Update README.md
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ This model is a fine-tuned version of ModernBert to classify prompt-injection pr
|
|
22 |
## Uses
|
23 |
|
24 |
Prompt injection attacks manipulate language models by inserting or altering prompts to trigger harmful or unintended responses.
|
25 |
-
The vijil/
|
26 |
|
27 |
## How to Get Started with the Model
|
28 |
|
@@ -31,7 +31,7 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipe
|
|
31 |
import torch
|
32 |
|
33 |
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
34 |
-
model = AutoModelForSequenceClassification.from_pretrained("vijil/
|
35 |
|
36 |
classifier = pipeline(
|
37 |
"text-classification",
|
|
|
22 |
## Uses
|
23 |
|
24 |
Prompt injection attacks manipulate language models by inserting or altering prompts to trigger harmful or unintended responses.
|
25 |
+
The vijil/vijil_dome_prompt_injection_detection model is designed to enhance security in language model applications by detecting prompt-injection attacks.
|
26 |
|
27 |
## How to Get Started with the Model
|
28 |
|
|
|
31 |
import torch
|
32 |
|
33 |
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
34 |
+
model = AutoModelForSequenceClassification.from_pretrained("vijil/vijil_dome_prompt_injection_detection")
|
35 |
|
36 |
classifier = pipeline(
|
37 |
"text-classification",
|