unmodeled-tyler commited on
Commit
54d994d
·
verified ·
1 Parent(s): 308063f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -23
README.md CHANGED
@@ -3,6 +3,7 @@ language:
3
  - en
4
  license: apache-2.0
5
  base_model: Qwen/Qwen2.5-Coder-7B-Instruct
 
6
  tags:
7
  - code
8
  - coding
@@ -13,6 +14,10 @@ tags:
13
  - complexity-analysis
14
  - qwen2.5
15
  - fine-tuned
 
 
 
 
16
  model-index:
17
  - name: wraith-coder-7b
18
  results:
@@ -26,6 +31,24 @@ model-index:
26
  - type: coverage
27
  value: 60
28
  name: Complexity Analysis Coverage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  ---
30
 
31
  # Wraith Coder 7B
@@ -34,7 +57,7 @@ Wraith Coder 7B is a specialized code generation model fine-tuned from Qwen2.5-C
34
 
35
  ## Model Description
36
 
37
- **Developed by:** Vanta Research
38
  **Base Model:** Qwen/Qwen2.5-Coder-7B-Instruct
39
  **Model Type:** Causal Language Model
40
  **Language(s):** English
@@ -56,26 +79,27 @@ Wraith Coder 7B is a specialized code generation model fine-tuned from Qwen2.5-C
56
 
57
  Wraith Coder 7B was developed through three iterations of progressive capability enhancement:
58
 
59
- **Iteration 1: Personality Establishment (4,256 examples)**
 
60
  - Identity formation and communication style
61
  - Logical reasoning patterns
62
  - Technical terminology usage
63
  - Foundation for signal-dense communication
64
 
65
- **Iteration 2: Coding Restoration (5,500 examples)**
66
- - 2,040 conversational coding examples
67
- - 2,040 computer science fundamentals
68
- - 920 mathematical reasoning problems
69
- - 200 identity reinforcement examples
70
- - 300 technical communication patterns
71
-
72
- **Iteration 3: Advanced Capabilities (4,488 examples)**
73
- - 1,007 architectural design patterns
74
- - 1,041 algorithm design and analysis
75
- - 1,064 debugging techniques
76
- - 1,026 systems programming concepts
77
- - 150 identity anchors
78
- - 200 communication pattern reinforcement
79
 
80
  ### Training Configuration
81
 
@@ -271,11 +295,7 @@ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
271
  print(response)
272
  ```
273
 
274
- ## Model Card Authors
275
-
276
- Vanta Research
277
-
278
- ## Model Card Contact
279
 
280
  For questions or issues regarding this model, please open an issue in the model repository.
281
 
@@ -285,7 +305,7 @@ If you use this model in your research or applications, please cite:
285
 
286
  ```bibtex
287
  @misc{wraith-coder-7b,
288
- author = {Vanta Research},
289
  title = {Wraith Coder 7B: Signal-Dense Code Generation through Iterative Fine-Tuning},
290
  year = {2025},
291
  publisher = {Hugging Face},
@@ -295,7 +315,7 @@ If you use this model in your research or applications, please cite:
295
 
296
  ## Acknowledgments
297
 
298
- This model builds upon Qwen2.5-Coder-7B-Instruct developed by Alibaba Cloud. We acknowledge their contribution to open-source language model research.
299
 
300
  ## Version History
301
 
@@ -303,3 +323,6 @@ This model builds upon Qwen2.5-Coder-7B-Instruct developed by Alibaba Cloud. We
303
  - 62.6% response reduction while maintaining correctness
304
  - 60% complexity analysis coverage across 20-question benchmark
305
  - Production-ready for senior engineering applications
 
 
 
 
3
  - en
4
  license: apache-2.0
5
  base_model: Qwen/Qwen2.5-Coder-7B-Instruct
6
+ base_model_relation: finetune
7
  tags:
8
  - code
9
  - coding
 
14
  - complexity-analysis
15
  - qwen2.5
16
  - fine-tuned
17
+ - vanta-research
18
+ - vanta-research-entities
19
+ - vanta-research-code-models
20
+ - wraith
21
  model-index:
22
  - name: wraith-coder-7b
23
  results:
 
31
  - type: coverage
32
  value: 60
33
  name: Complexity Analysis Coverage
34
+ library_name: transformers
35
+ ---
36
+
37
+ <div align="center">
38
+
39
+ ![vanta_trimmed](https://cdn-uploads.huggingface.co/production/uploads/686c460ba3fc457ad14ab6f8/hcGtMtCIizEZG_OuCvfac.png)
40
+
41
+ <h1>VANTA Research</h1>
42
+
43
+ <p><strong>Independent AI safety research lab specializing in cognitive fit, alignment, and human-AI collaboration</strong></p>
44
+
45
+ <p>
46
+ <a href="https://unmodeledtyler.com"><img src="https://img.shields.io/badge/Website-unmodeledtyler.com-yellow" alt="Website"/></a>
47
+ <a href="https://x.com/vanta_research"><img src="https://img.shields.io/badge/@vanta_research-1DA1F2?logo=x" alt="X"/></a>
48
+ <a href="https://github.com/vanta-research"><img src="https://img.shields.io/badge/GitHub-vanta--research-181717?logo=github" alt="GitHub"/></a>
49
+ </p>
50
+ </div>
51
+
52
  ---
53
 
54
  # Wraith Coder 7B
 
57
 
58
  ## Model Description
59
 
60
+ **Developed by:** VANTA Research
61
  **Base Model:** Qwen/Qwen2.5-Coder-7B-Instruct
62
  **Model Type:** Causal Language Model
63
  **Language(s):** English
 
79
 
80
  Wraith Coder 7B was developed through three iterations of progressive capability enhancement:
81
 
82
+ **Iteration 1: Personality Establishment (~4,250 examples)**
83
+ - Same personality examples used on Wraith 8B from the VANTA Research Entity Series
84
  - Identity formation and communication style
85
  - Logical reasoning patterns
86
  - Technical terminology usage
87
  - Foundation for signal-dense communication
88
 
89
+ **Iteration 2: Coding Restoration/Enhancement (~5,500 examples)**
90
+ - Conversational coding examples
91
+ - Computer science fundamentals
92
+ - Mathematical reasoning problems
93
+ - Identity reinforcement examples
94
+ - Technical communication patterns
95
+
96
+ **Iteration 3: Advanced Capabilities (~4,450 examples)**
97
+ - Architectural design patterns
98
+ - Algorithm design and analysis
99
+ - Debugging techniques
100
+ - Systems programming concepts
101
+ - Identity anchors
102
+ - Communication pattern reinforcement
103
 
104
  ### Training Configuration
105
 
 
295
  print(response)
296
  ```
297
 
298
+ ## Contact
 
 
 
 
299
 
300
  For questions or issues regarding this model, please open an issue in the model repository.
301
 
 
305
 
306
  ```bibtex
307
  @misc{wraith-coder-7b,
308
+ author = {VANTA Research},
309
  title = {Wraith Coder 7B: Signal-Dense Code Generation through Iterative Fine-Tuning},
310
  year = {2025},
311
  publisher = {Hugging Face},
 
315
 
316
  ## Acknowledgments
317
 
318
+ This model builds upon Qwen2.5-Coder-7B-Instruct developed by Alibaba Cloud. We acknowledge their contribution to open-source language model research. Thanks to Unsloth for providing an easy-to-use training framework.
319
 
320
  ## Version History
321
 
 
323
  - 62.6% response reduction while maintaining correctness
324
  - 60% complexity analysis coverage across 20-question benchmark
325
  - Production-ready for senior engineering applications
326
+
327
+ ---
328
+ *Proudly developed in Portland, Oregon by VANTA Research*