Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,102 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- alfredplpl/Japanese-photos
|
| 5 |
+
- 3sara/colpali_italian_documents
|
| 6 |
+
pipeline_tag: image-classification
|
| 7 |
+
tags:
|
| 8 |
+
- image-classification
|
| 9 |
+
- mobile
|
| 10 |
+
- tablet
|
| 11 |
+
- quantization
|
| 12 |
+
- onnx
|
| 13 |
+
- mobilenetv3
|
| 14 |
+
- mobilenet_v3
|
| 15 |
+
- mobilenetv3_onnx
|
| 16 |
+
- document-classification
|
| 17 |
+
- photo-classification
|
| 18 |
+
- real-time
|
| 19 |
+
- lightweight
|
| 20 |
+
- efficient
|
| 21 |
+
- document
|
| 22 |
+
- photo
|
| 23 |
+
- images
|
| 24 |
+
- q8
|
| 25 |
+
- int8
|
| 26 |
+
- edge-ai
|
| 27 |
+
- ai-on-device
|
| 28 |
+
- offline
|
| 29 |
+
- privacy
|
| 30 |
+
- fast
|
| 31 |
+
- android
|
| 32 |
+
- ios
|
| 33 |
+
- gallery
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
# MobileNetV3 β ONNX, Quantized
|
| 37 |
+
|
| 38 |
+
### π₯ Lightweight mobile model for **image classification** into two categories:
|
| 39 |
+
- **`document`** (scans, receipts, papers, invoices)
|
| 40 |
+
- **`photo`** (regular phone photos: scenes, people, nature, etc.)
|
| 41 |
+
|
| 42 |
+
---
|
| 43 |
+
|
| 44 |
+
## π’ Overview
|
| 45 |
+
|
| 46 |
+
- **Designed for mobile devices** (phones and tablets, Android/iOS), perfect for real-time on-device inference!
|
| 47 |
+
- Architecture: **MobileNetV2**
|
| 48 |
+
- Format: **ONNX** (both float32 and quantized int8 versions included)
|
| 49 |
+
- Trained on balanced, real-world open-source datasets for both documents and photos.
|
| 50 |
+
- Ideal for tasks like:
|
| 51 |
+
- Document detection in gallery/camera rolls
|
| 52 |
+
- Screenshot, receipt, photo, and PDF preview classification
|
| 53 |
+
- Image sorting for privacy-first offline AI assistants
|
| 54 |
+
|
| 55 |
+
---
|
| 56 |
+
|
| 57 |
+
## π·οΈ Model Classes
|
| 58 |
+
- **0** β `document`
|
| 59 |
+
- **1** β `photo`
|
| 60 |
+
|
| 61 |
+
---
|
| 62 |
+
|
| 63 |
+
## β‘οΈ Versions
|
| 64 |
+
|
| 65 |
+
- `mobilenet_v3_small.onnx` β Standard float32 for maximum accuracy (best for ARM/CPU)
|
| 66 |
+
- `mobilenet_v3_small_quant.onnx` β Quantized int8 for even faster inference and smaller file size (best for low-power or edge devices)
|
| 67 |
+
|
| 68 |
+
---
|
| 69 |
+
|
| 70 |
+
## π Why this model?
|
| 71 |
+
|
| 72 |
+
- **Ultra-small size** (~10-15MB), real-time inference (<100ms) on most phones
|
| 73 |
+
- **Runs 100% offline** (privacy, no cloud required)
|
| 74 |
+
- **Easy integration** with any framework, including React Native (`onnxruntime-react-native`), Android (ONNX Runtime), and iOS.
|
| 75 |
+
|
| 76 |
+
---
|
| 77 |
+
|
| 78 |
+
## ποΈ Datasets
|
| 79 |
+
|
| 80 |
+
- **Photos:** [alfredplpl/Japanese-photos](https://huggingface.co/datasets/alfredplpl/Japanese-photos)
|
| 81 |
+
- **Documents:** [3sara/colpali_italian_documents](https://huggingface.co/datasets/3sara/colpali_italian_documents)
|
| 82 |
+
|
| 83 |
+
---
|
| 84 |
+
|
| 85 |
+
## π€ Author
|
| 86 |
+
@vlad-m-dev
|
| 87 |
+
Built for edge-ai/phone/tablet offline image classification: document vs photo
|
| 88 |
+
Telegram: https://t.me/dwight_schrute_engineer
|
| 89 |
+
|
| 90 |
+
---
|
| 91 |
+
|
| 92 |
+
## π οΈ Usage Example
|
| 93 |
+
|
| 94 |
+
```python
|
| 95 |
+
import onnxruntime as ort
|
| 96 |
+
import numpy as np
|
| 97 |
+
|
| 98 |
+
session = ort.InferenceSession(MODEL_PATH)
|
| 99 |
+
img = np.random.randn(1, 3, 224, 224).astype(np.float32) # Replace with your image preprocessing!
|
| 100 |
+
output = session.run(None, {"input": img})
|
| 101 |
+
pred_class = np.argmax(output[0])
|
| 102 |
+
print(pred_class) # 0 = document, 1 = photo```
|