
30
+ parser.set_defaults(load_size=286)
31
+ parser.set_defaults(crop_size=256)
32
+ parser.set_defaults(display_winsize=256)
33
+ parser.set_defaults(aspect_ratio=1.0)
34
+ opt, _ = parser.parse_known_args()
35
+ if hasattr(opt, 'num_upsampling_layers'):
36
+ parser.set_defaults(num_upsampling_layers='more')
37
+ return parser
38
+
39
+ def get_paths(self, opt):
40
+ croot = opt.croot
41
+ sroot = opt.sroot
42
+
43
+ # Logic này giả định cấu trúc thư mục là croot/trainA, sroot/trainB
44
+ c_image_dir = os.path.join(croot, opt.phase + 'A')
45
+ s_image_dir = os.path.join(sroot, opt.phase + 'B')
46
+
47
+ if not os.path.isdir(c_image_dir):
48
+ raise FileNotFoundError(f"Content directory not found: {c_image_dir}")
49
+ if not os.path.isdir(s_image_dir):
50
+ raise FileNotFoundError(f"Style directory not found: {s_image_dir}")
51
+
52
+ c_image_paths = sorted(make_dataset(c_image_dir, recursive=True))
53
+ s_image_paths = sorted(make_dataset(s_image_dir, recursive=True))
54
+
55
+ if opt.phase == 'train' and len(c_image_paths) > 0 and len(s_image_paths) > 0:
56
+ if len(c_image_paths) > len(s_image_paths):
57
+ s_image_paths = s_image_paths * (len(c_image_paths) // len(s_image_paths) + 1)
58
+ elif len(s_image_paths) > len(c_image_paths):
59
+ c_image_paths = c_image_paths * (len(s_image_paths) // len(c_image_paths) + 1)
60
+
61
+ instance_paths = []
62
+
63
+ return c_image_paths, s_image_paths, instance_paths
64
+
65
+ def __getitem__(self, index):
66
+ # Lấy ảnh Day (ảnh A - content)
67
+ # self.label_paths được gán bằng c_image_paths trong Pix2pixDataset.initialize()
68
+ day_path = self.label_paths[index % len(self.label_paths)]
69
+
70
+ # Lấy ảnh Night (ảnh B - style) ngẫu nhiên
71
+ # self.image_paths được gán bằng s_image_paths trong Pix2pixDataset.initialize()
72
+ night_path = self.image_paths[random.randint(0, len(self.image_paths) - 1)]
73
+
74
+ day_img = Image.open(day_path).convert('RGB')
75
+ night_img = Image.open(night_path).convert('RGB')
76
+
77
+ params = get_params(self.opt, day_img.size)
78
+ transform = get_transform(self.opt, params)
79
+
80
+ day_tensor = transform(day_img)
81
+ night_tensor = transform(night_img)
82
+
83
+ return {'day': day_tensor, 'night': night_tensor, 'cpath': day_path, 'spath_night': night_path}
84
+
85
+ def paths_match(self, path1, path2):
86
+ return True
data/photo2art_dataset.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from data.pix2pix_dataset import Pix2pixDataset
3
+ from data.image_folder import make_dataset
4
+
5
+
6
+ class Photo2ArtDataset(Pix2pixDataset):
7
+
8
+ @staticmethod
9
+ def modify_commandline_options(parser, is_train):
10
+ parser = Pix2pixDataset.modify_commandline_options(parser, is_train)
11
+ parser.set_defaults(preprocess_mode='fixed')
12
+ parser.set_defaults(load_size=256)
13
+ parser.set_defaults(crop_size=256)
14
+ parser.set_defaults(display_winsize=256)
15
+ parser.set_defaults(aspect_ratio=1.0)
16
+ opt, _ = parser.parse_known_args()
17
+ if hasattr(opt, 'num_upsampling_layers'):
18
+ parser.set_defaults(num_upsampling_layers='more')
19
+ return parser
20
+
21
+ def get_paths(self, opt):
22
+ croot = opt.croot
23
+ sroot = opt.sroot
24
+
25
+ c_image_dir = os.path.join(croot, '%sA' % opt.phase)
26
+ c_image_paths = sorted(make_dataset(c_image_dir, recursive=True))
27
+
28
+ s_image_dir = os.path.join(sroot, '%sB' % opt.phase)
29
+ s_image_paths = sorted(make_dataset(s_image_dir, recursive=True))
30
+
31
+ if opt.phase == 'train':
32
+ for i in range(2):
33
+ s_image_paths = s_image_paths + s_image_paths
34
+
35
+ instance_paths = []
36
+
37
+ length = min(len(c_image_paths), len(s_image_paths))
38
+ c_image_paths = c_image_paths[:length]
39
+ s_image_paths = s_image_paths[:length]
40
+ return c_image_paths, s_image_paths, instance_paths
41
+
42
+ def paths_match(self, path1, path2):
43
+ return True
data/pix2pix_dataset.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from data.base_dataset import BaseDataset, get_params, get_transform
2
+ from PIL import Image
3
+ import util.util as util
4
+ import os
5
+
6
+
7
+ class Pix2pixDataset(BaseDataset):
8
+ @staticmethod
9
+ def modify_commandline_options(parser, is_train):
10
+ parser.add_argument('--no_pairing_check', action='store_true',
11
+ help='If specified, skip sanity check of correct label-image file pairing')
12
+ return parser
13
+
14
+ def initialize(self, opt):
15
+ self.opt = opt
16
+
17
+ label_paths, image_paths, instance_paths = self.get_paths(opt)
18
+
19
+ util.natural_sort(label_paths)
20
+ util.natural_sort(image_paths)
21
+ if not opt.no_instance:
22
+ util.natural_sort(instance_paths)
23
+
24
+ label_paths = label_paths[:opt.max_dataset_size]
25
+ image_paths = image_paths[:opt.max_dataset_size]
26
+ instance_paths = instance_paths[:opt.max_dataset_size]
27
+
28
+ if not opt.no_pairing_check:
29
+ for path1, path2 in zip(label_paths, image_paths):
30
+ assert self.paths_match(path1, path2), \
31
+ "The label-image pair (%s, %s) do not look like the right pair because the filenames are quite different. Are you sure about the pairing? Please see data/pix2pix_dataset.py to see what is going on, and use --no_pairing_check to bypass this." % (path1, path2)
32
+
33
+ self.label_paths = label_paths
34
+ self.image_paths = image_paths
35
+ self.instance_paths = instance_paths
36
+
37
+ size = len(self.label_paths)
38
+ self.dataset_size = size
39
+
40
+ def get_paths(self, opt):
41
+ label_paths = []
42
+ image_paths = []
43
+ instance_paths = []
44
+ assert False, "A subclass of Pix2pixDataset must override self.get_paths(self, opt)"
45
+ return label_paths, image_paths, instance_paths
46
+
47
+ def paths_match(self, path1, path2):
48
+ filename1_without_ext = os.path.splitext(os.path.basename(path1))[0]
49
+ filename2_without_ext = os.path.splitext(os.path.basename(path2))[0]
50
+ return filename1_without_ext == filename2_without_ext
51
+
52
+ def __getitem__(self, index):
53
+ # Label (Content) Image
54
+ label_path = self.label_paths[index]
55
+ label = Image.open(label_path)
56
+ if self.opt.task != 'SIS':
57
+ label = label.convert('RGB')
58
+ params = get_params(self.opt, label.size)
59
+
60
+ if self.opt.task != 'SIS':
61
+ transform_label = get_transform(self.opt, params)
62
+ label_tensor = transform_label(label)
63
+ else:
64
+ transform_label = get_transform(self.opt, params, method=Image.NEAREST, normalize=False)
65
+ label_tensor = transform_label(label) * 255.0
66
+ label_tensor[label_tensor == 255] = self.opt.label_nc # 'unknown' is opt.label_nc
67
+
68
+ # Real (Style) Image
69
+ image_path = self.image_paths[index]
70
+ assert self.paths_match(label_path, image_path), \
71
+ "The label_path %s and image_path %s don't match." % \
72
+ (label_path, image_path)
73
+ image = Image.open(image_path)
74
+ image = image.convert('RGB')
75
+
76
+ transform_image = get_transform(self.opt, params)
77
+ image_tensor = transform_image(image)
78
+
79
+ # if using instance maps
80
+ if self.opt.no_instance:
81
+ instance_tensor = 0
82
+ else:
83
+ instance_path = self.instance_paths[index]
84
+ instance = Image.open(instance_path)
85
+ if instance.mode == 'L':
86
+ instance_tensor = transform_label(instance) * 255
87
+ instance_tensor = instance_tensor.long()
88
+ else:
89
+ instance_tensor = transform_label(instance)
90
+
91
+ input_dict = {'label': label_tensor,
92
+ 'instance': instance_tensor,
93
+ 'image': image_tensor,
94
+ 'path': image_path,
95
+ 'cpath': label_path
96
+ }
97
+
98
+ # Give subclasses a chance to modify the final output
99
+ self.postprocess(input_dict)
100
+
101
+ return input_dict
102
+
103
+ def postprocess(self, input_dict):
104
+ return input_dict
105
+
106
+ def __len__(self):
107
+ return self.dataset_size
data/single_folder_dataset.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --- START OF FILE data/single_folder_dataset.py ---
2
+ from data.base_dataset import BaseDataset, get_transform, get_params
3
+ from data.image_folder import make_dataset
4
+ from PIL import Image
5
+
6
+
7
+ class SingleFolderDataset(BaseDataset):
8
+ """
9
+ A dataset class for loading images from a single folder.
10
+ Used for testing where only content images are needed.
11
+ """
12
+
13
+ @staticmethod
14
+ def modify_commandline_options(parser, is_train):
15
+ # is_train sẽ là False khi chạy test.py
16
+ parser.add_argument('--image_dir', type=str, required=True,
17
+ help='path to the directory that contains images')
18
+ # Khi test, chúng ta thường không muốn crop ngẫu nhiên,
19
+ # nên preprocess_mode='resize' hoặc 'scale_width' là phù hợp.
20
+ # Hoặc có thể giữ 'resize_and_crop' và dùng crop_pos=(0,0)
21
+ parser.set_defaults(preprocess_mode='resize_and_crop', load_size=256, crop_size=256, no_flip=True)
22
+ return parser
23
+
24
+ def __init__(self, opt):
25
+ super().__init__()
26
+ self.opt = opt
27
+ self.image_paths = sorted(make_dataset(opt.image_dir, recursive=True))
28
+ # <<< THAY ĐỔI: Xóa dòng self.transform ở đây >>>
29
+
30
+ def __getitem__(self, index):
31
+ path = self.image_paths[index]
32
+ img = Image.open(path).convert('RGB')
33
+
34
+ # <<< THAY ĐỔI: Tạo params và transform cho mỗi ảnh >>>
35
+ # Khi test, chúng ta không muốn augmentation ngẫu nhiên.
36
+ # Đặt crop_pos=(0,0) và flip=False để đảm bảo tính nhất quán.
37
+ params = get_params(self.opt, img.size)
38
+ if not self.opt.isTrain:
39
+ params['crop_pos'] = (0, 0)
40
+ params['flip'] = False
41
+
42
+ transform = get_transform(self.opt, params, normalize=True)
43
+ img_tensor = transform(img)
44
+ # <<< KẾT THÚC THAY ĐỔI >>>
45
+
46
+ # Trả về một dict tương thích với những gì model mong đợi ở bước test
47
+ # 'day' sẽ được dùng làm content_image.
48
+ return {'day': img_tensor, 'cpath': path}
49
+
50
+ def __len__(self):
51
+ return len(self.image_paths)
data/summer2winteryosemite_dataset.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from data.pix2pix_dataset import Pix2pixDataset
3
+ from data.image_folder import make_dataset
4
+
5
+
6
+ class Summer2WinterYosemiteDataset(Pix2pixDataset):
7
+
8
+ @staticmethod
9
+ def modify_commandline_options(parser, is_train):
10
+ parser = Pix2pixDataset.modify_commandline_options(parser, is_train)
11
+ parser.set_defaults(preprocess_mode='fixed')
12
+ parser.set_defaults(load_size=256)
13
+ parser.set_defaults(crop_size=256)
14
+ parser.set_defaults(display_winsize=256)
15
+ parser.set_defaults(aspect_ratio=1.0)
16
+ opt, _ = parser.parse_known_args()
17
+ if hasattr(opt, 'num_upsampling_layers'):
18
+ parser.set_defaults(num_upsampling_layers='more')
19
+ return parser
20
+
21
+ def get_paths(self, opt):
22
+ croot = opt.croot
23
+ sroot = opt.sroot
24
+
25
+ c_image_dir = os.path.join(croot, '%sA' % opt.phase)
26
+ c_image_paths = sorted(make_dataset(c_image_dir, recursive=True))
27
+
28
+ s_image_dir = os.path.join(sroot, '%sB' % opt.phase)
29
+ s_image_paths = sorted(make_dataset(s_image_dir, recursive=True))
30
+
31
+ if opt.phase == 'train':
32
+ s_image_paths = s_image_paths + s_image_paths
33
+
34
+ instance_paths = []
35
+
36
+ length = min(len(c_image_paths), len(s_image_paths))
37
+ c_image_paths = c_image_paths[:length]
38
+ s_image_paths = s_image_paths[:length]
39
+ return c_image_paths, s_image_paths, instance_paths
40
+
41
+ def paths_match(self, path1, path2):
42
+ return True
data/sunny2diffweathers_dataset.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from data.pix2pix_dataset import Pix2pixDataset
3
+
4
+
5
+ class Sunny2DiffWeathersDataset(Pix2pixDataset):
6
+
7
+ @staticmethod
8
+ def modify_commandline_options(parser, is_train):
9
+ parser = Pix2pixDataset.modify_commandline_options(parser, is_train)
10
+ parser.add_argument('--test_mode', type=str, default='all',
11
+ help='specify style mode to control multi-modal image synthesis (MMIS) during test phase:'
12
+ 'night | cloudy | rainy | snowy | all')
13
+ parser.set_defaults(preprocess_mode='fixed')
14
+ parser.set_defaults(load_size=512)
15
+ parser.set_defaults(crop_size=512)
16
+ parser.set_defaults(display_winsize=512)
17
+ parser.set_defaults(aspect_ratio=2.0)
18
+ opt, _ = parser.parse_known_args()
19
+ if hasattr(opt, 'num_upsampling_layers'):
20
+ parser.set_defaults(num_upsampling_layers='more')
21
+ return parser
22
+
23
+
24
+ def get_paths(self, opt):
25
+ croot = opt.croot
26
+ sroot = opt.sroot
27
+
28
+ with open(os.path.join(croot, 'bdd100k_lists/sunny2diffweathers/sunny_%s.txt' % opt.phase)) as c_list:
29
+ c_image_paths_read = c_list.read().splitlines()
30
+ c_image_paths = [os.path.join(croot, p) for p in c_image_paths_read if p != '']
31
+
32
+ if opt.phase == 'train' or opt.test_mode == 'all':
33
+ mode_list = ['night', 'cloudy', 'rainy', 'snowy']
34
+ else:
35
+ mode_list = [opt.test_mode]
36
+ s_image_paths = []
37
+ for mode in mode_list:
38
+ with open(os.path.join(sroot, 'bdd100k_lists/sunny2diffweathers/%s_%s.txt' % (mode, opt.phase))) as s_list:
39
+ s_image_paths_read = s_list.read().splitlines()
40
+ s_image_paths_mode = [os.path.join(sroot, p) for p in s_image_paths_read if p != '']
41
+ s_image_paths.extend(s_image_paths_mode)
42
+
43
+ while len(s_image_paths) < len(c_image_paths):
44
+ s_image_paths = s_image_paths + s_image_paths
45
+
46
+ instance_paths = []
47
+
48
+ length = min(len(c_image_paths), len(s_image_paths))
49
+ c_image_paths = c_image_paths[:length]
50
+ s_image_paths = s_image_paths[:length]
51
+ return c_image_paths, s_image_paths, instance_paths
52
+
53
+ def paths_match(self, path1, path2):
54
+ return True
data/unaligned_day_night_dataset.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os.path
2
+ from data.base_dataset import BaseDataset, get_transform, get_params
3
+ from data.image_folder import make_dataset
4
+ from PIL import Image
5
+ import random
6
+
7
+ class UnalignedDayNightDataset(BaseDataset):
8
+ @staticmethod
9
+ def modify_commandline_options(parser, is_train):
10
+ parser.add_argument('--dataroot', required=True,
11
+ help='path to images (should have subfolders train/val containing day/night)')
12
+ parser.set_defaults(preprocess_mode='resize_and_crop', load_size=286, crop_size=256)
13
+ if not is_train:
14
+ parser.set_defaults(no_flip=True)
15
+ return parser
16
+
17
+ def __init__(self, opt):
18
+ BaseDataset.__init__(self)
19
+ self.opt = opt
20
+
21
+ root = opt.dataroot
22
+ phase = opt.phase
23
+
24
+ self.dir_A = os.path.join(root, phase, 'day')
25
+ self.dir_B = os.path.join(root, phase, 'night')
26
+
27
+ self.A_paths = sorted(make_dataset(self.dir_A, recursive=True))
28
+ self.B_paths = sorted(make_dataset(self.dir_B, recursive=True))
29
+
30
+ self.A_size = len(self.A_paths)
31
+ self.B_size = len(self.B_paths)
32
+
33
+ if self.A_size == 0 or self.B_size == 0:
34
+ raise (RuntimeError(f"Found 0 images in one of the data directories: {self.dir_A} or {self.dir_B}"))
35
+
36
+ def __getitem__(self, index):
37
+ A_path = self.A_paths[index % self.A_size]
38
+ index_B = random.randint(0, self.B_size - 1)
39
+ B_path = self.B_paths[index_B]
40
+
41
+ A_img = Image.open(A_path).convert('RGB')
42
+ B_img = Image.open(B_path).convert('RGB')
43
+
44
+ params = get_params(self.opt, A_img.size)
45
+ transform = get_transform(self.opt, params)
46
+
47
+ A = transform(A_img)
48
+ B = transform(B_img)
49
+
50
+ return {'day': A, 'night': B, 'cpath': A_path, 'spath_night': B_path}
51
+
52
+ def __len__(self):
53
+ return max(self.A_size, self.B_size)
datasets/bdd100k_lists/day2night/day_test.txt ADDED
@@ -0,0 +1,1764 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ images/100k/val/b1cebfb7-284f5117.jpg
2
+ images/100k/val/b1d10d08-c35503b8.jpg
3
+ images/100k/val/b1d7b3ac-36f2d3b7.jpg
4
+ images/100k/val/b1d7b3ac-5744370e.jpg
5
+ images/100k/val/b1d7b3ac-5af8623b.jpg
6
+ images/100k/val/b1d7b3ac-995f9d8a.jpg
7
+ images/100k/val/b1dac7f7-6b2e0382.jpg
8
+ images/100k/val/b1dce572-c6a8cb5e.jpg
9
+ images/100k/val/b1df722f-57d21f3f.jpg
10
+ images/100k/val/b1df722f-5bcc3db7.jpg
11
+ images/100k/val/b1e3e9f5-92377424.jpg
12
+ images/100k/val/b1e8ad72-c3c79240.jpg
13
+ images/100k/val/b1f0efd9-e900c6e5.jpg
14
+ images/100k/val/b1f4491b-97465266.jpg
15
+ images/100k/val/b1f62c41-ed0c6521.jpg
16
+ images/100k/val/b1ff4656-94ee8536.jpg
17
+ images/100k/val/b202cae2-672e61c5.jpg
18
+ images/100k/val/b202cae2-f46c74a6.jpg
19
+ images/100k/val/b205eb4d-f84aaa1a.jpg
20
+ images/100k/val/b20841f9-cef732d5.jpg
21
+ images/100k/val/b20b69d2-64b9cdb8.jpg
22
+ images/100k/val/b20b69d2-650e674d.jpg
23
+ images/100k/val/b20b69d2-6e2b9e73.jpg
24
+ images/100k/val/b20b69d2-7767e6b6.jpg
25
+ images/100k/val/b20b69d2-bd242bf0.jpg
26
+ images/100k/val/b20b69d2-ca16c907.jpg
27
+ images/100k/val/b20b69d2-e31380a7.jpg
28
+ images/100k/val/b20b69d2-ffc1d6af.jpg
29
+ images/100k/val/b20d494a-cdebe83e.jpg
30
+ images/100k/val/b20e291a-6012d836.jpg
31
+ images/100k/val/b20ff95c-b9444127.jpg
32
+ images/100k/val/b2169b74-fa197951.jpg
33
+ images/100k/val/b2208b0f-2796a692.jpg
34
+ images/100k/val/b231a630-c4522992.jpg
35
+ images/100k/val/b2331b83-a28e6b57.jpg
36
+ images/100k/val/b245e52e-0a0e4e69.jpg
37
+ images/100k/val/b24702e3-0456c83c.jpg
38
+ images/100k/val/b24702e3-e6f33768.jpg
39
+ images/100k/val/b24702e3-f56e0731.jpg
40
+ images/100k/val/b24b3585-221ac8ac.jpg
41
+ images/100k/val/b24f7455-e8c55d6a.jpg
42
+ images/100k/val/b250fb0c-01a1b8d3.jpg
43
+ images/100k/val/b251064f-8d92db81.jpg
44
+ images/100k/val/b259c5e1-cda39ef9.jpg
45
+ images/100k/val/b25fdb41-4644e3f7.jpg
46
+ images/100k/val/b26331b9-102f5d9a.jpg
47
+ images/100k/val/b265b9cf-2d517da6.jpg
48
+ images/100k/val/b2694461-db4f4470.jpg
49
+ images/100k/val/b2715214-13e3dd85.jpg
50
+ images/100k/val/b2715214-d38332ea.jpg
51
+ images/100k/val/b27369f3-9b9598f4.jpg
52
+ images/100k/val/b27369f3-dd3c0b46.jpg
53
+ images/100k/val/b2743b5d-e2d585be.jpg
54
+ images/100k/val/b27688b6-cd521517.jpg
55
+ images/100k/val/b27d5dcb-856c0b43.jpg
56
+ images/100k/val/b27e8b69-c00092ae.jpg
57
+ images/100k/val/b280c9c1-4340305f.jpg
58
+ images/100k/val/b28cb5d3-9ff4ab4a.jpg
59
+ images/100k/val/b28cb5d3-c4758dfd.jpg
60
+ images/100k/val/b28ec521-8266e1a4.jpg
61
+ images/100k/val/b28ec521-834a964c.jpg
62
+ images/100k/val/b28f288b-784f7606.jpg
63
+ images/100k/val/b2932832-a2c8f6ef.jpg
64
+ images/100k/val/b294386c-24ddd0c3.jpg
65
+ images/100k/val/b2a1e013-638d6e4d.jpg
66
+ images/100k/val/b2a8e8b4-a4e93829.jpg
67
+ images/100k/val/b2a99ee3-5abca703.jpg
68
+ images/100k/val/b2afce7f-0cb9967a.jpg
69
+ images/100k/val/b2b03a01-a60e895f.jpg
70
+ images/100k/val/b2b70230-c43553a9.jpg
71
+ images/100k/val/b2bc4efb-a184131d.jpg
72
+ images/100k/val/b2cd33bd-a5043d29.jpg
73
+ images/100k/val/b2d22b2f-91d0af18.jpg
74
+ images/100k/val/b2db41a2-721e0f4e.jpg
75
+ images/100k/val/b2e431b6-332c438d.jpg
76
+ images/100k/val/b2e54795-0dc285dd.jpg
77
+ images/100k/val/b2e54795-601d2d78.jpg
78
+ images/100k/val/b2e54795-d8c2ba6d.jpg
79
+ images/100k/val/b2f4a409-36a7d7c9.jpg
80
+ images/100k/val/b2f4a409-5ddff11a.jpg
81
+ images/100k/val/b2f4a409-80dacf25.jpg
82
+ images/100k/val/b2f9cc9e-809f5cae.jpg
83
+ images/100k/val/b2fbf86d-d5de82a4.jpg
84
+ images/100k/val/b2fe5d69-f31d4c9b.jpg
85
+ images/100k/val/b3048201-d86d9cd8.jpg
86
+ images/100k/val/b3064012-5a01e51a.jpg
87
+ images/100k/val/b306fb3f-178fca4e.jpg
88
+ images/100k/val/b306fb3f-f02e46cc.jpg
89
+ images/100k/val/b3079ec6-df7b2d92.jpg
90
+ images/100k/val/b30af183-3029b316.jpg
91
+ images/100k/val/b30af183-e9209104.jpg
92
+ images/100k/val/b30b460d-9829fd26.jpg
93
+ images/100k/val/b3110036-a32dc26e.jpg
94
+ images/100k/val/b3121071-581b2755.jpg
95
+ images/100k/val/b3121071-6b1e5be7.jpg
96
+ images/100k/val/b3121071-c0fd88c4.jpg
97
+ images/100k/val/b3121071-cac49b3a.jpg
98
+ images/100k/val/b3154d05-86ce5ff2.jpg
99
+ images/100k/val/b3154d05-8bc595ba.jpg
100
+ images/100k/val/b3158519-23c9c58d.jpg
101
+ images/100k/val/b319b67e-b43ffc33.jpg
102
+ images/100k/val/b31c98f7-a342fff6.jpg
103
+ images/100k/val/b322412a-58073611.jpg
104
+ images/100k/val/b322412a-b47af37f.jpg
105
+ images/100k/val/b325fe35-b59e4e91.jpg
106
+ images/100k/val/b329fe7d-f06455d3.jpg
107
+ images/100k/val/b331b06b-83fd459b.jpg
108
+ images/100k/val/b3329255-4a5988f8.jpg
109
+ images/100k/val/b3339cd5-06f84bb3.jpg
110
+ images/100k/val/b33ced12-423ec0dc.jpg
111
+ images/100k/val/b33ced12-5caa9205.jpg
112
+ images/100k/val/b33ced12-c53391e6.jpg
113
+ images/100k/val/b33ea6cb-3464fb13.jpg
114
+ images/100k/val/b33ea6cb-ddf24803.jpg
115
+ images/100k/val/b344266e-2e034c1e.jpg
116
+ images/100k/val/b3456910-cf5fb475.jpg
117
+ images/100k/val/b3563bcf-1962e18d.jpg
118
+ images/100k/val/b35dac08-031e3f6f.jpg
119
+ images/100k/val/b35dac08-396cde53.jpg
120
+ images/100k/val/b35dac08-a80be8c5.jpg
121
+ images/100k/val/b368ee71-aba6eeef.jpg
122
+ images/100k/val/b36de7af-08e5967a.jpg
123
+ images/100k/val/b36de7af-887696f9.jpg
124
+ images/100k/val/b36de7af-ca137216.jpg
125
+ images/100k/val/b37b0528-92d07297.jpg
126
+ images/100k/val/b37dfad0-708bd5bb.jpg
127
+ images/100k/val/b3826400-c03b5432.jpg
128
+ images/100k/val/b3826fd8-774c2e0a.jpg
129
+ images/100k/val/b3875c8d-cc4081eb.jpg
130
+ images/100k/val/b3899bec-df46f67b.jpg
131
+ images/100k/val/b38b2b6a-77f9d5e5.jpg
132
+ images/100k/val/b38f59d4-58f1cff8.jpg
133
+ images/100k/val/b38f59d4-8dfeca9f.jpg
134
+ images/100k/val/b396946b-d29f75f9.jpg
135
+ images/100k/val/b398327e-08f3a1f2.jpg
136
+ images/100k/val/b398327e-3d2a2683.jpg
137
+ images/100k/val/b398327e-f873cb8b.jpg
138
+ images/100k/val/b3990aa9-4fb64582.jpg
139
+ images/100k/val/b3990aa9-8adaa51a.jpg
140
+ images/100k/val/b3a238e3-de6b8b86.jpg
141
+ images/100k/val/b3a238e3-ede6d45d.jpg
142
+ images/100k/val/b3a3d166-3a6a258d.jpg
143
+ images/100k/val/b3a6f586-23d13c49.jpg
144
+ images/100k/val/b3a9281a-75473a1b.jpg
145
+ images/100k/val/b3a9281a-8b4f26f1.jpg
146
+ images/100k/val/b3ae7668-c78f47c8.jpg
147
+ images/100k/val/b3b44b49-3af119e3.jpg
148
+ images/100k/val/b3b44b49-7336e3ee.jpg
149
+ images/100k/val/b3bbc110-3ef16a61.jpg
150
+ images/100k/val/b3c0357a-10fef986.jpg
151
+ images/100k/val/b3c0460d-33d7256d.jpg
152
+ images/100k/val/b3c26aff-417063a0.jpg
153
+ images/100k/val/b3c26aff-63a0d7d6.jpg
154
+ images/100k/val/b3c4e98b-2788a3e8.jpg
155
+ images/100k/val/b3da33d5-a64e7657.jpg
156
+ images/100k/val/b3e0345b-20d013f8.jpg
157
+ images/100k/val/b3e0345b-ae566cbd.jpg
158
+ images/100k/val/b3e137e5-fe7ef981.jpg
159
+ images/100k/val/b3ea5e17-c67b7a7a.jpg
160
+ images/100k/val/b3ea802a-c689de9a.jpg
161
+ images/100k/val/b3f0cdab-6712e58f.jpg
162
+ images/100k/val/b3f0cdab-d5954c9a.jpg
163
+ images/100k/val/b3f2fee7-1482dee6.jpg
164
+ images/100k/val/b3f3c908-0ab1d376.jpg
165
+ images/100k/val/b3f3c908-baffb699.jpg
166
+ images/100k/val/b3fbc6ad-746053d9.jpg
167
+ images/100k/val/b4065fc4-ede06556.jpg
168
+ images/100k/val/b40ce2eb-ac2ffa01.jpg
169
+ images/100k/val/b4110365-9ae12ee1.jpg
170
+ images/100k/val/b4115405-2f28f75a.jpg
171
+ images/100k/val/b413b23f-7c897b06.jpg
172
+ images/100k/val/b41d35f8-6cf85033.jpg
173
+ images/100k/val/b4259d0f-d93d7a19.jpg
174
+ images/100k/val/b4284bbe-1905abe0.jpg
175
+ images/100k/val/b433534e-ff3646aa.jpg
176
+ images/100k/val/b439c4fe-5064fe59.jpg
177
+ images/100k/val/b442c34a-6fe5cbba.jpg
178
+ images/100k/val/b4448a1d-e9c03bb5.jpg
179
+ images/100k/val/b4478c66-0103c647.jpg
180
+ images/100k/val/b44bcbbe-e980e271.jpg
181
+ images/100k/val/b44ee0ec-a0786e4c.jpg
182
+ images/100k/val/b4542860-0b880bb4.jpg
183
+ images/100k/val/b4542860-e818b412.jpg
184
+ images/100k/val/b4543c78-db967acc.jpg
185
+ images/100k/val/b459e707-2d208c56.jpg
186
+ images/100k/val/b45ddf05-e4775ab6.jpg
187
+ images/100k/val/b46478b0-167fe009.jpg
188
+ images/100k/val/b46478b0-1eb55806.jpg
189
+ images/100k/val/b47262a4-3c664e48.jpg
190
+ images/100k/val/b47262a4-aa7a5ad9.jpg
191
+ images/100k/val/b47262a4-b17e0871.jpg
192
+ images/100k/val/b472aeb8-f6353af9.jpg
193
+ images/100k/val/b477c2e7-6590a089.jpg
194
+ images/100k/val/b47f85d4-6cc172b6.jpg
195
+ images/100k/val/b47f85d4-c6562257.jpg
196
+ images/100k/val/b48012c1-619fc3eb.jpg
197
+ images/100k/val/b483a180-56a9db7c.jpg
198
+ images/100k/val/b48c7b5f-0beee565.jpg
199
+ images/100k/val/b48c7b5f-49fec7f1.jpg
200
+ images/100k/val/b48c7b5f-76b4418e.jpg
201
+ images/100k/val/b48c7b5f-800d31b4.jpg
202
+ images/100k/val/b48c7b5f-ae58463a.jpg
203
+ images/100k/val/b48c7b5f-cec3fed8.jpg
204
+ images/100k/val/b48c7b5f-d1d94eaf.jpg
205
+ images/100k/val/b48fc70b-72a49533.jpg
206
+ images/100k/val/b495e3ab-90180a0e.jpg
207
+ images/100k/val/b49698d7-1999d598.jpg
208
+ images/100k/val/b49944e9-57ac98be.jpg
209
+ images/100k/val/b4a23106-f7270c1c.jpg
210
+ images/100k/val/b4a2565f-3fc0ab61.jpg
211
+ images/100k/val/b4a8e0fd-7ca55075.jpg
212
+ images/100k/val/b4a8ec73-1c6196a0.jpg
213
+ images/100k/val/b4a8ec73-22166ba3.jpg
214
+ images/100k/val/b4a8ec73-4a6c61c7.jpg
215
+ images/100k/val/b4a8ec73-70456cee.jpg
216
+ images/100k/val/b4a8ec73-7e0ae9b4.jpg
217
+ images/100k/val/b4a8ec73-893c4da4.jpg
218
+ images/100k/val/b4a99fcc-cc3d571d.jpg
219
+ images/100k/val/b4aa2f44-023fb7df.jpg
220
+ images/100k/val/b4aa2f44-0c91b13d.jpg
221
+ images/100k/val/b4b07c88-3e6d65a0.jpg
222
+ images/100k/val/b4b07c88-e71768f1.jpg
223
+ images/100k/val/b4b15ff2-16c70581.jpg
224
+ images/100k/val/b4b1aa64-e3cbad0f.jpg
225
+ images/100k/val/b4b4b979-a64f258c.jpg
226
+ images/100k/val/b4b581ea-93722c60.jpg
227
+ images/100k/val/b4c195ae-4dfb18d9.jpg
228
+ images/100k/val/b4c62929-8d5e3448.jpg
229
+ images/100k/val/b4c86653-580097b3.jpg
230
+ images/100k/val/b4ca8154-1d0ea164.jpg
231
+ images/100k/val/b4d65110-23299ece.jpg
232
+ images/100k/val/b4d65110-ac665389.jpg
233
+ images/100k/val/b4e3e68f-3aa63f29.jpg
234
+ images/100k/val/b4e58e8f-dff21e6a.jpg
235
+ images/100k/val/b4ec8b36-e81e510a.jpg
236
+ images/100k/val/b4ecb933-08326feb.jpg
237
+ images/100k/val/b4ef573f-5122732a.jpg
238
+ images/100k/val/b4f2a76c-3ce3d91e.jpg
239
+ images/100k/val/b4f2a76c-6b0c22e6.jpg
240
+ images/100k/val/b4f49565-abd6b20b.jpg
241
+ images/100k/val/b4fca1a4-f7e84f0b.jpg
242
+ images/100k/val/b4fce2f5-d8eee5bb.jpg
243
+ images/100k/val/b4ff6bda-27a63ee8.jpg
244
+ images/100k/val/b5004c9e-d21fdd6e.jpg
245
+ images/100k/val/b5022e95-a691dc1c.jpg
246
+ images/100k/val/b5032e1d-d2f24352.jpg
247
+ images/100k/val/b5046f1e-340a743a.jpg
248
+ images/100k/val/b5046f1e-97a3a2e5.jpg
249
+ images/100k/val/b50cb586-d808d404.jpg
250
+ images/100k/val/b50fa05b-602f124c.jpg
251
+ images/100k/val/b5238f1c-f5d779fc.jpg
252
+ images/100k/val/b533db8e-7e5a6abb.jpg
253
+ images/100k/val/b53f23c3-3d2cea8b.jpg
254
+ images/100k/val/b5460637-3b501a2e.jpg
255
+ images/100k/val/b54735e3-4c968f67.jpg
256
+ images/100k/val/b54a8089-d1989d8f.jpg
257
+ images/100k/val/b54c48fe-0633723b.jpg
258
+ images/100k/val/b552a0b7-0472099a.jpg
259
+ images/100k/val/b555790d-cfb88988.jpg
260
+ images/100k/val/b557283b-51959094.jpg
261
+ images/100k/val/b55e257d-9db57de1.jpg
262
+ images/100k/val/b563b270-0fe8e937.jpg
263
+ images/100k/val/b563b270-1a5c6c73.jpg
264
+ images/100k/val/b563b270-47d67962.jpg
265
+ images/100k/val/b563b270-8df1c342.jpg
266
+ images/100k/val/b563b270-d18e77f6.jpg
267
+ images/100k/val/b565c328-1e663060.jpg
268
+ images/100k/val/b568371d-1a142858.jpg
269
+ images/100k/val/b56c225e-a71598cd.jpg
270
+ images/100k/val/b56c225e-a7a78ad7.jpg
271
+ images/100k/val/b56f1366-4819fdc4.jpg
272
+ images/100k/val/b57077d8-ae0b13ca.jpg
273
+ images/100k/val/b570f833-3bd87d01.jpg
274
+ images/100k/val/b5753b26-33163d42.jpg
275
+ images/100k/val/b5764fb7-2bc5ec36.jpg
276
+ images/100k/val/b576be97-6a52f4bb.jpg
277
+ images/100k/val/b578f3d3-40453bfb.jpg
278
+ images/100k/val/b57a2edf-60fd75be.jpg
279
+ images/100k/val/b57a2edf-71efe713.jpg
280
+ images/100k/val/b57a6b0c-86b6e489.jpg
281
+ images/100k/val/b581255d-1c6658b4.jpg
282
+ images/100k/val/b583e115-1ba9114c.jpg
283
+ images/100k/val/b5859b97-9d5532a9.jpg
284
+ images/100k/val/b58d74f7-ba3a38d3.jpg
285
+ images/100k/val/b5948795-913b4fee.jpg
286
+ images/100k/val/b5961057-5e258e5e.jpg
287
+ images/100k/val/b59d9baf-5fe6c3c0.jpg
288
+ images/100k/val/b59dd81f-45c8300a.jpg
289
+ images/100k/val/b5a09604-c93a9d5d.jpg
290
+ images/100k/val/b5a50c2d-a18ba669.jpg
291
+ images/100k/val/b5a50c2d-ccafe43a.jpg
292
+ images/100k/val/b5a52ea9-2e1f4066.jpg
293
+ images/100k/val/b5a72f23-5cb9552b.jpg
294
+ images/100k/val/b5a72f23-72643897.jpg
295
+ images/100k/val/b5a72f23-dfdc4b86.jpg
296
+ images/100k/val/b5aa55af-b01f8749.jpg
297
+ images/100k/val/b5ab0e46-19655ca4.jpg
298
+ images/100k/val/b5ab0e46-8eab4733.jpg
299
+ images/100k/val/b5b02b31-f19988fb.jpg
300
+ images/100k/val/b5b2f593-25b7b157.jpg
301
+ images/100k/val/b5b44d2d-60f87448.jpg
302
+ images/100k/val/b5b7d0a6-e63e539f.jpg
303
+ images/100k/val/b5be6006-83d630d5.jpg
304
+ images/100k/val/b5be77ad-b861ba83.jpg
305
+ images/100k/val/b5bf322d-0a139ab3.jpg
306
+ images/100k/val/b5c204e0-17acc044.jpg
307
+ images/100k/val/b5c30297-f0b3279b.jpg
308
+ images/100k/val/b5ca1339-b9f4a4e0.jpg
309
+ images/100k/val/b5f9cb1e-c84e2ce9.jpg
310
+ images/100k/val/b5fc1373-94aaab40.jpg
311
+ images/100k/val/b5fca52d-b459be9c.jpg
312
+ images/100k/val/b5fcec51-bb59c567.jpg
313
+ images/100k/val/b5fd8bf6-fa9be3ca.jpg
314
+ images/100k/val/b6036b55-6bc2eeef.jpg
315
+ images/100k/val/b603f785-de5db004.jpg
316
+ images/100k/val/b605d5d8-a398208d.jpg
317
+ images/100k/val/b605d5d8-d9310a5c.jpg
318
+ images/100k/val/b607dd6a-1d8f33b9.jpg
319
+ images/100k/val/b612e792-38b302a3.jpg
320
+ images/100k/val/b612e792-38fc9d6d.jpg
321
+ images/100k/val/b61459f8-ae92ce64.jpg
322
+ images/100k/val/b6149edb-63dcde71.jpg
323
+ images/100k/val/b61f162d-b6e10f56.jpg
324
+ images/100k/val/b61f7b3d-1e5fa9ff.jpg
325
+ images/100k/val/b6219281-9780cb21.jpg
326
+ images/100k/val/b6230fb4-02138607.jpg
327
+ images/100k/val/b62e6504-687ea24f.jpg
328
+ images/100k/val/b6359092-fc2faab6.jpg
329
+ images/100k/val/b63a501b-90039f36.jpg
330
+ images/100k/val/b63ae329-24084d65.jpg
331
+ images/100k/val/b63fe296-4c1819fe.jpg
332
+ images/100k/val/b6487a3e-2ddb32e0.jpg
333
+ images/100k/val/b6530006-b43698a3.jpg
334
+ images/100k/val/b6541edc-7408a6a4.jpg
335
+ images/100k/val/b6541edc-ecc17d4b.jpg
336
+ images/100k/val/b6579e76-1d48651a.jpg
337
+ images/100k/val/b65fd3df-87ed965a.jpg
338
+ images/100k/val/b65ff14a-fc05765f.jpg
339
+ images/100k/val/b6606454-86d77cb2.jpg
340
+ images/100k/val/b6606454-a4fca360.jpg
341
+ images/100k/val/b6673f98-1e13354a.jpg
342
+ images/100k/val/b668a2f1-71cdf31d.jpg
343
+ images/100k/val/b67d5d14-90c181ab.jpg
344
+ images/100k/val/b67d5d14-ecdff820.jpg
345
+ images/100k/val/b68913f1-029e9d1a.jpg
346
+ images/100k/val/b689c867-5a0ac45a.jpg
347
+ images/100k/val/b68a000f-9a8091f9.jpg
348
+ images/100k/val/b68e35b5-865cf5ee.jpg
349
+ images/100k/val/b690989d-919a2775.jpg
350
+ images/100k/val/b690e7dd-1a1d38d1.jpg
351
+ images/100k/val/b696cc35-68871f2a.jpg
352
+ images/100k/val/b6accff3-eb28ad4f.jpg
353
+ images/100k/val/b6b616b3-979e75c3.jpg
354
+ images/100k/val/b6bd79c8-c94f5c10.jpg
355
+ images/100k/val/b6c3cbb0-1c4e006c.jpg
356
+ images/100k/val/b6cad0b4-56d2e2d9.jpg
357
+ images/100k/val/b6db090c-2b1971cf.jpg
358
+ images/100k/val/b6ddc104-54cc00e3.jpg
359
+ images/100k/val/b6decb24-0de96f8c.jpg
360
+ images/100k/val/b6decb24-82234e11.jpg
361
+ images/100k/val/b6df605f-51c158b8.jpg
362
+ images/100k/val/b6e264cf-d2600371.jpg
363
+ images/100k/val/b6f2176b-20c2f527.jpg
364
+ images/100k/val/b6f85287-cde20f1d.jpg
365
+ images/100k/val/b6ffe7bd-7c91eac9.jpg
366
+ images/100k/val/b7049e6e-fa515af6.jpg
367
+ images/100k/val/b7072ec0-3a3b64a5.jpg
368
+ images/100k/val/b70b64da-024e0355.jpg
369
+ images/100k/val/b70b64da-396bfbd3.jpg
370
+ images/100k/val/b70d1e4a-467d8c58.jpg
371
+ images/100k/val/b710d831-df5ce01b.jpg
372
+ images/100k/val/b71bb4df-b9837e9c.jpg
373
+ images/100k/val/b72393ac-a136bc1e.jpg
374
+ images/100k/val/b72393ac-b071c025.jpg
375
+ images/100k/val/b724e1f0-cffecdc5.jpg
376
+ images/100k/val/b7279e9d-fcd59829.jpg
377
+ images/100k/val/b72812e8-c636249b.jpg
378
+ images/100k/val/b728b79a-14e09f31.jpg
379
+ images/100k/val/b728b79a-15b4e229.jpg
380
+ images/100k/val/b728b79a-b1757497.jpg
381
+ images/100k/val/b72b3974-07848804.jpg
382
+ images/100k/val/b72b3974-552bb7d7.jpg
383
+ images/100k/val/b72b3974-9667b29a.jpg
384
+ images/100k/val/b72f72e4-02ac60a7.jpg
385
+ images/100k/val/b7341ecf-4be3bdcb.jpg
386
+ images/100k/val/b736c477-ce5093ac.jpg
387
+ images/100k/val/b736c477-fb345fa9.jpg
388
+ images/100k/val/b73a793e-ebf5917d.jpg
389
+ images/100k/val/b7404583-645b7fd7.jpg
390
+ images/100k/val/b7404583-b504d500.jpg
391
+ images/100k/val/b740e2ac-c01ee78f.jpg
392
+ images/100k/val/b74111eb-d21a119b.jpg
393
+ images/100k/val/b741c25b-5d56239a.jpg
394
+ images/100k/val/b7446774-60e761ec.jpg
395
+ images/100k/val/b744c27e-b87d6875.jpg
396
+ images/100k/val/b7457987-06803d89.jpg
397
+ images/100k/val/b7457987-4f89d5e8.jpg
398
+ images/100k/val/b7457987-72d06293.jpg
399
+ images/100k/val/b747b30e-991436c7.jpg
400
+ images/100k/val/b7480124-540c4b41.jpg
401
+ images/100k/val/b7497244-1b64c54d.jpg
402
+ images/100k/val/b757ae91-c4ae9ab1.jpg
403
+ images/100k/val/b75da19e-a29454b7.jpg
404
+ images/100k/val/b75f355e-837e1a01.jpg
405
+ images/100k/val/b75f355e-b8ecbd7e.jpg
406
+ images/100k/val/b761cf92-05ed0ba2.jpg
407
+ images/100k/val/b761cf92-0ec720b9.jpg
408
+ images/100k/val/b761cf92-3127cc34.jpg
409
+ images/100k/val/b7668116-0f00b768.jpg
410
+ images/100k/val/b7676214-b10e4e0e.jpg
411
+ images/100k/val/b768b26a-f90ad09d.jpg
412
+ images/100k/val/b769f2fa-12edf532.jpg
413
+ images/100k/val/b77826c3-b22372a9.jpg
414
+ images/100k/val/b77a6ed6-5661f543.jpg
415
+ images/100k/val/b77f3729-fcbf9b93.jpg
416
+ images/100k/val/b784ff27-14060d57.jpg
417
+ images/100k/val/b784ff27-baf00daa.jpg
418
+ images/100k/val/b792daf1-52513869.jpg
419
+ images/100k/val/b79307e6-6cfc1c5b.jpg
420
+ images/100k/val/b7984475-0a28901d.jpg
421
+ images/100k/val/b7a16331-0c817de1.jpg
422
+ images/100k/val/b7a16331-728c61ea.jpg
423
+ images/100k/val/b7a3fc87-1c0a396b.jpg
424
+ images/100k/val/b7a8e795-36cc1230.jpg
425
+ images/100k/val/b7a9b166-01d09e6b.jpg
426
+ images/100k/val/b7a9b166-176e18ae.jpg
427
+ images/100k/val/b7a9b166-52309c81.jpg
428
+ images/100k/val/b7aa329e-25d68dec.jpg
429
+ images/100k/val/b7abfbea-3067ba7b.jpg
430
+ images/100k/val/b7ad967b-5ffacb53.jpg
431
+ images/100k/val/b7b554e4-753c2c08.jpg
432
+ images/100k/val/b7b58fcc-1ac3ea04.jpg
433
+ images/100k/val/b7bb0d6e-b018e560.jpg
434
+ images/100k/val/b7bb37d8-95dcf32f.jpg
435
+ images/100k/val/b7bb37d8-c413361a.jpg
436
+ images/100k/val/b7bb37d8-da8a74d7.jpg
437
+ images/100k/val/b7bcc17a-72df68f9.jpg
438
+ images/100k/val/b7d277b3-a6f32171.jpg
439
+ images/100k/val/b7d7b438-7e499016.jpg
440
+ images/100k/val/b7d8cd90-a01c6422.jpg
441
+ images/100k/val/b7d9a95e-f9901594.jpg
442
+ images/100k/val/b7db31d1-06d2afc1.jpg
443
+ images/100k/val/b7df0c5f-293b7be6.jpg
444
+ images/100k/val/b7df0c5f-654d495d.jpg
445
+ images/100k/val/b7e1237b-25dec3f7.jpg
446
+ images/100k/val/b7e1237b-876a427c.jpg
447
+ images/100k/val/b7e1237b-f08b7c08.jpg
448
+ images/100k/val/b7eb6c3d-e1598570.jpg
449
+ images/100k/val/b7ec8e2f-b673fc33.jpg
450
+ images/100k/val/b7edcfdc-f018989f.jpg
451
+ images/100k/val/b7f452e4-1e5669ab.jpg
452
+ images/100k/val/b7f452e4-1e8b6f3a.jpg
453
+ images/100k/val/b7fc572c-6a4b1de5.jpg
454
+ images/100k/val/b7fd2970-d748193c.jpg
455
+ images/100k/val/b7fd2970-e46faf78.jpg
456
+ images/100k/val/b7ff9d09-5bef519f.jpg
457
+ images/100k/val/b8015ebc-0445a4e2.jpg
458
+ images/100k/val/b8025b43-80a46fe5.jpg
459
+ images/100k/val/b8025b43-db6cdd13.jpg
460
+ images/100k/val/b81d060a-fddedd4f.jpg
461
+ images/100k/val/b8201476-b9dba8dd.jpg
462
+ images/100k/val/b82ad485-481e148c.jpg
463
+ images/100k/val/b82b19c9-17011ac5.jpg
464
+ images/100k/val/b82b19c9-929701e6.jpg
465
+ images/100k/val/b83235c2-32416553.jpg
466
+ images/100k/val/b83d7cf3-4e193818.jpg
467
+ images/100k/val/b8407cb8-71fdf808.jpg
468
+ images/100k/val/b84146a1-a5f588ef.jpg
469
+ images/100k/val/b843ef1b-2756a85d.jpg
470
+ images/100k/val/b843ef1b-f173bd21.jpg
471
+ images/100k/val/b84da41b-fe80f694.jpg
472
+ images/100k/val/b85eb331-920d81fe.jpg
473
+ images/100k/val/b85f5cc9-44db10f1.jpg
474
+ images/100k/val/b8677b56-9edba15a.jpg
475
+ images/100k/val/b869965a-88ad8b77.jpg
476
+ images/100k/val/b869965a-f5ff417c.jpg
477
+ images/100k/val/b87299bf-d30f284c.jpg
478
+ images/100k/val/b875ad93-deec14af.jpg
479
+ images/100k/val/b875ad93-f21a6d0a.jpg
480
+ images/100k/val/b8854854-756c468f.jpg
481
+ images/100k/val/b88b6624-3b54ae18.jpg
482
+ images/100k/val/b896b680-ce014e4d.jpg
483
+ images/100k/val/b89bf84d-d2c2e5a7.jpg
484
+ images/100k/val/b8a158fd-1e9c1bd7.jpg
485
+ images/100k/val/b8a158fd-a1917370.jpg
486
+ images/100k/val/b8a835db-c49dfee5.jpg
487
+ images/100k/val/b8adc715-5a335a7e.jpg
488
+ images/100k/val/b8affcd1-29901d90.jpg
489
+ images/100k/val/b8b15e54-2ccd7fd0.jpg
490
+ images/100k/val/b8b15e54-4c278512.jpg
491
+ images/100k/val/b8b15e54-f8461121.jpg
492
+ images/100k/val/b8b18469-00a140bf.jpg
493
+ images/100k/val/b8b18469-55e564e3.jpg
494
+ images/100k/val/b8b9ffae-042b50eb.jpg
495
+ images/100k/val/b8c21917-b001727c.jpg
496
+ images/100k/val/b8c7c957-84df8251.jpg
497
+ images/100k/val/b8c7c957-b05e784c.jpg
498
+ images/100k/val/b8ca6c5d-22de751a.jpg
499
+ images/100k/val/b8e2eae6-9b3f3a2f.jpg
500
+ images/100k/val/b8e63e55-369d821c.jpg
501
+ images/100k/val/b8e675b0-b18c870f.jpg
502
+ images/100k/val/b8e675b0-eeb01556.jpg
503
+ images/100k/val/b8f63f02-014464f6.jpg
504
+ images/100k/val/b8f63f02-c999a811.jpg
505
+ images/100k/val/b8f63f02-f3d4d3ef.jpg
506
+ images/100k/val/b8f63f02-f5b555a9.jpg
507
+ images/100k/val/b8f63f02-f78a7452.jpg
508
+ images/100k/val/b8fe9f2b-012851c9.jpg
509
+ images/100k/val/b8fe9f2b-270e73a0.jpg
510
+ images/100k/val/b909a526-1971fba7.jpg
511
+ images/100k/val/b90a1ed5-653861b3.jpg
512
+ images/100k/val/b90b45ad-a54b1fbf.jpg
513
+ images/100k/val/b9117002-548fd684.jpg
514
+ images/100k/val/b919f6f7-9c71d913.jpg
515
+ images/100k/val/b91cdc5d-bce994ce.jpg
516
+ images/100k/val/b91ddba0-93eda7e1.jpg
517
+ images/100k/val/b91ddba0-946e0059.jpg
518
+ images/100k/val/b9206eb1-08915f67.jpg
519
+ images/100k/val/b928271b-35145ad6.jpg
520
+ images/100k/val/b928271b-fe5cc5d1.jpg
521
+ images/100k/val/b93085e8-4dcee882.jpg
522
+ images/100k/val/b93e0d1b-5e1e35f8.jpg
523
+ images/100k/val/b93ecb20-598666a0.jpg
524
+ images/100k/val/b9429f07-33ae3ff1.jpg
525
+ images/100k/val/b9429f07-a95e6db3.jpg
526
+ images/100k/val/b9429f07-e59c4a8c.jpg
527
+ images/100k/val/b944121b-910a65e5.jpg
528
+ images/100k/val/b9470f2d-aa9b22f2.jpg
529
+ images/100k/val/b9471202-68f658bd.jpg
530
+ images/100k/val/b94b1f35-b8e48adf.jpg
531
+ images/100k/val/b94daedc-7045933e.jpg
532
+ images/100k/val/b94ef562-0e37552c.jpg
533
+ images/100k/val/b94f6bc8-32f10d36.jpg
534
+ images/100k/val/b9597719-09a2458c.jpg
535
+ images/100k/val/b9597719-4d141a98.jpg
536
+ images/100k/val/b9597719-81050919.jpg
537
+ images/100k/val/b9597719-cd9a176f.jpg
538
+ images/100k/val/b95dcb10-4ff5c14d.jpg
539
+ images/100k/val/b9742173-21a140e8.jpg
540
+ images/100k/val/b9742173-3b584111.jpg
541
+ images/100k/val/b97f47c3-906ebdd5.jpg
542
+ images/100k/val/b97f9acb-5c677268.jpg
543
+ images/100k/val/b98682bb-a0142ac9.jpg
544
+ images/100k/val/b989ad0d-a1513cc2.jpg
545
+ images/100k/val/b989ad0d-b8f7d12a.jpg
546
+ images/100k/val/b98e3a45-2af2c615.jpg
547
+ images/100k/val/b98e3a45-c94a8f44.jpg
548
+ images/100k/val/b98f4bb1-100931bb.jpg
549
+ images/100k/val/b9947c32-6074d84c.jpg
550
+ images/100k/val/b9990002-f103f7d9.jpg
551
+ images/100k/val/b99eeedd-f211870f.jpg
552
+ images/100k/val/b99fd3ff-95f75133.jpg
553
+ images/100k/val/b9a2146e-2f27d574.jpg
554
+ images/100k/val/b9aabdcf-d1433a19.jpg
555
+ images/100k/val/b9bd0109-531e640f.jpg
556
+ images/100k/val/b9c2521e-2db68bde.jpg
557
+ images/100k/val/b9c30b68-2d208deb.jpg
558
+ images/100k/val/b9c71d97-416ef91d.jpg
559
+ images/100k/val/b9c7f347-97b374b1.jpg
560
+ images/100k/val/b9cd5de4-5614ed70.jpg
561
+ images/100k/val/b9d24e81-a9679e2a.jpg
562
+ images/100k/val/b9d9e358-7dadc57c.jpg
563
+ images/100k/val/b9db357e-cd30a8ae.jpg
564
+ images/100k/val/b9e4cb3d-975f9d1d.jpg
565
+ images/100k/val/b9e4cb3d-98ed4484.jpg
566
+ images/100k/val/b9e4cb3d-eaf3d4ad.jpg
567
+ images/100k/val/b9ef58f6-dbfd3b12.jpg
568
+ images/100k/val/b9efb2a4-bad8be38.jpg
569
+ images/100k/val/b9f30ada-2c42a2f8.jpg
570
+ images/100k/val/b9fdf8bf-42564342.jpg
571
+ images/100k/val/b9fdf8bf-9de2321b.jpg
572
+ images/100k/val/b9fdf8bf-a7d770dc.jpg
573
+ images/100k/val/ba09810a-a1c9c327.jpg
574
+ images/100k/val/ba0a3619-e721c302.jpg
575
+ images/100k/val/ba0a9afb-ba786259.jpg
576
+ images/100k/val/ba0b31f2-067b826c.jpg
577
+ images/100k/val/ba112f29-5452cd9f.jpg
578
+ images/100k/val/ba122c97-403fd75d.jpg
579
+ images/100k/val/ba122c97-69a4038b.jpg
580
+ images/100k/val/ba19e1c4-a9bca6af.jpg
581
+ images/100k/val/ba1c5b5f-bc36c5fa.jpg
582
+ images/100k/val/ba1f97fc-214aaccb.jpg
583
+ images/100k/val/ba22eaaf-b6fad89d.jpg
584
+ images/100k/val/ba2e8260-5b48768d.jpg
585
+ images/100k/val/ba31ed47-117c074b.jpg
586
+ images/100k/val/ba36b0a9-6c380330.jpg
587
+ images/100k/val/ba37b3d4-a8126899.jpg
588
+ images/100k/val/ba3dc656-c88512cc.jpg
589
+ images/100k/val/ba402b44-b17beb78.jpg
590
+ images/100k/val/ba41a907-1793986f.jpg
591
+ images/100k/val/ba41a907-c8e44897.jpg
592
+ images/100k/val/ba4432a9-3956a266.jpg
593
+ images/100k/val/ba4432a9-d3c31edf.jpg
594
+ images/100k/val/ba4a95e2-388b7299.jpg
595
+ images/100k/val/ba4bcdc5-3d4f7a56.jpg
596
+ images/100k/val/ba4bd5ae-583b01d5.jpg
597
+ images/100k/val/ba4d05f6-24c9c3cf.jpg
598
+ images/100k/val/ba4d05f6-8b126390.jpg
599
+ images/100k/val/ba4d05f6-e11a4967.jpg
600
+ images/100k/val/ba508231-1b6ab5b0.jpg
601
+ images/100k/val/ba508231-2158c29b.jpg
602
+ images/100k/val/ba510a80-edefe47f.jpg
603
+ images/100k/val/ba510a80-f9582aea.jpg
604
+ images/100k/val/ba528af9-121c1347.jpg
605
+ images/100k/val/ba5df354-c3a0694a.jpg
606
+ images/100k/val/ba5df354-db132aac.jpg
607
+ images/100k/val/ba635a0a-fd69cb62.jpg
608
+ images/100k/val/ba81149b-bb88d2ac.jpg
609
+ images/100k/val/ba8c90a0-b82731e9.jpg
610
+ images/100k/val/ba9f6c98-2a75a096.jpg
611
+ images/100k/val/ba9f6c98-c7216bf4.jpg
612
+ images/100k/val/baa03c1f-82d03594.jpg
613
+ images/100k/val/baa0cbfb-46b96329.jpg
614
+ images/100k/val/baa50786-e1613030.jpg
615
+ images/100k/val/baab5a30-8d713374.jpg
616
+ images/100k/val/bab45acf-4b4387fb.jpg
617
+ images/100k/val/bab692c9-35904fdb.jpg
618
+ images/100k/val/bab692c9-3cd892ff.jpg
619
+ images/100k/val/bab692c9-4d1f2bdd.jpg
620
+ images/100k/val/bab692c9-78e8ac63.jpg
621
+ images/100k/val/bab692c9-922ed2ea.jpg
622
+ images/100k/val/bab692c9-a16f15b4.jpg
623
+ images/100k/val/bab692c9-ce1abc2d.jpg
624
+ images/100k/val/bab692c9-efde0b04.jpg
625
+ images/100k/val/bab6be6b-14db4536.jpg
626
+ images/100k/val/babd6d42-754e86fe.jpg
627
+ images/100k/val/bac25f5a-af4fd9fd.jpg
628
+ images/100k/val/bac66ed2-5f02fccc.jpg
629
+ images/100k/val/bad479df-d2e02382.jpg
630
+ images/100k/val/bad89ad9-af1926ac.jpg
631
+ images/100k/val/bad89ad9-f1f414d4.jpg
632
+ images/100k/val/bad909d4-8de038fe.jpg
633
+ images/100k/val/bade898f-11350592.jpg
634
+ images/100k/val/bae47c98-102dd98e.jpg
635
+ images/100k/val/bae552dc-36e0fe4e.jpg
636
+ images/100k/val/bae5905c-b009aff3.jpg
637
+ images/100k/val/bae9f15e-0f68c902.jpg
638
+ images/100k/val/bae9f15e-4c858350.jpg
639
+ images/100k/val/baeb1657-6169cccd.jpg
640
+ images/100k/val/baeb1657-c8c65444.jpg
641
+ images/100k/val/baee6fb9-390cd194.jpg
642
+ images/100k/val/baee6fb9-8438c345.jpg
643
+ images/100k/val/baee6fb9-f28ac93d.jpg
644
+ images/100k/val/baefe65c-bb9793d9.jpg
645
+ images/100k/val/baf1fb8b-9280a668.jpg
646
+ images/100k/val/baf24e00-1fbb8a3b.jpg
647
+ images/100k/val/baf24e00-7742132f.jpg
648
+ images/100k/val/baf870f0-a1a64cd6.jpg
649
+ images/100k/val/bafad57f-2e29ac87.jpg
650
+ images/100k/val/bb051d4e-49d5fed8.jpg
651
+ images/100k/val/bb0ea699-3d008331.jpg
652
+ images/100k/val/bb0ea699-e350eac6.jpg
653
+ images/100k/val/bb2c5719-38a69465.jpg
654
+ images/100k/val/bb476629-bb31855e.jpg
655
+ images/100k/val/bb48c235-d9aae9be.jpg
656
+ images/100k/val/bb4abf02-01cd2796.jpg
657
+ images/100k/val/bb4abf02-2651a845.jpg
658
+ images/100k/val/bb55f0e2-e5501b3c.jpg
659
+ images/100k/val/bb5d0b6a-99b062c6.jpg
660
+ images/100k/val/bb6264e8-a591635c.jpg
661
+ images/100k/val/bb6264e8-e8dfd14d.jpg
662
+ images/100k/val/bb627372-de7438d2.jpg
663
+ images/100k/val/bb6f381e-02e9cc6b.jpg
664
+ images/100k/val/bb6fb6cd-6f571799.jpg
665
+ images/100k/val/bb725082-6cfb3269.jpg
666
+ images/100k/val/bb76c63a-586a2668.jpg
667
+ images/100k/val/bb76c63a-f232154d.jpg
668
+ images/100k/val/bb78624a-907eb4f3.jpg
669
+ images/100k/val/bb7cffc0-5a54a6d9.jpg
670
+ images/100k/val/bb820c34-c959c253.jpg
671
+ images/100k/val/bb856696-8aa6a20a.jpg
672
+ images/100k/val/bb8b844a-ed14e8b9.jpg
673
+ images/100k/val/bb8dba97-3537805c.jpg
674
+ images/100k/val/bb9071ac-46abc696.jpg
675
+ images/100k/val/bb9071ac-4b105539.jpg
676
+ images/100k/val/bb9071ac-4ee8ed8c.jpg
677
+ images/100k/val/bb9071ac-8e2bc8fe.jpg
678
+ images/100k/val/bb9071ac-9f4af9b1.jpg
679
+ images/100k/val/bb9071ac-eb6e330c.jpg
680
+ images/100k/val/bb9a3460-97d249c3.jpg
681
+ images/100k/val/bb9e60a8-3a61f409.jpg
682
+ images/100k/val/bb9f498e-5ea84006.jpg
683
+ images/100k/val/bb9f498e-62cc407e.jpg
684
+ images/100k/val/bbaf1cf2-5c7315e0.jpg
685
+ images/100k/val/bbaf54a0-217653b8.jpg
686
+ images/100k/val/bbb1289a-a3fbe37f.jpg
687
+ images/100k/val/bbb1289a-b49fe5de.jpg
688
+ images/100k/val/bbb25499-f602899d.jpg
689
+ images/100k/val/bbb7bb8e-85124fbf.jpg
690
+ images/100k/val/bbbe5a28-c070f32d.jpg
691
+ images/100k/val/bbc19191-fb681730.jpg
692
+ images/100k/val/bbc19c5e-51fd9cc0.jpg
693
+ images/100k/val/bbc755d2-7719fa91.jpg
694
+ images/100k/val/bbc755d2-e35a6b06.jpg
695
+ images/100k/val/bbc9db98-4a7fb607.jpg
696
+ images/100k/val/bbd5188d-91d0926f.jpg
697
+ images/100k/val/bbd5b9b2-5d171163.jpg
698
+ images/100k/val/bbddd5fa-1fb3ae4e.jpg
699
+ images/100k/val/bbdfa37f-03ac6f5e.jpg
700
+ images/100k/val/bbdfa37f-a37db6bd.jpg
701
+ images/100k/val/bbe207fc-bee772a7.jpg
702
+ images/100k/val/bbe88e6d-c0e7b375.jpg
703
+ images/100k/val/bbe95ad4-1df76d9d.jpg
704
+ images/100k/val/bbe95ad4-8870089d.jpg
705
+ images/100k/val/bbec733f-32b81849.jpg
706
+ images/100k/val/bbefae56-1d886e4e.jpg
707
+ images/100k/val/bbf0f5d7-ea2f1cc3.jpg
708
+ images/100k/val/bbf29c70-20e48f5b.jpg
709
+ images/100k/val/bbf5747b-35f769d6.jpg
710
+ images/100k/val/bbf86f8f-87b564dc.jpg
711
+ images/100k/val/bbfa7b2b-9c71f471.jpg
712
+ images/100k/val/bbfe3b4f-5137ff9f.jpg
713
+ images/100k/val/bbfe3b4f-71b57b40.jpg
714
+ images/100k/val/bc0e43fd-10fc4231.jpg
715
+ images/100k/val/bc101f0f-2bd5f9ec.jpg
716
+ images/100k/val/bc14daff-30e5ade2.jpg
717
+ images/100k/val/bc14daff-59f11746.jpg
718
+ images/100k/val/bc171ee0-b1f4fca6.jpg
719
+ images/100k/val/bc1e4645-5c81c3c1.jpg
720
+ images/100k/val/bc1e4645-76a7fd0e.jpg
721
+ images/100k/val/bc214770-39035c6c.jpg
722
+ images/100k/val/bc230811-8caf576d.jpg
723
+ images/100k/val/bc24f222-2acc4952.jpg
724
+ images/100k/val/bc24f222-4fdb5e23.jpg
725
+ images/100k/val/bc24f222-f198b643.jpg
726
+ images/100k/val/bc2552ff-c72260e0.jpg
727
+ images/100k/val/bc3edef9-98053500.jpg
728
+ images/100k/val/bc4712a2-1bb55ccc.jpg
729
+ images/100k/val/bc4799bc-bc14f187.jpg
730
+ images/100k/val/bc5fadac-47398ddc.jpg
731
+ images/100k/val/bc5fadac-790bcdec.jpg
732
+ images/100k/val/bc5fadac-96776d48.jpg
733
+ images/100k/val/bc5fadac-bc6d38cd.jpg
734
+ images/100k/val/bc5fadac-fa6dd225.jpg
735
+ images/100k/val/bc6091c9-30b92a47.jpg
736
+ images/100k/val/bc67b362-fb6767aa.jpg
737
+ images/100k/val/bc67ddf0-874dcf8d.jpg
738
+ images/100k/val/bc6a2a77-88414eb2.jpg
739
+ images/100k/val/bc6a2a77-e9984397.jpg
740
+ images/100k/val/bc6dd79a-5dbc7538.jpg
741
+ images/100k/val/bc6dd79a-72832b74.jpg
742
+ images/100k/val/bc6dd79a-fa684758.jpg
743
+ images/100k/val/bc7a0adc-b360c4b1.jpg
744
+ images/100k/val/bc7a7a1f-4d88e416.jpg
745
+ images/100k/val/bc7a7a1f-4e38c1f5.jpg
746
+ images/100k/val/bc7a7a1f-64c449cc.jpg
747
+ images/100k/val/bc7a7a1f-dbeb9406.jpg
748
+ images/100k/val/bc7caf3c-da14eed9.jpg
749
+ images/100k/val/bc8ccccd-bbc93b76.jpg
750
+ images/100k/val/bc8e038e-dc636bde.jpg
751
+ images/100k/val/bc8e1605-5c57e4b3.jpg
752
+ images/100k/val/bc8f58aa-05037d38.jpg
753
+ images/100k/val/bc92f518-fa316e88.jpg
754
+ images/100k/val/bc97328c-8b9ba7ab.jpg
755
+ images/100k/val/bc978e82-e82eee23.jpg
756
+ images/100k/val/bc9b5bfb-51ebcf39.jpg
757
+ images/100k/val/bc9e1979-8b3e9fcc.jpg
758
+ images/100k/val/bc9e1979-f1fb1692.jpg
759
+ images/100k/val/bcaa771b-806e4fcd.jpg
760
+ images/100k/val/bcaa771b-a3595511.jpg
761
+ images/100k/val/bcadb48c-9a41d823.jpg
762
+ images/100k/val/bcaf57de-8a71dbde.jpg
763
+ images/100k/val/bcafa205-40fde1da.jpg
764
+ images/100k/val/bcb2c6fd-060efb1b.jpg
765
+ images/100k/val/bcb2c6fd-094b605f.jpg
766
+ images/100k/val/bcb3c18a-702288dc.jpg
767
+ images/100k/val/bcbf328d-953430de.jpg
768
+ images/100k/val/bcbf4834-ad592e12.jpg
769
+ images/100k/val/bcbf4834-eed0f97c.jpg
770
+ images/100k/val/bcbfab33-5add26c9.jpg
771
+ images/100k/val/bcbfbfb8-297deca0.jpg
772
+ images/100k/val/bcc942dc-d64dc48f.jpg
773
+ images/100k/val/bccad38e-0f5097a8.jpg
774
+ images/100k/val/bccd4f82-5c8f9f28.jpg
775
+ images/100k/val/bcd02ab4-9a15965c.jpg
776
+ images/100k/val/bcd596fa-74094968.jpg
777
+ images/100k/val/bcd596fa-d4c78bb9.jpg
778
+ images/100k/val/bcde71de-1bf86b19.jpg
779
+ images/100k/val/bcde71de-211d8a7d.jpg
780
+ images/100k/val/bcde71de-fcf3da5c.jpg
781
+ images/100k/val/bce1e185-c51123bb.jpg
782
+ images/100k/val/bce1e185-db36dbdc.jpg
783
+ images/100k/val/bcea7303-fc913f70.jpg
784
+ images/100k/val/bcf55067-920ad457.jpg
785
+ images/100k/val/bcf7f6b9-8819dc29.jpg
786
+ images/100k/val/bcf7f6b9-88bfed8f.jpg
787
+ images/100k/val/bcf7f6b9-fc7c487f.jpg
788
+ images/100k/val/bcf9cd99-5a125838.jpg
789
+ images/100k/val/bcfdd6af-c3d0b55a.jpg
790
+ images/100k/val/bd0380e5-bc2886de.jpg
791
+ images/100k/val/bd0380e5-de0cc7cb.jpg
792
+ images/100k/val/bd05c4b3-a22bd6c8.jpg
793
+ images/100k/val/bd138b54-7e85623f.jpg
794
+ images/100k/val/bd1416c5-e973335b.jpg
795
+ images/100k/val/bd1c6dd5-1534269e.jpg
796
+ images/100k/val/bd1d310c-f5fb429f.jpg
797
+ images/100k/val/bd1d6a81-01f9b2c4.jpg
798
+ images/100k/val/bd204fcd-75ab6967.jpg
799
+ images/100k/val/bd2646a4-977c94a5.jpg
800
+ images/100k/val/bd28ebc2-4de19d20.jpg
801
+ images/100k/val/bd2fd996-71e2a020.jpg
802
+ images/100k/val/bd338426-4b27de63.jpg
803
+ images/100k/val/bd338426-a0b4e877.jpg
804
+ images/100k/val/bd355fcc-bbe3eda5.jpg
805
+ images/100k/val/bd3a9dfd-4b1dd476.jpg
806
+ images/100k/val/bd3bd3ab-8e38f822.jpg
807
+ images/100k/val/bd3bd3ab-c51f41b3.jpg
808
+ images/100k/val/bd46bba0-926dc1db.jpg
809
+ images/100k/val/bd46bba0-fadf1d6d.jpg
810
+ images/100k/val/bd4c8e34-0a6f19e0.jpg
811
+ images/100k/val/bd50478a-4eb79ba3.jpg
812
+ images/100k/val/bd512863-2e6735a4.jpg
813
+ images/100k/val/bd512863-814ab9b3.jpg
814
+ images/100k/val/bd57e60e-504a870b.jpg
815
+ images/100k/val/bd5c34f4-52ef24cd.jpg
816
+ images/100k/val/bd5c34f4-f39f6dfc.jpg
817
+ images/100k/val/bd5d35a0-1357b0da.jpg
818
+ images/100k/val/bd5e847a-dd8e1bb1.jpg
819
+ images/100k/val/bd5e847a-fff41819.jpg
820
+ images/100k/val/bd5fe5fb-dfcd1cd2.jpg
821
+ images/100k/val/bd60211c-07f21245.jpg
822
+ images/100k/val/bd65dd37-4c3cdf2d.jpg
823
+ images/100k/val/bd6ca291-923cc95a.jpg
824
+ images/100k/val/bd735753-10912d8b.jpg
825
+ images/100k/val/bd735753-1451d21f.jpg
826
+ images/100k/val/bd735753-49b2ce68.jpg
827
+ images/100k/val/bd735753-5d67127a.jpg
828
+ images/100k/val/bd7f7061-601abafd.jpg
829
+ images/100k/val/bd8d420d-ec34c634.jpg
830
+ images/100k/val/bd8f4dfa-4e126a95.jpg
831
+ images/100k/val/bd9dbebc-e5756011.jpg
832
+ images/100k/val/bda8b780-12d402fd.jpg
833
+ images/100k/val/bda90d90-4fff70f2.jpg
834
+ images/100k/val/bdaa98a5-d23583cb.jpg
835
+ images/100k/val/bdabbd46-59d2ac28.jpg
836
+ images/100k/val/bdabbd46-c58c1d2f.jpg
837
+ images/100k/val/bdaeda37-6b0b9900.jpg
838
+ images/100k/val/bdaeda37-a0d637e0.jpg
839
+ images/100k/val/bdb3c90f-095103e9.jpg
840
+ images/100k/val/bdb3c90f-dba6400e.jpg
841
+ images/100k/val/bdb610dc-15dd7f0f.jpg
842
+ images/100k/val/bdb610dc-e64667d9.jpg
843
+ images/100k/val/bdb615e0-d78e2a9c.jpg
844
+ images/100k/val/bdb658c2-01af4ab1.jpg
845
+ images/100k/val/bdb658c2-f38bc8c3.jpg
846
+ images/100k/val/bdc89152-2b7aec87.jpg
847
+ images/100k/val/bdcda664-848e5b1e.jpg
848
+ images/100k/val/bdcff5f0-83dbf6d8.jpg
849
+ images/100k/val/bdd0049d-8c592c39.jpg
850
+ images/100k/val/bdd3a05e-5d28f64d.jpg
851
+ images/100k/val/bdd463a8-387d221a.jpg
852
+ images/100k/val/bdd463a8-94969b77.jpg
853
+ images/100k/val/bdd645df-90aa8572.jpg
854
+ images/100k/val/bdd7c984-3c3a2fc4.jpg
855
+ images/100k/val/bddd9d1b-77a23376.jpg
856
+ images/100k/val/bde0caa6-d7d428b5.jpg
857
+ images/100k/val/bde96867-d909dae7.jpg
858
+ images/100k/val/bdec39d8-f1063651.jpg
859
+ images/100k/val/bdfc0f1d-375eba4a.jpg
860
+ images/100k/val/be00937a-8e571604.jpg
861
+ images/100k/val/be00937a-98783429.jpg
862
+ images/100k/val/be047105-0662bd2d.jpg
863
+ images/100k/val/be047105-ea277d1d.jpg
864
+ images/100k/val/be0571c8-03dae021.jpg
865
+ images/100k/val/be22a1e1-cbcd82a6.jpg
866
+ images/100k/val/be2b1f01-892bf2bb.jpg
867
+ images/100k/val/be2c4865-14b12388.jpg
868
+ images/100k/val/be2d3f1c-2644c9e3.jpg
869
+ images/100k/val/be3301b2-9bb342d3.jpg
870
+ images/100k/val/be362fff-99b5dd8b.jpg
871
+ images/100k/val/be39c92f-cef221af.jpg
872
+ images/100k/val/be3e9c45-d47775f3.jpg
873
+ images/100k/val/be448414-11891b58.jpg
874
+ images/100k/val/be448414-f60b61c9.jpg
875
+ images/100k/val/be449d8d-288c49bd.jpg
876
+ images/100k/val/be449d8d-c3a01551.jpg
877
+ images/100k/val/be49ae7a-1ffaa683.jpg
878
+ images/100k/val/be4a418e-8e95d178.jpg
879
+ images/100k/val/be4f3873-33c738a5.jpg
880
+ images/100k/val/be4f53be-3e8f170e.jpg
881
+ images/100k/val/be4f53be-a7d26a38.jpg
882
+ images/100k/val/be554fed-4ac78405.jpg
883
+ images/100k/val/be62c9ed-cfe00d7a.jpg
884
+ images/100k/val/be651ed5-21253da1.jpg
885
+ images/100k/val/be651ed5-5ee1f563.jpg
886
+ images/100k/val/be651ffd-0bc74ac7.jpg
887
+ images/100k/val/be6fd6ac-624b4634.jpg
888
+ images/100k/val/be731030-82d58159.jpg
889
+ images/100k/val/be80a253-75e6f6aa.jpg
890
+ images/100k/val/be8590fa-9ab10ced.jpg
891
+ images/100k/val/be8cb554-6f4255f3.jpg
892
+ images/100k/val/be94c28f-7128d4c4.jpg
893
+ images/100k/val/be94c28f-9526bf9a.jpg
894
+ images/100k/val/be94df25-464ac4f8.jpg
895
+ images/100k/val/be986afd-b86569ff.jpg
896
+ images/100k/val/be9c5bdd-02782f34.jpg
897
+ images/100k/val/be9c5bdd-7714057c.jpg
898
+ images/100k/val/be9ce27e-65ec1c4e.jpg
899
+ images/100k/val/bea02fed-c803e656.jpg
900
+ images/100k/val/bea02fed-e64fced9.jpg
901
+ images/100k/val/bea4ac92-340863d9.jpg
902
+ images/100k/val/bea4ac92-f9e0f736.jpg
903
+ images/100k/val/bea64506-c04d4b12.jpg
904
+ images/100k/val/bea6dbeb-3292525a.jpg
905
+ images/100k/val/bea74140-801c009e.jpg
906
+ images/100k/val/bea82122-66fc59a4.jpg
907
+ images/100k/val/beaa0c22-9f7d6767.jpg
908
+ images/100k/val/beaa0c22-e5e3c48f.jpg
909
+ images/100k/val/beb3d6ea-d2584fc7.jpg
910
+ images/100k/val/beb712cc-6594b626.jpg
911
+ images/100k/val/beb80a43-c3b9107e.jpg
912
+ images/100k/val/beb87fd7-6120b637.jpg
913
+ images/100k/val/bec0d815-f71f4f7b.jpg
914
+ images/100k/val/bec6904e-816bf499.jpg
915
+ images/100k/val/bec7b5c0-5cf322d9.jpg
916
+ images/100k/val/beccfad4-d24a29c5.jpg
917
+ images/100k/val/beced1e4-8d82da4e.jpg
918
+ images/100k/val/bed001a8-2339fb95.jpg
919
+ images/100k/val/bed001a8-6cd3d8be.jpg
920
+ images/100k/val/bed3a784-c17f9bcb.jpg
921
+ images/100k/val/bed782a6-b511b4b6.jpg
922
+ images/100k/val/bee1b799-cfe60aff.jpg
923
+ images/100k/val/bee1f0a4-22dbabcd.jpg
924
+ images/100k/val/bee67716-2a04a827.jpg
925
+ images/100k/val/beea0e03-fa22a607.jpg
926
+ images/100k/val/bef271e3-99f9020e.jpg
927
+ images/100k/val/bef766cb-e61b2168.jpg
928
+ images/100k/val/bef9fe55-0bba41cb.jpg
929
+ images/100k/val/befd675c-ead3969d.jpg
930
+ images/100k/val/beffe676-8c0d1028.jpg
931
+ images/100k/val/bf04b038-341ec0e5.jpg
932
+ images/100k/val/bf054de4-025bb1c3.jpg
933
+ images/100k/val/bf0b285b-46b928cd.jpg
934
+ images/100k/val/bf0b285b-afa81125.jpg
935
+ images/100k/val/bf0e0d24-ab9a3039.jpg
936
+ images/100k/val/bf0fd4de-7db956ab.jpg
937
+ images/100k/val/bf144b6a-99b46408.jpg
938
+ images/100k/val/bf144b6a-c204b7ad.jpg
939
+ images/100k/val/bf213ac1-1665b81a.jpg
940
+ images/100k/val/bf213ac1-62a8536b.jpg
941
+ images/100k/val/bf261d80-f339c048.jpg
942
+ images/100k/val/bf4906e0-73ed04de.jpg
943
+ images/100k/val/bf568d39-2bac1d09.jpg
944
+ images/100k/val/bf5b423c-eb2447d8.jpg
945
+ images/100k/val/bf5e662c-0c0afa60.jpg
946
+ images/100k/val/bf5ea8d2-108ab9c6.jpg
947
+ images/100k/val/bf62e180-b6240b12.jpg
948
+ images/100k/val/bf668f9e-a12cb035.jpg
949
+ images/100k/val/bf66b0b2-63bcf4a9.jpg
950
+ images/100k/val/bf70a9e2-55b26931.jpg
951
+ images/100k/val/bf78f601-1003f3da.jpg
952
+ images/100k/val/bf7f097a-2fcff02a.jpg
953
+ images/100k/val/bf80599d-c04f3cbb.jpg
954
+ images/100k/val/bf838e9d-08f6fb44.jpg
955
+ images/100k/val/bf838e9d-d8d5be4d.jpg
956
+ images/100k/val/bf8feaf5-cf2b6195.jpg
957
+ images/100k/val/bf90176a-c0b94917.jpg
958
+ images/100k/val/bf9ba5a3-22398dcc.jpg
959
+ images/100k/val/bf9d1ca5-2ff62aeb.jpg
960
+ images/100k/val/bf9e3b67-49c1ef1c.jpg
961
+ images/100k/val/bfa05832-d5061cc3.jpg
962
+ images/100k/val/bfa8c531-e3fed04f.jpg
963
+ images/100k/val/bfa92b30-41f9894f.jpg
964
+ images/100k/val/bfa92b30-f12f3535.jpg
965
+ images/100k/val/bfaca2bb-30af2110.jpg
966
+ images/100k/val/bfaca2bb-98dfee43.jpg
967
+ images/100k/val/bfaca2bb-f1c305a8.jpg
968
+ images/100k/val/bfb41e9f-48952c95.jpg
969
+ images/100k/val/bfb41e9f-e4f81437.jpg
970
+ images/100k/val/bfb4dfcd-2f987f2b.jpg
971
+ images/100k/val/bfb9cf70-29fd574e.jpg
972
+ images/100k/val/bfbc2f14-6fb10366.jpg
973
+ images/100k/val/bfc06497-fc2b4581.jpg
974
+ images/100k/val/bfd08f2c-b67851d1.jpg
975
+ images/100k/val/bfd29575-767314a3.jpg
976
+ images/100k/val/bfd64d5f-a12327b4.jpg
977
+ images/100k/val/bfd64d5f-d141be33.jpg
978
+ images/100k/val/bfdb9d69-9beabbd2.jpg
979
+ images/100k/val/bfe0801e-20388316.jpg
980
+ images/100k/val/bfe2b817-8501bdbe.jpg
981
+ images/100k/val/bfe98b68-6e23d74e.jpg
982
+ images/100k/val/bfe98b68-afa168ac.jpg
983
+ images/100k/val/bfee349b-7f157350.jpg
984
+ images/100k/val/bff4bb8b-08eee3f5.jpg
985
+ images/100k/val/bff4bb8b-152c6105.jpg
986
+ images/100k/val/bff7091d-346e6f58.jpg
987
+ images/100k/val/bff7091d-4ea5eb2a.jpg
988
+ images/100k/val/bffe8c14-18cf493f.jpg
989
+ images/100k/val/c0020346-d539abe5.jpg
990
+ images/100k/val/c0071cbb-02fb08c6.jpg
991
+ images/100k/val/c0082590-e325cff4.jpg
992
+ images/100k/val/c00d0859-8e02615e.jpg
993
+ images/100k/val/c00ec632-8bf1e59e.jpg
994
+ images/100k/val/c00f8f83-bdd9f783.jpg
995
+ images/100k/val/c01cec8c-897f1dfc.jpg
996
+ images/100k/val/c022e075-de13593a.jpg
997
+ images/100k/val/c02d18db-023c1955.jpg
998
+ images/100k/val/c02ee64a-64c0a49a.jpg
999
+ images/100k/val/c02ee64a-ec68fa8e.jpg
1000
+ images/100k/val/c036f281-0fcdc2ee.jpg
1001
+ images/100k/val/c036f281-1d7ac9df.jpg
1002
+ images/100k/val/c036f281-831b21ba.jpg
1003
+ images/100k/val/c036f281-a0c90e9a.jpg
1004
+ images/100k/val/c03d48c2-869f09b4.jpg
1005
+ images/100k/val/c0458999-18bb1ce3.jpg
1006
+ images/100k/val/c047f07b-d0d11ec9.jpg
1007
+ images/100k/val/c051bcee-e5c6ad9f.jpg
1008
+ images/100k/val/c055cef2-01665d65.jpg
1009
+ images/100k/val/c05767da-e6e016b5.jpg
1010
+ images/100k/val/c063c188-26f08957.jpg
1011
+ images/100k/val/c0677163-8371743a.jpg
1012
+ images/100k/val/c0677163-89d37846.jpg
1013
+ images/100k/val/c0726425-0b2f4892.jpg
1014
+ images/100k/val/c07733d0-7525eae7.jpg
1015
+ images/100k/val/c0792259-e4b3dbbe.jpg
1016
+ images/100k/val/c08bf392-3d39a1bc.jpg
1017
+ images/100k/val/c090895d-02949f2b.jpg
1018
+ images/100k/val/c093f8be-262822a7.jpg
1019
+ images/100k/val/c093f8be-45274361.jpg
1020
+ images/100k/val/c093f8be-b478e611.jpg
1021
+ images/100k/val/c093f8be-f17f116a.jpg
1022
+ images/100k/val/c09dfe6c-f23991eb.jpg
1023
+ images/100k/val/c09ffc61-d494d8f0.jpg
1024
+ images/100k/val/c0a3b5cc-b6d07aae.jpg
1025
+ images/100k/val/c0a66d6a-607213d1.jpg
1026
+ images/100k/val/c0a8843f-878c626c.jpg
1027
+ images/100k/val/c0aa83ea-5e7cbb16.jpg
1028
+ images/100k/val/c0aa979d-dd5c54d1.jpg
1029
+ images/100k/val/c0bdd2df-c6e1aa24.jpg
1030
+ images/100k/val/c0be0e03-0663efcf.jpg
1031
+ images/100k/val/c0c183ff-1b24f541.jpg
1032
+ images/100k/val/c0c23a94-d914f7ec.jpg
1033
+ images/100k/val/c0c3d5f5-f17f878d.jpg
1034
+ images/100k/val/c0c954a7-0c7fa0bb.jpg
1035
+ images/100k/val/c0c9ec9a-d3638a82.jpg
1036
+ images/100k/val/c0cf4efc-65b9d672.jpg
1037
+ images/100k/val/c0d3128e-8adf0493.jpg
1038
+ images/100k/val/c0dc123c-25946136.jpg
1039
+ images/100k/val/c0e05e70-6431cfed.jpg
1040
+ images/100k/val/c0e1fd2a-45156dec.jpg
1041
+ images/100k/val/c0e24bac-d541b20d.jpg
1042
+ images/100k/val/c0e3df1a-5ab511a6.jpg
1043
+ images/100k/val/c0e6d0ec-254d2aac.jpg
1044
+ images/100k/val/c0e6d0ec-ec23e2d2.jpg
1045
+ images/100k/val/c0e7271a-a3c8d55f.jpg
1046
+ images/100k/val/c0e74e90-15e1888e.jpg
1047
+ images/100k/val/c0e74e90-91053849.jpg
1048
+ images/100k/val/c0e74e90-9684bfc2.jpg
1049
+ images/100k/val/c0e90884-ab3e26af.jpg
1050
+ images/100k/val/c0eba0ba-db5d7deb.jpg
1051
+ images/100k/val/c0efbe92-2ee3e529.jpg
1052
+ images/100k/val/c0efbe92-d5be8958.jpg
1053
+ images/100k/val/c0f1a2f9-6b09c60a.jpg
1054
+ images/100k/val/c0f35000-9401b8f3.jpg
1055
+ images/100k/val/c0f4e96b-3fa1961a.jpg
1056
+ images/100k/val/c0f5b0d0-d088d6c1.jpg
1057
+ images/100k/val/c0f7c2d3-1abf98ec.jpg
1058
+ images/100k/val/c0f978fa-0651fdd0.jpg
1059
+ images/100k/val/c0f978fa-425cdcd6.jpg
1060
+ images/100k/val/c0f978fa-9b4e623f.jpg
1061
+ images/100k/val/c0fb59eb-895d806d.jpg
1062
+ images/100k/val/c10472c3-9c569d4f.jpg
1063
+ images/100k/val/c107c2f1-b2b8fff0.jpg
1064
+ images/100k/val/c107ca7b-e60766f2.jpg
1065
+ images/100k/val/c10838df-720662b5.jpg
1066
+ images/100k/val/c10e92bd-f6241f08.jpg
1067
+ images/100k/val/c119a2ea-f59c8486.jpg
1068
+ images/100k/val/c11add12-bb59c2a1.jpg
1069
+ images/100k/val/c1211833-1ba939db.jpg
1070
+ images/100k/val/c1211833-db271204.jpg
1071
+ images/100k/val/c1252e1f-c0640ea4.jpg
1072
+ images/100k/val/c12bfd38-4fe7afb2.jpg
1073
+ images/100k/val/c12ce21f-6f6ecfa7.jpg
1074
+ images/100k/val/c12dc478-40a1a306.jpg
1075
+ images/100k/val/c12e6924-5860d30a.jpg
1076
+ images/100k/val/c13829a7-6447cab7.jpg
1077
+ images/100k/val/c143af06-2e9cba65.jpg
1078
+ images/100k/val/c143af06-b1635ba6.jpg
1079
+ images/100k/val/c143af06-f2b0a9d6.jpg
1080
+ images/100k/val/c146d100-917008e9.jpg
1081
+ images/100k/val/c14ccf5b-41faebd2.jpg
1082
+ images/100k/val/c14dc226-1d699f84.jpg
1083
+ images/100k/val/c14e8180-1445eb0a.jpg
1084
+ images/100k/val/c14e8180-ec624140.jpg
1085
+ images/100k/val/c152d738-646ba59f.jpg
1086
+ images/100k/val/c153a7d6-902f591d.jpg
1087
+ images/100k/val/c155b6d9-3f10e2e8.jpg
1088
+ images/100k/val/c155b6d9-8938e3d3.jpg
1089
+ images/100k/val/c155b6d9-a803a8d9.jpg
1090
+ images/100k/val/c155b6d9-cfa6c733.jpg
1091
+ images/100k/val/c15c29a5-74788f46.jpg
1092
+ images/100k/val/c167c2a8-3a6f62c1.jpg
1093
+ images/100k/val/c16d3fdb-a3a8c912.jpg
1094
+ images/100k/val/c174b1bd-4b33c65a.jpg
1095
+ images/100k/val/c1757757-140fa8b6.jpg
1096
+ images/100k/val/c17aa6cb-b8dbbf71.jpg
1097
+ images/100k/val/c181581e-2cb8bbad.jpg
1098
+ images/100k/val/c181581e-d2c1c633.jpg
1099
+ images/100k/val/c186075f-85cc92e4.jpg
1100
+ images/100k/val/c18b5a00-f7a987d8.jpg
1101
+ images/100k/val/c18cdb0e-c6d8672a.jpg
1102
+ images/100k/val/c18d3ffa-befc072e.jpg
1103
+ images/100k/val/c1923ac1-242516f9.jpg
1104
+ images/100k/val/c1923ac1-5a311813.jpg
1105
+ images/100k/val/c19681f6-26f7aa52.jpg
1106
+ images/100k/val/c19681f6-c6258473.jpg
1107
+ images/100k/val/c197a2a7-20f63536.jpg
1108
+ images/100k/val/c197a2a7-5b960a7f.jpg
1109
+ images/100k/val/c197a2a7-ea0bf42c.jpg
1110
+ images/100k/val/c19c6ce3-c8682f81.jpg
1111
+ images/100k/val/c1a07cae-0aaf3a16.jpg
1112
+ images/100k/val/c1a07cae-269e1f30.jpg
1113
+ images/100k/val/c1a07cae-73529cf4.jpg
1114
+ images/100k/val/c1a8c10a-85b7b1d9.jpg
1115
+ images/100k/val/c1a99e5b-9ff89172.jpg
1116
+ images/100k/val/c1a99e5b-c709000a.jpg
1117
+ images/100k/val/c1aff52d-48e2c3f7.jpg
1118
+ images/100k/val/c1b26cc4-7a7cf86b.jpg
1119
+ images/100k/val/c1b3582d-31ed042c.jpg
1120
+ images/100k/val/c1b3582d-3eb61cdc.jpg
1121
+ images/100k/val/c1b3582d-7a6b9124.jpg
1122
+ images/100k/val/c1b3582d-b9c87c82.jpg
1123
+ images/100k/val/c1b4cd01-249d0c21.jpg
1124
+ images/100k/val/c1b5a91c-9e402e78.jpg
1125
+ images/100k/val/c1b5aaf7-f184ef82.jpg
1126
+ images/100k/val/c1b64469-18575cd6.jpg
1127
+ images/100k/val/c1b7f449-2e7ddbce.jpg
1128
+ images/100k/val/c1ba5ee6-d7c173ea.jpg
1129
+ images/100k/val/c1bbc01a-42a391bd.jpg
1130
+ images/100k/val/c1bbc01a-be613683.jpg
1131
+ images/100k/val/c1bbc01a-cd5108c4.jpg
1132
+ images/100k/val/c1bd4140-1f2bd79e.jpg
1133
+ images/100k/val/c1c6903c-922c5fce.jpg
1134
+ images/100k/val/c1c8b782-bece3215.jpg
1135
+ images/100k/val/c1da4b69-9de1ea25.jpg
1136
+ images/100k/val/c1e1f0cb-ffa477f3.jpg
1137
+ images/100k/val/c1e1f7c0-9bbd3146.jpg
1138
+ images/100k/val/c1e1f7c0-b6466fae.jpg
1139
+ images/100k/val/c1ec4d78-1b59adc6.jpg
1140
+ images/100k/val/c1f39934-4b7f4d35.jpg
1141
+ images/100k/val/c1f65250-4bf4a042.jpg
1142
+ images/100k/val/c1f65250-7a0e931b.jpg
1143
+ images/100k/val/c1f9740a-41816cad.jpg
1144
+ images/100k/val/c1fd3aad-0fdb8c7c.jpg
1145
+ images/100k/val/c1fd3aad-e12c3c56.jpg
1146
+ images/100k/val/c1fdbab3-9f0f7dfd.jpg
1147
+ images/100k/val/c1fdd182-0431866d.jpg
1148
+ images/100k/val/c1fdd182-1d547f9b.jpg
1149
+ images/100k/val/c1fdd182-28e0d6aa.jpg
1150
+ images/100k/val/c1fdd182-c46e6435.jpg
1151
+ images/100k/val/c1fdd182-ee635148.jpg
1152
+ images/100k/val/c202c860-fbf85ab9.jpg
1153
+ images/100k/val/c2032247-86ea336e.jpg
1154
+ images/100k/val/c2050b3c-55dd8c44.jpg
1155
+ images/100k/val/c20685c6-10269c46.jpg
1156
+ images/100k/val/c20e5778-cfbaabbf.jpg
1157
+ images/100k/val/c2179f35-d4666c72.jpg
1158
+ images/100k/val/c2186a76-5444a563.jpg
1159
+ images/100k/val/c21e328e-0d19a282.jpg
1160
+ images/100k/val/c22c0422-2de1b215.jpg
1161
+ images/100k/val/c231647c-229d2cac.jpg
1162
+ images/100k/val/c239f9d5-ba69ae6a.jpg
1163
+ images/100k/val/c242b4b8-0dab228f.jpg
1164
+ images/100k/val/c242b4b8-6757e7b6.jpg
1165
+ images/100k/val/c242b4b8-7d73aa05.jpg
1166
+ images/100k/val/c24838fd-971abd46.jpg
1167
+ images/100k/val/c24da7c7-21c58e17.jpg
1168
+ images/100k/val/c2509294-f6bd70dc.jpg
1169
+ images/100k/val/c2592033-48254ed4.jpg
1170
+ images/100k/val/c261a365-e321c618.jpg
1171
+ images/100k/val/c265ca04-fe330cbb.jpg
1172
+ images/100k/val/c26b9b25-a8bbf0b5.jpg
1173
+ images/100k/val/c27353a6-2b3a186d.jpg
1174
+ images/100k/val/c273e0e3-524fae66.jpg
1175
+ images/100k/val/c28b60fb-a5e9b955.jpg
1176
+ images/100k/val/c292800e-4290dbb9.jpg
1177
+ images/100k/val/c2937a02-db177509.jpg
1178
+ images/100k/val/c29829cf-9790141e.jpg
1179
+ images/100k/val/c2987e05-cb9bfcee.jpg
1180
+ images/100k/val/c29d13ba-67447c50.jpg
1181
+ images/100k/val/c29d444d-06b31782.jpg
1182
+ images/100k/val/c2a4a88f-1a60e4a6.jpg
1183
+ images/100k/val/c2a6a273-553fcc3e.jpg
1184
+ images/100k/val/c2a6b1c9-c45dc6e2.jpg
1185
+ images/100k/val/c2a6b1c9-ce009635.jpg
1186
+ images/100k/val/c2a6b1c9-dd645325.jpg
1187
+ images/100k/val/c2b0aeff-8116fb32.jpg
1188
+ images/100k/val/c2b457e5-36e3ecee.jpg
1189
+ images/100k/val/c2bc5a4c-b2bc828b.jpg
1190
+ images/100k/val/c2bc5a4c-c4864ac1.jpg
1191
+ images/100k/val/c2bcd344-ee1fa1cf.jpg
1192
+ images/100k/val/c2bd70f5-d811bd56.jpg
1193
+ images/100k/val/c2c6e56c-253eb798.jpg
1194
+ images/100k/val/c2d051a0-007fa10e.jpg
1195
+ images/100k/val/c2d051a0-31c90f75.jpg
1196
+ images/100k/val/c2d051a0-a1590f05.jpg
1197
+ images/100k/val/c2e068f4-1ba33b01.jpg
1198
+ images/100k/val/c2e3cd3c-27871334.jpg
1199
+ images/100k/val/c2e3cd3c-d9fd1bfd.jpg
1200
+ images/100k/val/c2e3cd3c-fc972e2e.jpg
1201
+ images/100k/val/c2f0d1f5-0fe37fc4.jpg
1202
+ images/100k/val/c2f5e5c4-35640746.jpg
1203
+ images/100k/val/c2f88368-4292c1a0.jpg
1204
+ images/100k/val/c2f8b141-5ef7d661.jpg
1205
+ images/100k/val/c2fb790e-4cd5a630.jpg
1206
+ images/100k/val/c3009124-b8d0d1ea.jpg
1207
+ images/100k/val/c300fd4b-8ff92c2d.jpg
1208
+ images/100k/val/c30226a9-f882478c.jpg
1209
+ images/100k/val/c30f013a-9e9fe3ce.jpg
1210
+ images/100k/val/c3127fc5-0411259f.jpg
1211
+ images/100k/val/c3130621-97d57961.jpg
1212
+ images/100k/val/c317c38b-ce5550bb.jpg
1213
+ images/100k/val/c31cd426-0a38fe18.jpg
1214
+ images/100k/val/c31d9531-694298f0.jpg
1215
+ images/100k/val/c321c219-54340460.jpg
1216
+ images/100k/val/c321c219-a3547f2a.jpg
1217
+ images/100k/val/c32246a5-79a01821.jpg
1218
+ images/100k/val/c3248121-1ef2b38c.jpg
1219
+ images/100k/val/c324a11d-b8793e25.jpg
1220
+ images/100k/val/c324a11d-eaaeb859.jpg
1221
+ images/100k/val/c327ace4-9dfe6490.jpg
1222
+ images/100k/val/c3287e28-f6bcc9ef.jpg
1223
+ images/100k/val/c32be69b-f02d6229.jpg
1224
+ images/100k/val/c330c787-0f40c0b6.jpg
1225
+ images/100k/val/c330c787-1e2b9b50.jpg
1226
+ images/100k/val/c330c787-368eb638.jpg
1227
+ images/100k/val/c330c787-3952d9a9.jpg
1228
+ images/100k/val/c330c787-ae1c841a.jpg
1229
+ images/100k/val/c3348435-58a3fba0.jpg
1230
+ images/100k/val/c3348435-d86c8ed9.jpg
1231
+ images/100k/val/c33b61b6-47d0f8ba.jpg
1232
+ images/100k/val/c33ec7c6-ab13ff1b.jpg
1233
+ images/100k/val/c3436372-070af78a.jpg
1234
+ images/100k/val/c3436372-eb18934d.jpg
1235
+ images/100k/val/c350632d-75a312d1.jpg
1236
+ images/100k/val/c352d9c5-d0019b8b.jpg
1237
+ images/100k/val/c359556b-77ced0e9.jpg
1238
+ images/100k/val/c359f52e-d1916e72.jpg
1239
+ images/100k/val/c360ca4b-7a8ec6e6.jpg
1240
+ images/100k/val/c361ff02-d7492340.jpg
1241
+ images/100k/val/c3668a3d-22233f64.jpg
1242
+ images/100k/val/c366973d-c03525b0.jpg
1243
+ images/100k/val/c366973d-f5ec8394.jpg
1244
+ images/100k/val/c367562a-54687761.jpg
1245
+ images/100k/val/c3698cec-2231cb86.jpg
1246
+ images/100k/val/c3698cec-77311999.jpg
1247
+ images/100k/val/c376fce7-54f5721d.jpg
1248
+ images/100k/val/c3784403-0c68fd6c.jpg
1249
+ images/100k/val/c3784403-4532f110.jpg
1250
+ images/100k/val/c37b9f20-e161a563.jpg
1251
+ images/100k/val/c37bffe3-a98ee42d.jpg
1252
+ images/100k/val/c3804a06-26cf84ff.jpg
1253
+ images/100k/val/c389631f-34a8e513.jpg
1254
+ images/100k/val/c389631f-a4b2d909.jpg
1255
+ images/100k/val/c389631f-b7bb20cb.jpg
1256
+ images/100k/val/c38cd3f6-2aba9218.jpg
1257
+ images/100k/val/c38cd3f6-bd22367b.jpg
1258
+ images/100k/val/c38cd3f6-c74ca48b.jpg
1259
+ images/100k/val/c3906a23-5c373f34.jpg
1260
+ images/100k/val/c396b7c0-cf46a981.jpg
1261
+ images/100k/val/c3981cf1-6e95c296.jpg
1262
+ images/100k/val/c3981cf1-a949f363.jpg
1263
+ images/100k/val/c3981cf1-fb7c634e.jpg
1264
+ images/100k/val/c399b1cb-0b569b85.jpg
1265
+ images/100k/val/c39a0a67-dcf8ab72.jpg
1266
+ images/100k/val/c39ddb2c-740d920d.jpg
1267
+ images/100k/val/c39ddb2c-db949106.jpg
1268
+ images/100k/val/c3a048fb-9adc169f.jpg
1269
+ images/100k/val/c3a048fb-c45a1e4c.jpg
1270
+ images/100k/val/c3a18207-109c0500.jpg
1271
+ images/100k/val/c3a26429-70b45205.jpg
1272
+ images/100k/val/c3a26429-e8f01a18.jpg
1273
+ images/100k/val/c3aca55d-61d72a19.jpg
1274
+ images/100k/val/c3ae9216-3d694ff1.jpg
1275
+ images/100k/val/c3b1694b-fadd8eba.jpg
1276
+ images/100k/val/c3bb4925-a3b4c1ed.jpg
1277
+ images/100k/val/c3bb4925-f78e285a.jpg
1278
+ images/100k/val/c3bfdcda-bfdd5fdb.jpg
1279
+ images/100k/val/c3c0f47b-e11941f3.jpg
1280
+ images/100k/val/c3c10c0c-45eec8a3.jpg
1281
+ images/100k/val/c3c28990-04db5664.jpg
1282
+ images/100k/val/c3c4bbae-eff92ddd.jpg
1283
+ images/100k/val/c3cae07c-b1c025cf.jpg
1284
+ images/100k/val/c3cae07c-ceeefd3f.jpg
1285
+ images/100k/val/c3cf722d-07e2250c.jpg
1286
+ images/100k/val/c3da13a9-31363949.jpg
1287
+ images/100k/val/c3dc6d37-450bc114.jpg
1288
+ images/100k/val/c3dc6d37-60d68540.jpg
1289
+ images/100k/val/c3decde7-31339506.jpg
1290
+ images/100k/val/c3e7bd65-aff9c706.jpg
1291
+ images/100k/val/c3e87419-dd6f2321.jpg
1292
+ images/100k/val/c3f5620f-9311677e.jpg
1293
+ images/100k/val/c400a0e1-c137168b.jpg
1294
+ images/100k/val/c4031040-488a6ce0.jpg
1295
+ images/100k/val/c4031040-73e296bc.jpg
1296
+ images/100k/val/c4031040-ec530889.jpg
1297
+ images/100k/val/c4057c0c-000a6aaf.jpg
1298
+ images/100k/val/c4057c0c-a47d8dba.jpg
1299
+ images/100k/val/c41203a6-f2bee3f0.jpg
1300
+ images/100k/val/c41358e5-e74b4a5b.jpg
1301
+ images/100k/val/c414ea72-128822b2.jpg
1302
+ images/100k/val/c415a08c-50060410.jpg
1303
+ images/100k/val/c415a08c-a6cb455e.jpg
1304
+ images/100k/val/c415a08c-d4f4488e.jpg
1305
+ images/100k/val/c422771c-1619481d.jpg
1306
+ images/100k/val/c425e76b-ef2256e0.jpg
1307
+ images/100k/val/c427410f-07d5dfe7.jpg
1308
+ images/100k/val/c427410f-aec7f6a9.jpg
1309
+ images/100k/val/c42dd876-5f8d76fd.jpg
1310
+ images/100k/val/c43052f6-662bb3a2.jpg
1311
+ images/100k/val/c43052f6-d337ba62.jpg
1312
+ images/100k/val/c43052f6-d90711e9.jpg
1313
+ images/100k/val/c439e607-c03383c7.jpg
1314
+ images/100k/val/c43c290b-61f94939.jpg
1315
+ images/100k/val/c447f74e-64671040.jpg
1316
+ images/100k/val/c447f74e-98ec82f5.jpg
1317
+ images/100k/val/c447f74e-c458f6c5.jpg
1318
+ images/100k/val/c447f74e-f67bf173.jpg
1319
+ images/100k/val/c44c7f5c-9bef0aea.jpg
1320
+ images/100k/val/c44e7068-cc04270e.jpg
1321
+ images/100k/val/c4552519-f5897060.jpg
1322
+ images/100k/val/c456e9c3-8a255f8c.jpg
1323
+ images/100k/val/c456ed56-adbb1839.jpg
1324
+ images/100k/val/c45fce16-113938a6.jpg
1325
+ images/100k/val/c4605841-affd9541.jpg
1326
+ images/100k/val/c464c963-a377ab36.jpg
1327
+ images/100k/val/c46c8896-0d981461.jpg
1328
+ images/100k/val/c46f4c8a-c6c995c1.jpg
1329
+ images/100k/val/c4742900-8900110c.jpg
1330
+ images/100k/val/c47f850b-97816a73.jpg
1331
+ images/100k/val/c47fb4ff-92db68d6.jpg
1332
+ images/100k/val/c4816131-7251b67e.jpg
1333
+ images/100k/val/c48569ef-c99d8f9e.jpg
1334
+ images/100k/val/c485d97d-e833c4a1.jpg
1335
+ images/100k/val/c48f5464-fde5983e.jpg
1336
+ images/100k/val/c492c534-2d7821c2.jpg
1337
+ images/100k/val/c4a1065b-ec1e76ba.jpg
1338
+ images/100k/val/c4a19ba6-0d09788f.jpg
1339
+ images/100k/val/c4a19ba6-e17be5d5.jpg
1340
+ images/100k/val/c4a19ba6-e706bdc2.jpg
1341
+ images/100k/val/c4a19ba6-fa93d45f.jpg
1342
+ images/100k/val/c4a6774c-144a01d6.jpg
1343
+ images/100k/val/c4a6774c-753a089b.jpg
1344
+ images/100k/val/c4a6cc43-f689c9f1.jpg
1345
+ images/100k/val/c4a9c191-20e1a3c3.jpg
1346
+ images/100k/val/c4aa9a10-9e10483d.jpg
1347
+ images/100k/val/c4ad8036-ee20aaf7.jpg
1348
+ images/100k/val/c4bc3dee-58920c9c.jpg
1349
+ images/100k/val/c4bfc4c7-98ed20f8.jpg
1350
+ images/100k/val/c4c4db55-82c87232.jpg
1351
+ images/100k/val/c4c7fdec-ec322a67.jpg
1352
+ images/100k/val/c4cd1f3d-ff8db980.jpg
1353
+ images/100k/val/c4d83625-8af1c66e.jpg
1354
+ images/100k/val/c4de6fe5-90dc8799.jpg
1355
+ images/100k/val/c4e3cf95-4f803484.jpg
1356
+ images/100k/val/c4e3cf95-ceb5651a.jpg
1357
+ images/100k/val/c4e55051-2f5623da.jpg
1358
+ images/100k/val/c4e55051-bda84aa3.jpg
1359
+ images/100k/val/c4e926af-54c0d842.jpg
1360
+ images/100k/val/c4e926af-bb5132fd.jpg
1361
+ images/100k/val/c4eb5462-4d947240.jpg
1362
+ images/100k/val/c4eb5462-657f5921.jpg
1363
+ images/100k/val/c4eb5462-c917fefd.jpg
1364
+ images/100k/val/c4eb5462-ebd248b7.jpg
1365
+ images/100k/val/c4eb5462-f87b7afc.jpg
1366
+ images/100k/val/c4ef83b2-696779d1.jpg
1367
+ images/100k/val/c4f59bdd-11bad1c6.jpg
1368
+ images/100k/val/c4f62823-9d3f8519.jpg
1369
+ images/100k/val/c4f65761-92ca62d4.jpg
1370
+ images/100k/val/c4f79b31-594adb6b.jpg
1371
+ images/100k/val/c4fb8930-2ff82458.jpg
1372
+ images/100k/val/c5030241-68561ce7.jpg
1373
+ images/100k/val/c503f2e8-55cc08bf.jpg
1374
+ images/100k/val/c50d0b3f-3a8df0bf.jpg
1375
+ images/100k/val/c50d0b3f-96a483e0.jpg
1376
+ images/100k/val/c50faaad-75284f27.jpg
1377
+ images/100k/val/c50faaad-d383bf66.jpg
1378
+ images/100k/val/c50faaad-d84b2856.jpg
1379
+ images/100k/val/c5118204-23d7a171.jpg
1380
+ images/100k/val/c52f53f8-1df973bb.jpg
1381
+ images/100k/val/c532201e-8531945e.jpg
1382
+ images/100k/val/c53478c5-0565e28b.jpg
1383
+ images/100k/val/c53478c5-79d0affb.jpg
1384
+ images/100k/val/c53941d4-889b2e48.jpg
1385
+ images/100k/val/c53a24f2-545aa062.jpg
1386
+ images/100k/val/c53a24f2-a94dfb53.jpg
1387
+ images/100k/val/c540d300-35f80d81.jpg
1388
+ images/100k/val/c546c109-92e1a97e.jpg
1389
+ images/100k/val/c54a2f90-4762b269.jpg
1390
+ images/100k/val/c55554e1-b61fd176.jpg
1391
+ images/100k/val/c5578df5-1318c8a5.jpg
1392
+ images/100k/val/c5584f14-7fcc4797.jpg
1393
+ images/100k/val/c55ab634-34faa48e.jpg
1394
+ images/100k/val/c55ab634-b93da9ef.jpg
1395
+ images/100k/val/c55c4242-e70337b4.jpg
1396
+ images/100k/val/c55da7df-537c27fd.jpg
1397
+ images/100k/val/c55da7df-facccafc.jpg
1398
+ images/100k/val/c5617574-cca98859.jpg
1399
+ images/100k/val/c561cb9a-6b311a1c.jpg
1400
+ images/100k/val/c563b8a0-c21b10e8.jpg
1401
+ images/100k/val/c564c92b-2f727c05.jpg
1402
+ images/100k/val/c566026b-ea7cc2ea.jpg
1403
+ images/100k/val/c56915dc-1eb8abe1.jpg
1404
+ images/100k/val/c56915dc-8d1f7b7a.jpg
1405
+ images/100k/val/c569c251-0738a573.jpg
1406
+ images/100k/val/c569c251-13855f70.jpg
1407
+ images/100k/val/c569c251-16b6f263.jpg
1408
+ images/100k/val/c569c251-411184c2.jpg
1409
+ images/100k/val/c569c251-8a583641.jpg
1410
+ images/100k/val/c569c251-a065134a.jpg
1411
+ images/100k/val/c569c251-cc941b80.jpg
1412
+ images/100k/val/c569c251-e9e2071f.jpg
1413
+ images/100k/val/c573ac02-6c5f037e.jpg
1414
+ images/100k/val/c576ccff-0a51ae4b.jpg
1415
+ images/100k/val/c579ded4-2bdbcd45.jpg
1416
+ images/100k/val/c57cda5b-7783c7cb.jpg
1417
+ images/100k/val/c57cda5b-92fa0083.jpg
1418
+ images/100k/val/c57cda5b-e43a49aa.jpg
1419
+ images/100k/val/c58428cf-2398dd36.jpg
1420
+ images/100k/val/c584f2c3-83912b35.jpg
1421
+ images/100k/val/c5879538-6312ddd1.jpg
1422
+ images/100k/val/c587d65a-90cbad97.jpg
1423
+ images/100k/val/c58eb8da-9871eb53.jpg
1424
+ images/100k/val/c593756a-4d6ae1d1.jpg
1425
+ images/100k/val/c595cb01-89718083.jpg
1426
+ images/100k/val/c5a0ad25-32da84bb.jpg
1427
+ images/100k/val/c5ae33f9-a2c4f208.jpg
1428
+ images/100k/val/c5b2506d-07e406a6.jpg
1429
+ images/100k/val/c5b2506d-1241a008.jpg
1430
+ images/100k/val/c5b2506d-1c31cee3.jpg
1431
+ images/100k/val/c5b2506d-7e987d44.jpg
1432
+ images/100k/val/c5b6c311-af650f3b.jpg
1433
+ images/100k/val/c5b7db86-88bceca0.jpg
1434
+ images/100k/val/c5b7db86-b62a7a3f.jpg
1435
+ images/100k/val/c5b80ec1-6efedb0e.jpg
1436
+ images/100k/val/c5b80ec1-7fc5097c.jpg
1437
+ images/100k/val/c5b80ec1-bb9fd172.jpg
1438
+ images/100k/val/c5bbf929-8c3d6c80.jpg
1439
+ images/100k/val/c5c3b858-bc1ffd47.jpg
1440
+ images/100k/val/c5c43551-916bcae8.jpg
1441
+ images/100k/val/c5c9d88b-71b49b27.jpg
1442
+ images/100k/val/c5c9ead6-dab2dae6.jpg
1443
+ images/100k/val/c5ce9781-b8db3bfa.jpg
1444
+ images/100k/val/c5dd12e7-e1f925bf.jpg
1445
+ images/100k/val/c5dd7de4-53608747.jpg
1446
+ images/100k/val/c5e32cf6-89b8fb88.jpg
1447
+ images/100k/val/c5e32cf6-cd1cec66.jpg
1448
+ images/100k/val/c5e8ab3b-6e92761c.jpg
1449
+ images/100k/val/c5ea1566-5388419a.jpg
1450
+ images/100k/val/c5ea1566-561af343.jpg
1451
+ images/100k/val/c5eb7f02-2eeb75ed.jpg
1452
+ images/100k/val/c5eb7f02-4de68c54.jpg
1453
+ images/100k/val/c5eb7f02-80a6bb1c.jpg
1454
+ images/100k/val/c5ec1247-80a84ca0.jpg
1455
+ images/100k/val/c5f2e071-fcf05969.jpg
1456
+ images/100k/val/c5f31e54-76b8c52c.jpg
1457
+ images/100k/val/c5fcf26b-c3f9aa67.jpg
1458
+ images/100k/val/c5fe7f8b-522055d5.jpg
1459
+ images/100k/val/c5feca03-0f32ddcf.jpg
1460
+ images/100k/val/c60144b6-ddad5125.jpg
1461
+ images/100k/val/c60535ee-007fd6dd.jpg
1462
+ images/100k/val/c6089c97-fb6682fb.jpg
1463
+ images/100k/val/c60c04c3-10c3f122.jpg
1464
+ images/100k/val/c60c04c3-b48a4e84.jpg
1465
+ images/100k/val/c60d6c5c-11adb0a5.jpg
1466
+ images/100k/val/c62664f1-b6fec7e5.jpg
1467
+ images/100k/val/c62ba5b8-0efc4385.jpg
1468
+ images/100k/val/c62ba5b8-9119eae7.jpg
1469
+ images/100k/val/c62ba5b8-bfa3fbad.jpg
1470
+ images/100k/val/c62efadc-a4255fc1.jpg
1471
+ images/100k/val/c62efadc-d5d01fc2.jpg
1472
+ images/100k/val/c6320aee-c3faffdc.jpg
1473
+ images/100k/val/c6406d76-4b7872d2.jpg
1474
+ images/100k/val/c640ffda-035e5b98.jpg
1475
+ images/100k/val/c644e81b-53cbf3b6.jpg
1476
+ images/100k/val/c644e81b-d8e6dcc0.jpg
1477
+ images/100k/val/c6459d6c-2a477f42.jpg
1478
+ images/100k/val/c6459d6c-e50530d0.jpg
1479
+ images/100k/val/c64d4efa-0a2488a5.jpg
1480
+ images/100k/val/c64dd3d9-3981f6e3.jpg
1481
+ images/100k/val/c64dd3d9-afe20215.jpg
1482
+ images/100k/val/c64dd3d9-ed092171.jpg
1483
+ images/100k/val/c650b257-a545cebf.jpg
1484
+ images/100k/val/c656f999-970e284f.jpg
1485
+ images/100k/val/c6580b8a-368c5647.jpg
1486
+ images/100k/val/c659e062-f6e9aeab.jpg
1487
+ images/100k/val/c65b8cb4-e2aa6d2f.jpg
1488
+ images/100k/val/c65c2462-ccc20dff.jpg
1489
+ images/100k/val/c65d48bf-92b77f49.jpg
1490
+ images/100k/val/c65d48bf-e65698bd.jpg
1491
+ images/100k/val/c664605e-44460227.jpg
1492
+ images/100k/val/c664605e-abd72a76.jpg
1493
+ images/100k/val/c665137e-a9471287.jpg
1494
+ images/100k/val/c665137e-c5ba935a.jpg
1495
+ images/100k/val/c675081b-df5291b4.jpg
1496
+ images/100k/val/c6758a15-46130d04.jpg
1497
+ images/100k/val/c67c0532-e4a96360.jpg
1498
+ images/100k/val/c684b9be-e666905f.jpg
1499
+ images/100k/val/c685aea9-2f9e84d2.jpg
1500
+ images/100k/val/c6864b90-0632ce1d.jpg
1501
+ images/100k/val/c68a02cc-7324141d.jpg
1502
+ images/100k/val/c68bb3b7-ae8ce5d9.jpg
1503
+ images/100k/val/c68d9027-9707e4ed.jpg
1504
+ images/100k/val/c68dcb6b-c1775bef.jpg
1505
+ images/100k/val/c68dcb6b-c30a5417.jpg
1506
+ images/100k/val/c68dcb6b-fe86ae43.jpg
1507
+ images/100k/val/c6921a51-1735be44.jpg
1508
+ images/100k/val/c6921a51-7d615920.jpg
1509
+ images/100k/val/c6921a51-a36f6af9.jpg
1510
+ images/100k/val/c6921a51-c3847215.jpg
1511
+ images/100k/val/c6959e96-3e8a0c43.jpg
1512
+ images/100k/val/c6959e96-dd05fa7a.jpg
1513
+ images/100k/val/c696b1c8-b2fba873.jpg
1514
+ images/100k/val/c698371e-9085357c.jpg
1515
+ images/100k/val/c6a0e7c1-4171ca59.jpg
1516
+ images/100k/val/c6a0e7c1-b9bc987c.jpg
1517
+ images/100k/val/c6a2100d-d6e54e21.jpg
1518
+ images/100k/val/c6a23a03-fb6ef9c3.jpg
1519
+ images/100k/val/c6a4abc9-35b69a8f.jpg
1520
+ images/100k/val/c6b2e302-cdffaf82.jpg
1521
+ images/100k/val/c6b518ec-31800547.jpg
1522
+ images/100k/val/c6bb2e07-3276c201.jpg
1523
+ images/100k/val/c6bb2e07-b043bd9e.jpg
1524
+ images/100k/val/c6bb7ee7-9fec7fdb.jpg
1525
+ images/100k/val/c6bb8a0c-bdba1c5d.jpg
1526
+ images/100k/val/c6bd6f3b-d6ad11b5.jpg
1527
+ images/100k/val/c6cde7ef-8fc5b688.jpg
1528
+ images/100k/val/c6d586ad-8f0af0ac.jpg
1529
+ images/100k/val/c6d6600c-e4287c96.jpg
1530
+ images/100k/val/c6d77a40-03423c96.jpg
1531
+ images/100k/val/c6dad47e-47a61b83.jpg
1532
+ images/100k/val/c6db7763-bd0a64d2.jpg
1533
+ images/100k/val/c6dca574-a5f624f4.jpg
1534
+ images/100k/val/c6f14304-88396ae1.jpg
1535
+ images/100k/val/c6f14304-e9ad93b9.jpg
1536
+ images/100k/val/c6f6368c-082957c9.jpg
1537
+ images/100k/val/c6fa26d7-056d2a63.jpg
1538
+ images/100k/val/c700966a-608d05b4.jpg
1539
+ images/100k/val/c7049707-934a08d2.jpg
1540
+ images/100k/val/c70ba359-a4b00815.jpg
1541
+ images/100k/val/c711ef96-c4582caa.jpg
1542
+ images/100k/val/c7134df6-28b042b5.jpg
1543
+ images/100k/val/c7134df6-ef92e0cd.jpg
1544
+ images/100k/val/c7140eaa-eb9d0128.jpg
1545
+ images/100k/val/c7151d3d-3db93c62.jpg
1546
+ images/100k/val/c718a581-814b4e2d.jpg
1547
+ images/100k/val/c71a5c66-93c9eca0.jpg
1548
+ images/100k/val/c71de7ef-ad5d9110.jpg
1549
+ images/100k/val/c71fcdc8-62a7fa51.jpg
1550
+ images/100k/val/c72373c0-af574c12.jpg
1551
+ images/100k/val/c72b8356-0bac66a5.jpg
1552
+ images/100k/val/c734eb0a-9d6807cb.jpg
1553
+ images/100k/val/c737e602-e8793fdc.jpg
1554
+ images/100k/val/c74a122c-1494f0b4.jpg
1555
+ images/100k/val/c74bbe22-ad68f763.jpg
1556
+ images/100k/val/c74bbfcc-5814e80f.jpg
1557
+ images/100k/val/c7513860-d293b768.jpg
1558
+ images/100k/val/c754ce77-a105a975.jpg
1559
+ images/100k/val/c759b6f8-e906aa6a.jpg
1560
+ images/100k/val/c759b6f8-fd634f2a.jpg
1561
+ images/100k/val/c767ad39-119bf6f3.jpg
1562
+ images/100k/val/c767ad39-1c9a5ce2.jpg
1563
+ images/100k/val/c767ad39-b196c36a.jpg
1564
+ images/100k/val/c76adb6d-275e8f71.jpg
1565
+ images/100k/val/c7706d20-5f4987db.jpg
1566
+ images/100k/val/c7706d20-daa7bd9c.jpg
1567
+ images/100k/val/c7749319-823a3fd4.jpg
1568
+ images/100k/val/c776d10b-15486206.jpg
1569
+ images/100k/val/c776d10b-6732b55c.jpg
1570
+ images/100k/val/c776d10b-a1314ad4.jpg
1571
+ images/100k/val/c776d10b-ea20be3a.jpg
1572
+ images/100k/val/c7796b42-3936bdf3.jpg
1573
+ images/100k/val/c788983e-01d5b664.jpg
1574
+ images/100k/val/c78f7d9c-0b57c32f.jpg
1575
+ images/100k/val/c78f7d9c-783ee02d.jpg
1576
+ images/100k/val/c794c86d-e4fadf29.jpg
1577
+ images/100k/val/c7955e20-3760bb8a.jpg
1578
+ images/100k/val/c7955e20-a156a983.jpg
1579
+ images/100k/val/c7955e20-b48c7a6a.jpg
1580
+ images/100k/val/c7a23570-73d2078f.jpg
1581
+ images/100k/val/c7ad303b-4957c5f8.jpg
1582
+ images/100k/val/c7ad303b-6312624f.jpg
1583
+ images/100k/val/c7b49761-fc7ed898.jpg
1584
+ images/100k/val/c7b86405-da6e2abc.jpg
1585
+ images/100k/val/c7bcd5db-6483a43e.jpg
1586
+ images/100k/val/c7c5969b-c0899dbc.jpg
1587
+ images/100k/val/c7c97006-1093a6d0.jpg
1588
+ images/100k/val/c7cb4a74-ec912bd8.jpg
1589
+ images/100k/val/c7d564fe-7c51e3a3.jpg
1590
+ images/100k/val/c7d69f1b-e1ef4bf5.jpg
1591
+ images/100k/val/c7d87387-45ccc76d.jpg
1592
+ images/100k/val/c7d9a24a-bdf745c8.jpg
1593
+ images/100k/val/c7dab685-05c2f1df.jpg
1594
+ images/100k/val/c7dd6716-f165ff52.jpg
1595
+ images/100k/val/c7e6bfe9-3256d95a.jpg
1596
+ images/100k/val/c7e6d5d1-c8af9fe3.jpg
1597
+ images/100k/val/c7e9dd39-997378b3.jpg
1598
+ images/100k/val/c7e9dd39-ae653d55.jpg
1599
+ images/100k/val/c7ec3b49-2dea9747.jpg
1600
+ images/100k/val/c7f011d1-e88f3d4b.jpg
1601
+ images/100k/val/c7f8589f-45c47b58.jpg
1602
+ images/100k/val/c7f8589f-a2c6b9a4.jpg
1603
+ images/100k/val/c7fa148b-89df90c1.jpg
1604
+ images/100k/val/c7fee392-08329b19.jpg
1605
+ images/100k/val/c807d32d-e5383e74.jpg
1606
+ images/100k/val/c80cf60a-9a7aabc6.jpg
1607
+ images/100k/val/c81079a0-5816ae39.jpg
1608
+ images/100k/val/c8152bfa-28181ba4.jpg
1609
+ images/100k/val/c8152bfa-d1d0ceac.jpg
1610
+ images/100k/val/c81afdad-8ceefe85.jpg
1611
+ images/100k/val/c81c9789-fdf7aae2.jpg
1612
+ images/100k/val/c8266770-0cc2a4c7.jpg
1613
+ images/100k/val/c82d1b73-4138f567.jpg
1614
+ images/100k/val/c82d6978-3b12b940.jpg
1615
+ images/100k/val/c82d6978-af07c78d.jpg
1616
+ images/100k/val/c8359900-cda76263.jpg
1617
+ images/100k/val/c837d2ef-25f73789.jpg
1618
+ images/100k/val/c8390b6b-52f1f1b2.jpg
1619
+ images/100k/val/c83c10de-85eef163.jpg
1620
+ images/100k/val/c83c10de-a413f70e.jpg
1621
+ images/100k/val/c83c10de-ad9c3fe6.jpg
1622
+ images/100k/val/c83c10de-e0aee9ee.jpg
1623
+ images/100k/val/c84fc7aa-26a0b1c4.jpg
1624
+ images/100k/val/c85416bd-7dfe1936.jpg
1625
+ images/100k/val/c85ca3b9-72a968aa.jpg
1626
+ images/100k/val/c862e633-4a5ae536.jpg
1627
+ images/100k/val/c86482ef-b74850ca.jpg
1628
+ images/100k/val/c8792c3c-a42cb3f6.jpg
1629
+ images/100k/val/c87e0427-31e8946b.jpg
1630
+ images/100k/val/c88439db-75bc1603.jpg
1631
+ images/100k/val/c88555fb-a5e194ab.jpg
1632
+ images/100k/val/c88555fb-d0df0339.jpg
1633
+ images/100k/val/c888a3fb-286c1528.jpg
1634
+ images/100k/val/c88aac1c-940c43af.jpg
1635
+ images/100k/val/c88b26c5-0a03ff8e.jpg
1636
+ images/100k/val/c88c11f9-46b63b1e.jpg
1637
+ images/100k/val/c897cc2b-01aaad95.jpg
1638
+ images/100k/val/c897cc2b-2a1bc9f0.jpg
1639
+ images/100k/val/c897cc2b-4104fbc7.jpg
1640
+ images/100k/val/c897cc2b-6612f914.jpg
1641
+ images/100k/val/c89ee093-58ed3db1.jpg
1642
+ images/100k/val/c89ee093-65ac0019.jpg
1643
+ images/100k/val/c89fc3e2-aaab0dfb.jpg
1644
+ images/100k/val/c8a13aff-dfec2bff.jpg
1645
+ images/100k/val/c8a5a379-cb506f54.jpg
1646
+ images/100k/val/c8a830e0-95b22cac.jpg
1647
+ images/100k/val/c8b4e0ea-598432a7.jpg
1648
+ images/100k/val/c8b7195b-738b9147.jpg
1649
+ images/100k/val/c8bad943-c78f2df3.jpg
1650
+ images/100k/val/c8c21a87-5eb41ad6.jpg
1651
+ images/100k/val/c8c4134b-6e17c1d0.jpg
1652
+ images/100k/val/c8c76d82-9502dce2.jpg
1653
+ images/100k/val/c8cbb112-9d16c5da.jpg
1654
+ images/100k/val/c8cbb112-c7c84f4b.jpg
1655
+ images/100k/val/c8d08ef4-8ed1534f.jpg
1656
+ images/100k/val/c8d2ec66-6f31d0dc.jpg
1657
+ images/100k/val/c8e59150-52042127.jpg
1658
+ images/100k/val/c8e70aac-614de268.jpg
1659
+ images/100k/val/c8e895be-9bf55449.jpg
1660
+ images/100k/val/c8e8f29f-09ac075a.jpg
1661
+ images/100k/val/c8ed2212-b60fa314.jpg
1662
+ images/100k/val/c8ed3fad-623b1616.jpg
1663
+ images/100k/val/c8ef1a34-e7c66c0c.jpg
1664
+ images/100k/val/c8ef6556-56df81da.jpg
1665
+ images/100k/val/c8ef6556-c033218f.jpg
1666
+ images/100k/val/c8efd5bf-dc61bcfd.jpg
1667
+ images/100k/val/c8fa732b-fbdaa989.jpg
1668
+ images/100k/val/c8fc1373-3ce39fc9.jpg
1669
+ images/100k/val/c90b5398-63556b1c.jpg
1670
+ images/100k/val/c90b5398-8d49f2f2.jpg
1671
+ images/100k/val/c911f50f-e7958776.jpg
1672
+ images/100k/val/c9160b61-80e5089a.jpg
1673
+ images/100k/val/c91a3cef-888fc664.jpg
1674
+ images/100k/val/c91a3cef-e63379c7.jpg
1675
+ images/100k/val/c91da210-1252e4c6.jpg
1676
+ images/100k/val/c91da210-b1922917.jpg
1677
+ images/100k/val/c91da210-bc038b99.jpg
1678
+ images/100k/val/c91eb48f-a7497694.jpg
1679
+ images/100k/val/c91eb48f-fa7a6cdc.jpg
1680
+ images/100k/val/c92046a2-2a0b5a9e.jpg
1681
+ images/100k/val/c92046a2-2f8e5345.jpg
1682
+ images/100k/val/c92046a2-5264bdd4.jpg
1683
+ images/100k/val/c9240f77-08db8836.jpg
1684
+ images/100k/val/c9240f77-93292ea6.jpg
1685
+ images/100k/val/c926408d-2118bffc.jpg
1686
+ images/100k/val/c926408d-6840aaf6.jpg
1687
+ images/100k/val/c927d51b-5c078571.jpg
1688
+ images/100k/val/c927d51b-92852659.jpg
1689
+ images/100k/val/c927d51b-99c8166b.jpg
1690
+ images/100k/val/c927d51b-cb5b7850.jpg
1691
+ images/100k/val/c928749e-62bc39dd.jpg
1692
+ images/100k/val/c928c559-7cd84c9f.jpg
1693
+ images/100k/val/c928c559-b70b74cf.jpg
1694
+ images/100k/val/c93017ac-e728a438.jpg
1695
+ images/100k/val/c934b18d-b08b04d2.jpg
1696
+ images/100k/val/c9375798-85c143f7.jpg
1697
+ images/100k/val/c93a7ee2-e21d6bc5.jpg
1698
+ images/100k/val/c93dc018-9a022605.jpg
1699
+ images/100k/val/c9403737-55c6220f.jpg
1700
+ images/100k/val/c9403737-9675db60.jpg
1701
+ images/100k/val/c9403737-bf414a95.jpg
1702
+ images/100k/val/c946c532-07177e0a.jpg
1703
+ images/100k/val/c94958a6-b66af171.jpg
1704
+ images/100k/val/c94958a6-beac6097.jpg
1705
+ images/100k/val/c94b896e-40638bf9.jpg
1706
+ images/100k/val/c95f8ca5-0cf1c43c.jpg
1707
+ images/100k/val/c95fecc3-4e289a4e.jpg
1708
+ images/100k/val/c96109b8-caf84a36.jpg
1709
+ images/100k/val/c962949b-dddd40b2.jpg
1710
+ images/100k/val/c96ffe59-1cf2df11.jpg
1711
+ images/100k/val/c96ffe59-25022c0b.jpg
1712
+ images/100k/val/c975393b-d0309026.jpg
1713
+ images/100k/val/c979b818-481e9da0.jpg
1714
+ images/100k/val/c988c74a-32132434.jpg
1715
+ images/100k/val/c988c74a-8d679348.jpg
1716
+ images/100k/val/c992d89e-45d612c4.jpg
1717
+ images/100k/val/c993615f-20359e85.jpg
1718
+ images/100k/val/c99a4baf-daaaed61.jpg
1719
+ images/100k/val/c9a2a6db-a5b0a35d.jpg
1720
+ images/100k/val/c9a80c9b-67f90548.jpg
1721
+ images/100k/val/c9a9a2a9-57519e11.jpg
1722
+ images/100k/val/c9aa50be-62caa81b.jpg
1723
+ images/100k/val/c9aa50be-8c87193e.jpg
1724
+ images/100k/val/c9aa50be-9e8cd399.jpg
1725
+ images/100k/val/c9b19b83-da526c25.jpg
1726
+ images/100k/val/c9b29647-95da8336.jpg
1727
+ images/100k/val/c9b2aaae-f2ff02a7.jpg
1728
+ images/100k/val/c9b55e48-8c2b4097.jpg
1729
+ images/100k/val/c9b82f4e-454a5878.jpg
1730
+ images/100k/val/c9b82f4e-fd73af29.jpg
1731
+ images/100k/val/c9c31e57-45b42452.jpg
1732
+ images/100k/val/c9c778b5-83f9cec1.jpg
1733
+ images/100k/val/c9d61a6d-92609e9c.jpg
1734
+ images/100k/val/c9d7b898-27eba05f.jpg
1735
+ images/100k/val/c9d9cbf9-e86cf1ef.jpg
1736
+ images/100k/val/c9de245d-d0bf2816.jpg
1737
+ images/100k/val/c9e4a2e8-e29e53ec.jpg
1738
+ images/100k/val/c9e7c9d4-18d31194.jpg
1739
+ images/100k/val/c9f5283d-71e7d62c.jpg
1740
+ images/100k/val/c9fb1a4c-0bd0ea9d.jpg
1741
+ images/100k/val/c9fc208f-75876b0b.jpg
1742
+ images/100k/val/ca009e13-fdb666f6.jpg
1743
+ images/100k/val/ca057c8b-e42f0882.jpg
1744
+ images/100k/val/ca077fe9-d2cf4446.jpg
1745
+ images/100k/val/ca095e13-3477eff3.jpg
1746
+ images/100k/val/ca146661-7f70d0c4.jpg
1747
+ images/100k/val/ca1543ec-4ef9d107.jpg
1748
+ images/100k/val/ca1543ec-6ad48f6e.jpg
1749
+ images/100k/val/ca177f63-6cb08f25.jpg
1750
+ images/100k/val/ca21055c-a1a80ec4.jpg
1751
+ images/100k/val/ca2bcf0e-69e964d2.jpg
1752
+ images/100k/val/ca2c7c84-5902ee09.jpg
1753
+ images/100k/val/ca2fb80b-9d22e350.jpg
1754
+ images/100k/val/ca3736db-cd087585.jpg
1755
+ images/100k/val/ca3736db-cf9e0cd4.jpg
1756
+ images/100k/val/ca4bdfab-34ec6a3a.jpg
1757
+ images/100k/val/ca52e79f-eca3eeec.jpg
1758
+ images/100k/val/ca55fb23-83a86167.jpg
1759
+ images/100k/val/ca55fb23-f91ca9ad.jpg
1760
+ images/100k/val/ca656c47-876ad414.jpg
1761
+ images/100k/val/fe1d74f0-5cdc4057.jpg
1762
+ images/100k/val/fe1d9184-d144106a.jpg
1763
+ images/100k/val/fe1f2409-5b415eb7.jpg
1764
+ images/100k/val/fe1f2409-c16ea1ed.jpg
datasets/bdd100k_lists/day2night/day_train.txt ADDED
The diff for this file is too large to render. See raw diff
 
datasets/bdd100k_lists/day2night/night_test.txt ADDED
The diff for this file is too large to render. See raw diff
 
datasets/bdd100k_lists/day2night/night_train.txt ADDED
The diff for this file is too large to render. See raw diff
 
datasets/bdd100k_lists/sunny2diffweathers/cloudy_test.txt ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ images/100k/val/b1c66a42-6f7d68ca.jpg
2
+ images/100k/val/b1ceb32e-a106591d.jpg
3
+ images/100k/val/b1d0091f-f2c2d2ae.jpg
4
+ images/100k/val/b1d968b9-563405f4.jpg
5
+ images/100k/val/b1d971b4-ac67ca0d.jpg
6
+ images/100k/val/b1e0c01d-dd9e6e2f.jpg
7
+ images/100k/val/b1f4491b-cf446195.jpg
8
+ images/100k/val/b1f4491b-dd8dfed5.jpg
9
+ images/100k/val/b1f85377-44885085.jpg
10
+ images/100k/val/b1fc95c9-cb2882c7.jpg
11
+ images/100k/val/b1ff4656-0435391e.jpg
12
+ images/100k/val/b1ff4656-ebcfeb35.jpg
13
+ images/100k/val/b200e97a-bf074435.jpg
14
+ images/100k/val/b20b9c19-91e01a50.jpg
15
+ images/100k/val/b22f385b-5d7e5202.jpg
16
+ images/100k/val/b23b2649-6af03cd5.jpg
17
+ images/100k/val/b23b2649-8349d2a1.jpg
18
+ images/100k/val/b24071b8-b3ee1196.jpg
19
+ images/100k/val/b2408e45-984ba5aa.jpg
20
+ images/100k/val/b24d283f-33783d1b.jpg
21
+ images/100k/val/b251064f-30002542.jpg
22
+ images/100k/val/b251064f-4696b75e.jpg
23
+ images/100k/val/b251064f-5f6b663e.jpg
24
+ images/100k/val/b2576c8c-2de20b8a.jpg
25
+ images/100k/val/b25c51f5-e9dba941.jpg
26
+ images/100k/val/b25fb716-78d8d49b.jpg
27
+ images/100k/val/b2794401-ba7d3c05.jpg
28
+ images/100k/val/b279bc06-b7bc42a9.jpg
29
+ images/100k/val/b27b0cd9-f184d9a3.jpg
30
+ images/100k/val/b28cfc9b-224431ab.jpg
31
+ images/100k/val/b291cfd6-ff98ba56.jpg
32
+ images/100k/val/b29377e0-83e8340a.jpg
33
+ images/100k/val/b2b32394-e46669cb.jpg
34
+ images/100k/val/b2bee3e1-915eb541.jpg
35
+ images/100k/val/b2c0e5c1-9666ba7e.jpg
36
+ images/100k/val/b2c23864-810e4e1d.jpg
37
+ images/100k/val/b2cce432-e17e840e.jpg
38
+ images/100k/val/b2daf29d-6198754f.jpg
39
+ images/100k/val/b2e2126b-0512426c.jpg
40
+ images/100k/val/b2e96aa8-4d92cdf0.jpg
41
+ images/100k/val/b2edfbf5-544c4e6e.jpg
42
+ images/100k/val/b2fed216-2e5c452d.jpg
43
+ images/100k/val/b3060c96-d2391b61.jpg
44
+ images/100k/val/b3159650-1ba75f9b.jpg
45
+ images/100k/val/b321c6b6-ab603d42.jpg
46
+ images/100k/val/b3223c85-fccaf29d.jpg
47
+ images/100k/val/b336bdb9-99780d3c.jpg
48
+ images/100k/val/b3432539-8f9fc466.jpg
49
+ images/100k/val/b3450498-dbbb787e.jpg
50
+ images/100k/val/b3479da9-2d5165c5.jpg
datasets/bdd100k_lists/sunny2diffweathers/cloudy_train.txt ADDED
The diff for this file is too large to render. See raw diff
 
datasets/bdd100k_lists/sunny2diffweathers/night_test.txt ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ images/100k/val/b1c81faa-3df17267.jpg
2
+ images/100k/val/b1c81faa-c80764c5.jpg
3
+ images/100k/val/b1ca2e5d-84cf9134.jpg
4
+ images/100k/val/b1ca8418-84a133a0.jpg
5
+ images/100k/val/b1cd1e94-26dd524f.jpg
6
+ images/100k/val/b1ceb32e-3f481b43.jpg
7
+ images/100k/val/b1d10d08-743fd86c.jpg
8
+ images/100k/val/b1d22449-117aa773.jpg
9
+ images/100k/val/b1d22449-15fb948f.jpg
10
+ images/100k/val/b1d3907b-2278601b.jpg
11
+ images/100k/val/b1d4b62c-89eeb5d3.jpg
12
+ images/100k/val/b1d4b62c-d9805029.jpg
13
+ images/100k/val/b1d8735d-eee9f184.jpg
14
+ images/100k/val/b1db7e22-cfa74dc3.jpg
15
+ images/100k/val/b1e2346e-c5f98707.jpg
16
+ images/100k/val/b1e62c91-eca210a9.jpg
17
+ images/100k/val/b1e88fd2-c1e4fd2b.jpg
18
+ images/100k/val/b1ebfc3c-740ec84a.jpg
19
+ images/100k/val/b1ebfc3c-cc9c2bb8.jpg
20
+ images/100k/val/b1ee702d-0ae1fc10.jpg
21
+ images/100k/val/b1ee702d-4a193906.jpg
22
+ images/100k/val/b1ee702d-525fcebf.jpg
23
+ images/100k/val/b1f20aa0-3401c3bf.jpg
24
+ images/100k/val/b1f20aa0-50213047.jpg
25
+ images/100k/val/b1f20aa0-6ef1db42.jpg
26
+ images/100k/val/b1f6c103-5ce1f3c6.jpg
27
+ images/100k/val/b1f6c103-8b75ea3e.jpg
28
+ images/100k/val/b1f6c103-b00e8aad.jpg
29
+ images/100k/val/b1fbf878-b31a8293.jpg
30
+ images/100k/val/b200b84e-4a792877.jpg
31
+ images/100k/val/b20234fd-822029be.jpg
32
+ images/100k/val/b206a78b-99f405ab.jpg
33
+ images/100k/val/b2080dc7-f9b98a5f.jpg
34
+ images/100k/val/b20b1e63-4d8478a4.jpg
35
+ images/100k/val/b2102d00-5eb86b71.jpg
36
+ images/100k/val/b2102d00-a8c09be1.jpg
37
+ images/100k/val/b2131b7b-e58faab7.jpg
38
+ images/100k/val/b214d1e1-f248c616.jpg
39
+ images/100k/val/b21547c1-73e457f8.jpg
40
+ images/100k/val/b21547c1-796757ac.jpg
41
+ images/100k/val/b216243d-55963da2.jpg
42
+ images/100k/val/b2194b15-1825056a.jpg
43
+ images/100k/val/b21ac8b3-9b9cb45a.jpg
44
+ images/100k/val/b21bfb83-ea32f716.jpg
45
+ images/100k/val/b21c68e6-65674a17.jpg
46
+ images/100k/val/b21d5efb-5e2cd743.jpg
47
+ images/100k/val/b229488e-e4714bb7.jpg
48
+ images/100k/val/b22e02cd-6af68e18.jpg
49
+ images/100k/val/b22f174d-a19c875e.jpg
50
+ images/100k/val/b230132b-ff8f2719.jpg
datasets/bdd100k_lists/sunny2diffweathers/night_train.txt ADDED
The diff for this file is too large to render. See raw diff
 
datasets/bdd100k_lists/sunny2diffweathers/rainy_test.txt ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ images/100k/val/b1cac6a7-04e33135.jpg
2
+ images/100k/val/b1d0091f-75824d0d.jpg
3
+ images/100k/val/b1e1a7b8-65ec7612.jpg
4
+ images/100k/val/b1e1a7b8-a7426a97.jpg
5
+ images/100k/val/b1e1a7b8-b397c445.jpg
6
+ images/100k/val/b1e9ee0e-67e26f2e.jpg
7
+ images/100k/val/b2156f8e-72e1547c.jpg
8
+ images/100k/val/b255cd6c-bc3cbb18.jpg
9
+ images/100k/val/b263f57d-1ccf6e51.jpg
10
+ images/100k/val/b266db29-12bf52fa.jpg
11
+ images/100k/val/b266db29-29fa8335.jpg
12
+ images/100k/val/b266db29-403143cc.jpg
13
+ images/100k/val/b266db29-4d22b355.jpg
14
+ images/100k/val/b266db29-c518f15d.jpg
15
+ images/100k/val/b266db29-da0abce7.jpg
16
+ images/100k/val/b26aafd1-1bc4dccc.jpg
17
+ images/100k/val/b26aafd1-513824d4.jpg
18
+ images/100k/val/b26cfcdc-10346684.jpg
19
+ images/100k/val/b26cfcdc-2e290c42.jpg
20
+ images/100k/val/b26cfcdc-7b00747d.jpg
21
+ images/100k/val/b26cfcdc-eb092da8.jpg
22
+ images/100k/val/b27127df-eac9b95e.jpg
23
+ images/100k/val/b29026f0-d5a5ee8c.jpg
24
+ images/100k/val/b29c2372-b53a797c.jpg
25
+ images/100k/val/b2b2f563-ec318c61.jpg
26
+ images/100k/val/b2bceb54-0b1f3332.jpg
27
+ images/100k/val/b2bceb54-4d3cc92c.jpg
28
+ images/100k/val/b2d83b7b-9627ff87.jpg
29
+ images/100k/val/b2ddae9c-9aafceae.jpg
30
+ images/100k/val/b2f48fc3-eda0e217.jpg
31
+ images/100k/val/b336bdb9-ed5d2cc3.jpg
32
+ images/100k/val/b35c1016-4e29ef43.jpg
33
+ images/100k/val/b35c1016-5a7c77ee.jpg
34
+ images/100k/val/b37385bd-9d5b76d4.jpg
35
+ images/100k/val/b376c5c2-07a93591.jpg
36
+ images/100k/val/b38b2b6a-cb374ce8.jpg
37
+ images/100k/val/b3933f83-a32ef4fd.jpg
38
+ images/100k/val/b39e8c78-f02c29c6.jpg
39
+ images/100k/val/b3a87019-ba714074.jpg
40
+ images/100k/val/b3e51564-d2ac524c.jpg
41
+ images/100k/val/b3ef316c-2906f850.jpg
42
+ images/100k/val/b3ef6557-e6709cd9.jpg
43
+ images/100k/val/b403b27c-37cac4b8.jpg
44
+ images/100k/val/b409ed8a-da6926db.jpg
45
+ images/100k/val/b415973a-b39bd6de.jpg
46
+ images/100k/val/b41ace08-88fb022d.jpg
47
+ images/100k/val/b4201bd2-75c1998d.jpg
48
+ images/100k/val/b4475e22-27ceb162.jpg
49
+ images/100k/val/b45f01c5-85bc12e8.jpg
50
+ images/100k/val/b4632db3-9724d92c.jpg
datasets/bdd100k_lists/sunny2diffweathers/rainy_train.txt ADDED
The diff for this file is too large to render. See raw diff
 
datasets/bdd100k_lists/sunny2diffweathers/snowy_test.txt ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ images/100k/val/b1d0a191-03dcecc2.jpg
2
+ images/100k/val/b1d0a191-06deb55d.jpg
3
+ images/100k/val/b1d0a191-28f0e779.jpg
4
+ images/100k/val/b1d0a191-2ed2269e.jpg
5
+ images/100k/val/b1d0a191-5490450b.jpg
6
+ images/100k/val/b1d0a191-65deaeef.jpg
7
+ images/100k/val/b1d0a191-de8948f6.jpg
8
+ images/100k/val/b1d10d08-ec660956.jpg
9
+ images/100k/val/b1da9c53-0f3d4c5d.jpg
10
+ images/100k/val/b1e6efc0-2552cc5d.jpg
11
+ images/100k/val/b2046bcf-8bc6a044.jpg
12
+ images/100k/val/b204a5c1-05981158.jpg
13
+ images/100k/val/b204a5c1-064b0040.jpg
14
+ images/100k/val/b204a5c1-fa3d5b88.jpg
15
+ images/100k/val/b237db93-fab44bf2.jpg
16
+ images/100k/val/b242929f-3051abca.jpg
17
+ images/100k/val/b2490dcb-7469cbe8.jpg
18
+ images/100k/val/b255cd6c-2f889586.jpg
19
+ images/100k/val/b25c1103-5da4b435.jpg
20
+ images/100k/val/b26327fe-3ac19999.jpg
21
+ images/100k/val/b26f8762-61cfb033.jpg
22
+ images/100k/val/b27cde22-56abd0e1.jpg
23
+ images/100k/val/b29273b2-339a1500.jpg
24
+ images/100k/val/b29806ee-7194648d.jpg
25
+ images/100k/val/b29806ee-ac06730f.jpg
26
+ images/100k/val/b29806ee-e89a39a6.jpg
27
+ images/100k/val/b2a46c1e-87aac2ec.jpg
28
+ images/100k/val/b2ae4fc5-3abd5802.jpg
29
+ images/100k/val/b2ae4fc5-d1082ddf.jpg
30
+ images/100k/val/b2cbf6d8-732b47be.jpg
31
+ images/100k/val/b2d22b2f-8302eb61.jpg
32
+ images/100k/val/b2d8704e-66d10551.jpg
33
+ images/100k/val/b2d8704e-9e7dddd6.jpg
34
+ images/100k/val/b2de6f59-9f74dea1.jpg
35
+ images/100k/val/b2e54795-0a58624f.jpg
36
+ images/100k/val/b2e54795-349f005b.jpg
37
+ images/100k/val/b2e54795-6d4ef5f9.jpg
38
+ images/100k/val/b2e54795-db1f3bad.jpg
39
+ images/100k/val/b2ed13f9-01b4dd4f.jpg
40
+ images/100k/val/b2f48fc3-0b8ff39a.jpg
41
+ images/100k/val/b3386c15-1c922cea.jpg
42
+ images/100k/val/b3566b0e-f8e7b731.jpg
43
+ images/100k/val/b35a415a-02526f57.jpg
44
+ images/100k/val/b36710b9-7f5e88a3.jpg
45
+ images/100k/val/b36a5c73-437be32a.jpg
46
+ images/100k/val/b36a5c73-64eacfbf.jpg
47
+ images/100k/val/b36a5c73-7985c3ec.jpg
48
+ images/100k/val/b36d14ea-eed9255b.jpg
49
+ images/100k/val/b37c5be2-b9164b91.jpg
50
+ images/100k/val/b380ae2f-afd868dc.jpg
datasets/bdd100k_lists/sunny2diffweathers/snowy_train.txt ADDED
The diff for this file is too large to render. See raw diff
 
datasets/bdd100k_lists/sunny2diffweathers/sunny_test.txt ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ images/100k/val/b1cebfb7-284f5117.jpg
2
+ images/100k/val/b1d10d08-c35503b8.jpg
3
+ images/100k/val/b1d7b3ac-36f2d3b7.jpg
4
+ images/100k/val/b1d7b3ac-5744370e.jpg
5
+ images/100k/val/b1d7b3ac-5af8623b.jpg
6
+ images/100k/val/b1d7b3ac-995f9d8a.jpg
7
+ images/100k/val/b1dac7f7-6b2e0382.jpg
8
+ images/100k/val/b1dce572-c6a8cb5e.jpg
9
+ images/100k/val/b1df722f-57d21f3f.jpg
10
+ images/100k/val/b1df722f-5bcc3db7.jpg
11
+ images/100k/val/b1e3e9f5-92377424.jpg
12
+ images/100k/val/b1e8ad72-c3c79240.jpg
13
+ images/100k/val/b1f0efd9-e900c6e5.jpg
14
+ images/100k/val/b1f4491b-97465266.jpg
15
+ images/100k/val/b1f62c41-ed0c6521.jpg
16
+ images/100k/val/b1ff4656-94ee8536.jpg
17
+ images/100k/val/b202cae2-672e61c5.jpg
18
+ images/100k/val/b202cae2-f46c74a6.jpg
19
+ images/100k/val/b205eb4d-f84aaa1a.jpg
20
+ images/100k/val/b20841f9-cef732d5.jpg
21
+ images/100k/val/b20b69d2-64b9cdb8.jpg
22
+ images/100k/val/b20b69d2-650e674d.jpg
23
+ images/100k/val/b20b69d2-6e2b9e73.jpg
24
+ images/100k/val/b20b69d2-7767e6b6.jpg
25
+ images/100k/val/b20b69d2-bd242bf0.jpg
26
+ images/100k/val/b20b69d2-ca16c907.jpg
27
+ images/100k/val/b20b69d2-e31380a7.jpg
28
+ images/100k/val/b20b69d2-ffc1d6af.jpg
29
+ images/100k/val/b20d494a-cdebe83e.jpg
30
+ images/100k/val/b20e291a-6012d836.jpg
31
+ images/100k/val/b20ff95c-b9444127.jpg
32
+ images/100k/val/b2169b74-fa197951.jpg
33
+ images/100k/val/b2208b0f-2796a692.jpg
34
+ images/100k/val/b231a630-c4522992.jpg
35
+ images/100k/val/b2331b83-a28e6b57.jpg
36
+ images/100k/val/b245e52e-0a0e4e69.jpg
37
+ images/100k/val/b24702e3-0456c83c.jpg
38
+ images/100k/val/b24702e3-e6f33768.jpg
39
+ images/100k/val/b24702e3-f56e0731.jpg
40
+ images/100k/val/b24b3585-221ac8ac.jpg
41
+ images/100k/val/b24f7455-e8c55d6a.jpg
42
+ images/100k/val/b250fb0c-01a1b8d3.jpg
43
+ images/100k/val/b251064f-8d92db81.jpg
44
+ images/100k/val/b259c5e1-cda39ef9.jpg
45
+ images/100k/val/b25fdb41-4644e3f7.jpg
46
+ images/100k/val/b26331b9-102f5d9a.jpg
47
+ images/100k/val/b265b9cf-2d517da6.jpg
48
+ images/100k/val/b2694461-db4f4470.jpg
49
+ images/100k/val/b2715214-13e3dd85.jpg
50
+ images/100k/val/b2715214-d38332ea.jpg
51
+ images/100k/val/b27369f3-9b9598f4.jpg
52
+ images/100k/val/b27369f3-dd3c0b46.jpg
53
+ images/100k/val/b2743b5d-e2d585be.jpg
54
+ images/100k/val/b27688b6-cd521517.jpg
55
+ images/100k/val/b27d5dcb-856c0b43.jpg
56
+ images/100k/val/b27e8b69-c00092ae.jpg
57
+ images/100k/val/b280c9c1-4340305f.jpg
58
+ images/100k/val/b28cb5d3-9ff4ab4a.jpg
59
+ images/100k/val/b28cb5d3-c4758dfd.jpg
60
+ images/100k/val/b28ec521-8266e1a4.jpg
61
+ images/100k/val/b28ec521-834a964c.jpg
62
+ images/100k/val/b28f288b-784f7606.jpg
63
+ images/100k/val/b2932832-a2c8f6ef.jpg
64
+ images/100k/val/b294386c-24ddd0c3.jpg
65
+ images/100k/val/b2a1e013-638d6e4d.jpg
66
+ images/100k/val/b2a8e8b4-a4e93829.jpg
67
+ images/100k/val/b2a99ee3-5abca703.jpg
68
+ images/100k/val/b2afce7f-0cb9967a.jpg
69
+ images/100k/val/b2b03a01-a60e895f.jpg
70
+ images/100k/val/b2b70230-c43553a9.jpg
71
+ images/100k/val/b2bc4efb-a184131d.jpg
72
+ images/100k/val/b2cd33bd-a5043d29.jpg
73
+ images/100k/val/b2d22b2f-91d0af18.jpg
74
+ images/100k/val/b2db41a2-721e0f4e.jpg
75
+ images/100k/val/b2e431b6-332c438d.jpg
76
+ images/100k/val/b2e54795-0dc285dd.jpg
77
+ images/100k/val/b2e54795-601d2d78.jpg
78
+ images/100k/val/b2e54795-d8c2ba6d.jpg
79
+ images/100k/val/b2f4a409-36a7d7c9.jpg
80
+ images/100k/val/b2f4a409-5ddff11a.jpg
81
+ images/100k/val/b2f4a409-80dacf25.jpg
82
+ images/100k/val/b2f9cc9e-809f5cae.jpg
83
+ images/100k/val/b2fbf86d-d5de82a4.jpg
84
+ images/100k/val/b2fe5d69-f31d4c9b.jpg
85
+ images/100k/val/b3048201-d86d9cd8.jpg
86
+ images/100k/val/b3064012-5a01e51a.jpg
87
+ images/100k/val/b306fb3f-178fca4e.jpg
88
+ images/100k/val/b306fb3f-f02e46cc.jpg
89
+ images/100k/val/b3079ec6-df7b2d92.jpg
90
+ images/100k/val/b30af183-3029b316.jpg
91
+ images/100k/val/b30af183-e9209104.jpg
92
+ images/100k/val/b30b460d-9829fd26.jpg
93
+ images/100k/val/b3110036-a32dc26e.jpg
94
+ images/100k/val/b3121071-581b2755.jpg
95
+ images/100k/val/b3121071-6b1e5be7.jpg
96
+ images/100k/val/b3121071-c0fd88c4.jpg
97
+ images/100k/val/b3121071-cac49b3a.jpg
98
+ images/100k/val/b3154d05-86ce5ff2.jpg
99
+ images/100k/val/b3154d05-8bc595ba.jpg
100
+ images/100k/val/b3158519-23c9c58d.jpg
101
+ images/100k/val/b319b67e-b43ffc33.jpg
102
+ images/100k/val/b31c98f7-a342fff6.jpg
103
+ images/100k/val/b322412a-58073611.jpg
104
+ images/100k/val/b322412a-b47af37f.jpg
105
+ images/100k/val/b325fe35-b59e4e91.jpg
106
+ images/100k/val/b329fe7d-f06455d3.jpg
107
+ images/100k/val/b331b06b-83fd459b.jpg
108
+ images/100k/val/b3329255-4a5988f8.jpg
109
+ images/100k/val/b3339cd5-06f84bb3.jpg
110
+ images/100k/val/b33ced12-423ec0dc.jpg
111
+ images/100k/val/b33ced12-5caa9205.jpg
112
+ images/100k/val/b33ced12-c53391e6.jpg
113
+ images/100k/val/b33ea6cb-3464fb13.jpg
114
+ images/100k/val/b33ea6cb-ddf24803.jpg
115
+ images/100k/val/b344266e-2e034c1e.jpg
116
+ images/100k/val/b3456910-cf5fb475.jpg
117
+ images/100k/val/b3563bcf-1962e18d.jpg
118
+ images/100k/val/b35dac08-031e3f6f.jpg
119
+ images/100k/val/b35dac08-396cde53.jpg
120
+ images/100k/val/b35dac08-a80be8c5.jpg
121
+ images/100k/val/b368ee71-aba6eeef.jpg
122
+ images/100k/val/b36de7af-08e5967a.jpg
123
+ images/100k/val/b36de7af-887696f9.jpg
124
+ images/100k/val/b36de7af-ca137216.jpg
125
+ images/100k/val/b37b0528-92d07297.jpg
126
+ images/100k/val/b37dfad0-708bd5bb.jpg
127
+ images/100k/val/b3826400-c03b5432.jpg
128
+ images/100k/val/b3826fd8-774c2e0a.jpg
129
+ images/100k/val/b3875c8d-cc4081eb.jpg
130
+ images/100k/val/b3899bec-df46f67b.jpg
131
+ images/100k/val/b38b2b6a-77f9d5e5.jpg
132
+ images/100k/val/b38f59d4-58f1cff8.jpg
133
+ images/100k/val/b38f59d4-8dfeca9f.jpg
134
+ images/100k/val/b396946b-d29f75f9.jpg
135
+ images/100k/val/b398327e-08f3a1f2.jpg
136
+ images/100k/val/b398327e-3d2a2683.jpg
137
+ images/100k/val/b398327e-f873cb8b.jpg
138
+ images/100k/val/b3990aa9-4fb64582.jpg
139
+ images/100k/val/b3990aa9-8adaa51a.jpg
140
+ images/100k/val/b3a238e3-de6b8b86.jpg
141
+ images/100k/val/b3a238e3-ede6d45d.jpg
142
+ images/100k/val/b3a3d166-3a6a258d.jpg
143
+ images/100k/val/b3a6f586-23d13c49.jpg
144
+ images/100k/val/b3a9281a-75473a1b.jpg
145
+ images/100k/val/b3a9281a-8b4f26f1.jpg
146
+ images/100k/val/b3ae7668-c78f47c8.jpg
147
+ images/100k/val/b3b44b49-3af119e3.jpg
148
+ images/100k/val/b3b44b49-7336e3ee.jpg
149
+ images/100k/val/b3bbc110-3ef16a61.jpg
150
+ images/100k/val/b3c0357a-10fef986.jpg
151
+ images/100k/val/b3c0460d-33d7256d.jpg
152
+ images/100k/val/b3c26aff-417063a0.jpg
153
+ images/100k/val/b3c26aff-63a0d7d6.jpg
154
+ images/100k/val/b3c4e98b-2788a3e8.jpg
155
+ images/100k/val/b3da33d5-a64e7657.jpg
156
+ images/100k/val/b3e0345b-20d013f8.jpg
157
+ images/100k/val/b3e0345b-ae566cbd.jpg
158
+ images/100k/val/b3e137e5-fe7ef981.jpg
159
+ images/100k/val/b3ea5e17-c67b7a7a.jpg
160
+ images/100k/val/b3ea802a-c689de9a.jpg
161
+ images/100k/val/b3f0cdab-6712e58f.jpg
162
+ images/100k/val/b3f0cdab-d5954c9a.jpg
163
+ images/100k/val/b3f2fee7-1482dee6.jpg
164
+ images/100k/val/b3f3c908-0ab1d376.jpg
165
+ images/100k/val/b3f3c908-baffb699.jpg
166
+ images/100k/val/b3fbc6ad-746053d9.jpg
167
+ images/100k/val/b4065fc4-ede06556.jpg
168
+ images/100k/val/b40ce2eb-ac2ffa01.jpg
169
+ images/100k/val/b4110365-9ae12ee1.jpg
170
+ images/100k/val/b4115405-2f28f75a.jpg
171
+ images/100k/val/b413b23f-7c897b06.jpg
172
+ images/100k/val/b41d35f8-6cf85033.jpg
173
+ images/100k/val/b4259d0f-d93d7a19.jpg
174
+ images/100k/val/b4284bbe-1905abe0.jpg
175
+ images/100k/val/b433534e-ff3646aa.jpg
176
+ images/100k/val/b439c4fe-5064fe59.jpg
177
+ images/100k/val/b442c34a-6fe5cbba.jpg
178
+ images/100k/val/b4448a1d-e9c03bb5.jpg
179
+ images/100k/val/b4478c66-0103c647.jpg
180
+ images/100k/val/b44bcbbe-e980e271.jpg
181
+ images/100k/val/b44ee0ec-a0786e4c.jpg
182
+ images/100k/val/b4542860-0b880bb4.jpg
183
+ images/100k/val/b4542860-e818b412.jpg
184
+ images/100k/val/b4543c78-db967acc.jpg
185
+ images/100k/val/b459e707-2d208c56.jpg
186
+ images/100k/val/b45ddf05-e4775ab6.jpg
187
+ images/100k/val/b46478b0-167fe009.jpg
188
+ images/100k/val/b46478b0-1eb55806.jpg
189
+ images/100k/val/b47262a4-3c664e48.jpg
190
+ images/100k/val/b47262a4-aa7a5ad9.jpg
191
+ images/100k/val/b47262a4-b17e0871.jpg
192
+ images/100k/val/b472aeb8-f6353af9.jpg
193
+ images/100k/val/b477c2e7-6590a089.jpg
194
+ images/100k/val/b47f85d4-6cc172b6.jpg
195
+ images/100k/val/b47f85d4-c6562257.jpg
196
+ images/100k/val/b48012c1-619fc3eb.jpg
197
+ images/100k/val/b483a180-56a9db7c.jpg
198
+ images/100k/val/b48c7b5f-0beee565.jpg
199
+ images/100k/val/b48c7b5f-49fec7f1.jpg
200
+ images/100k/val/b48c7b5f-76b4418e.jpg
datasets/bdd100k_lists/sunny2diffweathers/sunny_train.txt ADDED
The diff for this file is too large to render. See raw diff
 
datasets/prepare_ade20k.sh ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+
3
+ set -x
4
+
5
+ DATAROOT=$1
6
+
7
+ ln -s $DATAROOT ./datasets
datasets/prepare_bdd100k.sh ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+
3
+ set -x
4
+
5
+ DATAROOT=$1
6
+
7
+ cp -r ./datasets/bdd100k_lists $DATAROOT
8
+ ln -s $DATAROOT ./datasets
datasets/prepare_cityscapes.sh ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env bash
2
+
3
+ set -x
4
+
5
+ DATAROOT=$1
6
+
7
+ ln -s $DATAROOT ./datasets