File size: 7,322 Bytes
f11873c c71caa9 f11873c 5b2b929 4b1b4ef 4a9e97b f11873c 3102867 f11873c 64c5e6b f11873c 7ec39c5 f11873c ef9e4f6 61bb232 ef9e4f6 488b6a0 ef9e4f6 8dc3ac4 f11873c 8dc3ac4 96fdba4 9e33c89 8dc3ac4 f11873c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
---
license: cc-by-nc-2.0
language:
- en
base_model:
- mistralai/Ministral-8B-Instruct-2410
base_model_relation: finetune
pipeline_tag: text-generation
library_name: transformers
tags:
- alignment
- conversational
- conversational-ai
- collaborate
- chat
- chatbot
- research
- persona
- personality
- friendly
- reasoning
- chatbot
- vanta-research
- LLM
- collaborative-ai
- frontier
- reflective
---
<div align="center">

<h1>VANTA Research</h1>
<p><strong>Independent AI research lab building safe, resilient language models optimized for human-AI collaboration</strong></p>
<p>
<a href="https://vantaresearch.xyz"><img src="https://img.shields.io/badge/Website-vantaresearch.xyz-black" alt="Website"/></a>
<a href="https://merch.vantaresearch.xyz"><img src="https://img.shields.io/badge/Merch-merch.vantaresearch.xyz-sage" alt="Merch"/></a>
<a href="https://x.com/vanta_research"><img src="https://img.shields.io/badge/@vanta_research-1DA1F2?logo=x" alt="X"/></a>
<a href="https://github.com/vanta-research"><img src="https://img.shields.io/badge/GitHub-vanta--research-181717?logo=github" alt="GitHub"/></a>
</p>
</div>
---
# Atom v1 8B Preview
**Developed by VANTA Research**
Atom v1 8B Preview is a fine-tuned language model designed to serve as a collaborative thought partner. Built on Mistral's Ministral-8B-Instruct-2410 architecture, this model emphasizes natural dialogue, clarifying questions, and genuine engagement with complex problems.
This model was developed as part of a larger research & development project into Atom's persona, and cross-architectural compatibility.
## Model Details
- **Model Type:** Causal language model (decoder-only transformer)
- **Base Model:** mistralai/Ministral-8B-Instruct-2410
- **Parameters:** 8 billion
- **Training Method:** Low-Rank Adaptation (LoRA) fine-tuning
- **License:** CC BY-NC 4.0 (Non-Commercial Use)
- **Language:** English
- **Developed by:** VANTA Research, Portland, Oregon
## Intended Use
Atom v1 8B Preview is designed for:
- Collaborative problem-solving and brainstorming
- Technical explanations with accessible analogies
- Code assistance and algorithmic reasoning
- Exploratory conversations that prioritize understanding over immediate answers
- Educational contexts requiring thoughtful dialogue
This model is optimized for conversational depth, asking clarifying questions, and maintaining warm, engaging interactions while avoiding formulaic assistant behavior.
## Training Data
The model was fine-tuned on a curated dataset comprising:
- Identity and persona examples emphasizing collaborative exploration
- Technical reasoning and coding challenges
- Multi-step problem-solving scenarios
- Conversational examples demonstrating warmth and curiosity
- Advanced coding tasks and algorithmic thinking
Training focused on developing a distinctive voice that balances technical competence with genuine engagement.
## Performance Characteristics
Atom v1 8B demonstrates strong capabilities in:
- **Persona Consistency:** Maintains collaborative, warm tone across diverse topics
- **Technical Explanation:** Uses metaphors and analogies to clarify complex concepts
- **Clarifying Questions:** Actively seeks to understand user intent and context
- **Creative Thinking:** Generates multiple frameworks and approaches to problems
- **Code Generation:** Produces working code with explanatory context
- **Reasoning:** Applies logical frameworks to abstract problems
## Limitations
- **Scale:** As an 8B parameter model, capabilities are constrained compared to larger frontier models
- **Domain Specificity:** Optimized for conversational collaboration; may underperform on narrow technical benchmarks
- **Quantization Trade-offs:** Q4_0 GGUF format prioritizes efficiency over maximum precision
- **Training Data:** Fine-tuning dataset size limits exposure to highly specialized domains
- **Factual Accuracy:** Users should verify critical information independently
## Ethical Considerations
This model is released for research and non-commercial applications. Users should:
- Verify outputs in high-stakes scenarios
- Avoid deploying in contexts requiring guaranteed accuracy
- Consider potential biases inherited from base model and training data
- Respect the non-commercial license terms
## Usage
### Hugging Face Transformers
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "vanta-research/atom-v1-8b-preview"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
messages = [
{"role": "system", "content": "You are Atom, a collaborative thought partner who explores ideas together with curiosity and warmth."},
{"role": "user", "content": "Can you explain how gradient descent works?"}
]
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
output = model.generate(input_ids, max_new_tokens=512, temperature=0.8)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
### Ollama (GGUF)
The repository includes `atom-ministral-8b-q4_0.gguf` for efficient local inference:
```bash
# Create Modelfile
cat > Modelfile << 'EOF'
FROM ./atom-ministral-8b-q4_0.gguf
TEMPLATE """{{- if .System }}<s>[INST] <<SYS>>
{{ .System }}
<<SYS>>
{{ .Prompt }}[/INST]{{ else }}<s>[INST]{{ .Prompt }}[/INST]{{ end }}{{ .Response }}</s>
"""
PARAMETER stop "</s>"
PARAMETER temperature 0.8
PARAMETER top_p 0.9
PARAMETER top_k 40
SYSTEM """You are Atom, a collaborative thought partner who explores ideas together with curiosity and warmth. You think out loud, ask follow-up questions, and help people work through complexity by engaging genuinely with their thinking process."""
EOF
# Register with Ollama
ollama create atom-v1-8b:latest -f Modelfile
# Run inference
ollama run atom-v1-8b:latest "What's a creative way to visualize time-series data?"
```
## Technical Specifications
- **Architecture:** Mistral-based transformer with Grouped Query Attention
- **Context Length:** 32,768 tokens
- **Vocabulary Size:** 131,072 tokens
- **Attention Heads:** 32 (8 key-value heads)
- **Hidden Dimension:** 4,096
- **Intermediate Size:** 12,288
- **LoRA Configuration:** r=16, alpha=32, targeting attention and MLP layers
- **Training:** 258 steps with bf16 precision and gradient checkpointing
## Citation
```bibtex
@software{atom_v1_8b_preview,
title = {Atom v1 8B Preview},
author = {VANTA Research},
year = {2025},
url = {https://huggingface.co/vanta-research/atom-v1-8b-preview},
license = {CC-BY-NC-4.0}
}
```
## License
This model is released under the **Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)**.
You are free to:
- Share and adapt the model for non-commercial purposes
- Attribute VANTA Research as the creator
You may not:
- Use this model for commercial purposes without explicit permission
## Contact
For questions, collaboration inquiries, or commercial licensing:
- **Email:** [email protected]
---
**Version:** 1.0.0-preview
**Release Date:** November 2025
**Status:** Preview release for research and evaluation |