add evaluation
Browse files- README.md +31 -5
- eval.py +5 -7
- eval.sh +13 -13
- librispeech_asr_clean_test_eval_results.txt +2 -0
- log_librispeech_asr_clean_test_predictions.txt +0 -0
- log_librispeech_asr_clean_test_targets.txt +0 -0
- log_speech-recognition-community-v2_dev_data_en_validation_predictions.txt +0 -0
- log_speech-recognition-community-v2_dev_data_en_validation_targets.txt +0 -0
- speech-recognition-community-v2_dev_data_en_validation_eval_results.txt +2 -0
README.md
CHANGED
|
@@ -9,13 +9,38 @@ tags:
|
|
| 9 |
- en
|
| 10 |
- generated_from_trainer
|
| 11 |
model-index:
|
| 12 |
-
- name:
|
| 13 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
---
|
| 15 |
|
| 16 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 17 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 18 |
-
|
| 19 |
#
|
| 20 |
|
| 21 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the librispeech_asr dataset.
|
|
@@ -23,6 +48,7 @@ It achieves the following results on the evaluation set:
|
|
| 23 |
- Loss: 0.1444
|
| 24 |
- Wer: 0.1167
|
| 25 |
|
|
|
|
| 26 |
## Model description
|
| 27 |
|
| 28 |
More information needed
|
|
|
|
| 9 |
- en
|
| 10 |
- generated_from_trainer
|
| 11 |
model-index:
|
| 12 |
+
- name: XLS-R-300M - English
|
| 13 |
+
results:
|
| 14 |
+
- task:
|
| 15 |
+
name: Automatic Speech Recognition
|
| 16 |
+
type: automatic-speech-recognition
|
| 17 |
+
dataset:
|
| 18 |
+
name: LibriSpeech ASR
|
| 19 |
+
type: librispeech_asr
|
| 20 |
+
args: clean
|
| 21 |
+
metrics:
|
| 22 |
+
- name: Test WER
|
| 23 |
+
type: wer
|
| 24 |
+
value: 12.29
|
| 25 |
+
- name: Test CER
|
| 26 |
+
type: cer
|
| 27 |
+
value: 3.34
|
| 28 |
+
- task:
|
| 29 |
+
name: Automatic Speech Recognition
|
| 30 |
+
type: automatic-speech-recognition
|
| 31 |
+
dataset:
|
| 32 |
+
name: Robust Speech Event - Dev Data
|
| 33 |
+
type: speech-recognition-community-v2/dev_data
|
| 34 |
+
args: en
|
| 35 |
+
metrics:
|
| 36 |
+
- name: Validation WER
|
| 37 |
+
type: wer
|
| 38 |
+
value: 36.75
|
| 39 |
+
- name: Validation CER
|
| 40 |
+
type: cer
|
| 41 |
+
value: 14.83
|
| 42 |
---
|
| 43 |
|
|
|
|
|
|
|
|
|
|
| 44 |
#
|
| 45 |
|
| 46 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the librispeech_asr dataset.
|
|
|
|
| 48 |
- Loss: 0.1444
|
| 49 |
- Wer: 0.1167
|
| 50 |
|
| 51 |
+
|
| 52 |
## Model description
|
| 53 |
|
| 54 |
More information needed
|
eval.py
CHANGED
|
@@ -44,7 +44,7 @@ def log_results(result: Dataset, args: Dict[str, str]):
|
|
| 44 |
p.write(f"{i}" + "\n")
|
| 45 |
p.write(batch["prediction"] + "\n")
|
| 46 |
t.write(f"{i}" + "\n")
|
| 47 |
-
t.write(batch[
|
| 48 |
|
| 49 |
result.map(write_to_file, with_indices=True)
|
| 50 |
|
|
@@ -62,11 +62,6 @@ def normalize_text(text: str) -> str:
|
|
| 62 |
|
| 63 |
for t in token_sequences_to_ignore:
|
| 64 |
text = " ".join(text.split(t))
|
| 65 |
-
|
| 66 |
-
kakasi = pykakasi.kakasi()
|
| 67 |
-
tagger = fugashi.Tagger()
|
| 68 |
-
text = "".join([item['hira'] for item in kakasi.convert(text)])
|
| 69 |
-
text = " ".join([word.surface for word in tagger(text)])
|
| 70 |
|
| 71 |
return text
|
| 72 |
|
|
@@ -97,7 +92,7 @@ def main(args):
|
|
| 97 |
)
|
| 98 |
|
| 99 |
batch["prediction"] = prediction["text"]
|
| 100 |
-
batch["target"] = normalize_text(batch[
|
| 101 |
return batch
|
| 102 |
|
| 103 |
# run inference on all examples
|
|
@@ -123,6 +118,9 @@ if __name__ == "__main__":
|
|
| 123 |
parser.add_argument(
|
| 124 |
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
| 125 |
)
|
|
|
|
|
|
|
|
|
|
| 126 |
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
| 127 |
parser.add_argument(
|
| 128 |
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
|
|
|
| 44 |
p.write(f"{i}" + "\n")
|
| 45 |
p.write(batch["prediction"] + "\n")
|
| 46 |
t.write(f"{i}" + "\n")
|
| 47 |
+
t.write(batch['target'] + "\n")
|
| 48 |
|
| 49 |
result.map(write_to_file, with_indices=True)
|
| 50 |
|
|
|
|
| 62 |
|
| 63 |
for t in token_sequences_to_ignore:
|
| 64 |
text = " ".join(text.split(t))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
return text
|
| 67 |
|
|
|
|
| 92 |
)
|
| 93 |
|
| 94 |
batch["prediction"] = prediction["text"]
|
| 95 |
+
batch["target"] = normalize_text(batch[args.sentence_column])
|
| 96 |
return batch
|
| 97 |
|
| 98 |
# run inference on all examples
|
|
|
|
| 118 |
parser.add_argument(
|
| 119 |
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
| 120 |
)
|
| 121 |
+
parser.add_argument(
|
| 122 |
+
"--sentence_column", type=str, required=True, help="Name of column that holds text label"
|
| 123 |
+
)
|
| 124 |
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
| 125 |
parser.add_argument(
|
| 126 |
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
eval.sh
CHANGED
|
@@ -1,17 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
./eval.py \
|
| 2 |
--model_id . \
|
| 3 |
-
--dataset "
|
| 4 |
-
--config
|
| 5 |
-
--split
|
|
|
|
| 6 |
--chunk_length_s 5.0 \
|
| 7 |
--stride_length_s 1.0 \
|
| 8 |
-
--log_outputs
|
| 9 |
-
|
| 10 |
-
# ./eval.py \
|
| 11 |
-
# --model_id vitouphy/xls-r-300m-ja \
|
| 12 |
-
# --dataset "speech-recognition-community-v2/dev_data" \
|
| 13 |
-
# --config ja \
|
| 14 |
-
# --split validation \
|
| 15 |
-
# --chunk_length_s 5.0 \
|
| 16 |
-
# --stride_length_s 1.0 \
|
| 17 |
-
# --log_outputs
|
|
|
|
| 1 |
+
# ./eval.py \
|
| 2 |
+
# --model_id . \
|
| 3 |
+
# --dataset "librispeech_asr" \
|
| 4 |
+
# --config clean \
|
| 5 |
+
# --split test \
|
| 6 |
+
# --sentence_column "text" \
|
| 7 |
+
# --log_outputs
|
| 8 |
+
|
| 9 |
./eval.py \
|
| 10 |
--model_id . \
|
| 11 |
+
--dataset "speech-recognition-community-v2/dev_data" \
|
| 12 |
+
--config en \
|
| 13 |
+
--split validation \
|
| 14 |
+
--sentence_column "sentence" \
|
| 15 |
--chunk_length_s 5.0 \
|
| 16 |
--stride_length_s 1.0 \
|
| 17 |
+
--log_outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
librispeech_asr_clean_test_eval_results.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
WER: 0.12285073037127206
|
| 2 |
+
CER: 0.033364117500799206
|
log_librispeech_asr_clean_test_predictions.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
log_librispeech_asr_clean_test_targets.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
log_speech-recognition-community-v2_dev_data_en_validation_predictions.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
log_speech-recognition-community-v2_dev_data_en_validation_targets.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
speech-recognition-community-v2_dev_data_en_validation_eval_results.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
WER: 0.36347459029961926
|
| 2 |
+
CER: 0.14828747083722804
|