Added all files including vyro_workflows
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Imagine/Readme.md +147 -0
- Imagine/Workflows/Imaginev5-Workflow.json +2307 -0
- Imagine/Workflows/Imaginev5-ultra-Workflow.json +1433 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/checkpoint_pickle.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/cli_args.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/clip_model.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/clip_vision.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/conds.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/controlnet.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/diffusers_convert.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/diffusers_load.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/float.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/gligen.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/hooks.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/latent_formats.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/lora.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/lora_convert.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/model_base.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/model_detection.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/model_management.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/model_patcher.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/model_sampling.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/ops.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/options.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/patcher_extension.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/sample.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/sampler_helpers.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/samplers.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/sd.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/sd1_clip.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/sdxl_clip.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/supported_models.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/supported_models_base.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/__pycache__/utils.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/checkpoint_pickle.py +13 -0
- Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/cldm.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/control_types.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/dit_embedder.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/mmdit.cpython-311.pyc +0 -0
- Imagine/imagine-v5-ultra/comfy/cldm/cldm.py +433 -0
- Imagine/imagine-v5-ultra/comfy/cldm/control_types.py +10 -0
- Imagine/imagine-v5-ultra/comfy/cldm/dit_embedder.py +120 -0
- Imagine/imagine-v5-ultra/comfy/cldm/mmdit.py +81 -0
- Imagine/imagine-v5-ultra/comfy/cli_args.py +214 -0
- Imagine/imagine-v5-ultra/comfy/clip_config_bigg.json +23 -0
- Imagine/imagine-v5-ultra/comfy/clip_model.py +244 -0
- Imagine/imagine-v5-ultra/comfy/clip_vision.py +143 -0
- Imagine/imagine-v5-ultra/comfy/clip_vision_config_g.json +18 -0
- Imagine/imagine-v5-ultra/comfy/clip_vision_config_h.json +18 -0
- Imagine/imagine-v5-ultra/comfy/clip_vision_config_vitl.json +18 -0
Imagine/Readme.md
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
library_name: diffusers
|
| 5 |
+
---
|
| 6 |
+
# Imagine V5 Model Card
|
| 7 |
+
|
| 8 |
+

|
| 9 |
+
|
| 10 |
+
## Model Details
|
| 11 |
+
|
| 12 |
+
### Model Description
|
| 13 |
+
The Imagine V5, developed by Vyro AI, represents the pinnacle of photorealism in AI art generation. Specializing in photographs and portraits, V5 is known for its exceptional ability to create images that closely mimic reality.
|
| 14 |
+
|
| 15 |
+
V5 boasts an impressive ability to recognize a wide array of prompts and handle multiple subjects effortlessly. It's important to note that V5, with its vast capabilities, also demands significant computational resources and may exhibit slower processing times. This model is best suited for users with a good understanding of prompt composition, as it offers high-quality outputs for those who can navigate its complexities.
|
| 16 |
+
|
| 17 |
+
- **Developed by:** Vyro AI
|
| 18 |
+
- **Model type:** Generative text-to-image model
|
| 19 |
+
|
| 20 |
+
## Key Features
|
| 21 |
+
- Photorealistic Portraits and Landscapes: Specializes in creating highly realistic images.
|
| 22 |
+
- Large Dataset Training: Inherits a broad understanding of prompts from Stable Diffusion XL Model.
|
| 23 |
+
- Color Characteristics: Tends to produce slightly saturated imagery.
|
| 24 |
+
- Resource Intensive: Requires significant computational power.
|
| 25 |
+
## Ideal Uses
|
| 26 |
+
- Digital Art Creation: Ideal for artists seeking to create photorealistic portraits and landscapes.
|
| 27 |
+
- Graphic Design: Useful for designers who require high-fidelity images.
|
| 28 |
+
- Creative Experimentation: A valuable tool for exploring new artistic concepts, especially in realistic styles.
|
| 29 |
+
- Professional Projects: Suitable for advanced users in fields like advertising, where photorealism is key.
|
| 30 |
+
|
| 31 |
+
For more ways to use V5 and to explore its full potential, visit [ImagineV5 Use Cases](https://www.imagine.art/blogs/10-awesome-ways-to-use-imagine-s-new-v5-model)
|
| 32 |
+
## Limitations
|
| 33 |
+
- Factual Representations: Not intended for creating accurate depictions of real-world events or people.
|
| 34 |
+
- Sensitive Content: Must not be used for generating offensive or explicit material.
|
| 35 |
+
- Identity Misrepresentation and Deepfakes: Prohibited from creating deceptive images of real individuals.
|
| 36 |
+
- Legal and Ethical Compliance: Users must adhere to copyright, privacy, and ethical standards.
|
| 37 |
+
|
| 38 |
+
## Get Started with Using V5
|
| 39 |
+
Ready to dive into the world of AI-generated art with Imagine V5?
|
| 40 |
+
Begin your journey into photorealistic art creation today. Visit [imagine.art](https://www.imagine.art/) to access a user-friendly platform designed to help you harness the full capabilities of V5. Whether you're an experienced artist or just starting out, you'll find the tools and guidance you need to transform your artistic visions into stunning digital realities.
|
| 41 |
+
|
| 42 |
+
Explore detailed tutorials, creative tips, and a supportive community that will guide you through the exciting process of AI art generation. Start crafting your unique art pieces with Imagine V5 now at [imagine.art](https://www.imagine.art/)
|
| 43 |
+
|
| 44 |
+
# Setup and Usage
|
| 45 |
+
|
| 46 |
+
We offer two workflows:
|
| 47 |
+
- One for **Imagine V5**
|
| 48 |
+
- One for **Imagine V5 Ultra**
|
| 49 |
+
|
| 50 |
+
---
|
| 51 |
+
|
| 52 |
+
### Initial Setup
|
| 53 |
+
|
| 54 |
+
Clone this repository
|
| 55 |
+
```bash
|
| 56 |
+
git clone https://huggingface.co/vyroAI/ImagineV5
|
| 57 |
+
```
|
| 58 |
+
Create a conda environment
|
| 59 |
+
```bash
|
| 60 |
+
conda create -n imagineservices python==3.11 -y
|
| 61 |
+
```
|
| 62 |
+
Install the requirements
|
| 63 |
+
```bash
|
| 64 |
+
pip install -r requirements.txt
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
---
|
| 68 |
+
|
| 69 |
+
## Imagine V5 Setup
|
| 70 |
+
### Step 1: Navigate into the imagine-v5 folder
|
| 71 |
+
```bash
|
| 72 |
+
cd imagine-v5
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
### Step 2: Install PyTorch Nightly
|
| 76 |
+
```bash
|
| 77 |
+
pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
### Step 3: Clone ComfyUI
|
| 81 |
+
```bash
|
| 82 |
+
git clone https://github.com/comfyanonymous/ComfyUI.git
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
### Step 4: Replace & Configure
|
| 86 |
+
- Replace the ComfyUI/comfy and ComfyUI/models folders with the ones provided in this repo in imagine-v5 folder.
|
| 87 |
+
- Copy the vyro_workflows folder into ComfyUI/custom_nodes/.
|
| 88 |
+
|
| 89 |
+
### Step 5: Run the Application
|
| 90 |
+
```bash
|
| 91 |
+
cd ComfyUI
|
| 92 |
+
python3.11 main.py
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
### Step 6: Load the Workflow
|
| 96 |
+
- Load the workflow in the ComfyUI interface.
|
| 97 |
+
- Use the following workflow file:
|
| 98 |
+
```text
|
| 99 |
+
https://huggingface.co/vyroAI/ImagineV5/blob/main/Imaginev5-Workflow.json
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
---
|
| 103 |
+
|
| 104 |
+
### Imagine V5 Ultra
|
| 105 |
+
|
| 106 |
+
## Imagine V5 Ultra Setup
|
| 107 |
+
### Step 1: Navigate into the imagine-v5-ultra folder
|
| 108 |
+
```bash
|
| 109 |
+
cd imagine-v5-ultra
|
| 110 |
+
```
|
| 111 |
+
### Step 2: Install PyTorch Nightly
|
| 112 |
+
```bash
|
| 113 |
+
pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
### Step 3: Clone ComfyUI
|
| 117 |
+
```bash
|
| 118 |
+
git clone https://github.com/comfyanonymous/ComfyUI.git
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
### Step 4: Replace & Configure
|
| 122 |
+
- Replace the ComfyUI/comfy and ComfyUI/models folders with the ones provided in this repo in imgaine-v5-ultra folder.
|
| 123 |
+
- Copy the vyro_workflows folder into ComfyUI/custom_nodes/.
|
| 124 |
+
|
| 125 |
+
### Step 5: Run the Application
|
| 126 |
+
```bash
|
| 127 |
+
cd ComfyUI
|
| 128 |
+
python3.11 main.py
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
### Step 6: Load the Workflow
|
| 132 |
+
- Load the workflow in the ComfyUI interface.
|
| 133 |
+
- Use the following workflow file provided in Workflows folder:
|
| 134 |
+
|
| 135 |
+
```text
|
| 136 |
+
https://huggingface.co/vyroAI/ImagineV5/blob/main/Imaginev5-ultra-Workflow.json
|
| 137 |
+
```
|
| 138 |
+
⚠️ If you are facing any issues, make sure to use ComfyUI version: "0.3.27"
|
| 139 |
+
|
| 140 |
+
---
|
| 141 |
+
## Privacy Policy
|
| 142 |
+
For detailed information on data handling and privacy, refer to the [Imagine V5 Privacy Policy](https://drive.google.com/file/d/1odKfNRoJmwD3sg8dl4zGXjC65zzf8Ejm/view) document.
|
| 143 |
+
|
| 144 |
+
## Conclusion
|
| 145 |
+
Imagine V5 stands as a significant advancement in the realm of AI art generation, especially in the domain of photorealism. It presents a unique opportunity for artists, designers, and creatives to push the boundaries of digital art. While V5 demands a certain level of proficiency and computational resources, the quality of its output makes it a worthy tool for those seeking to explore the forefront of AI-generated art.
|
| 146 |
+
|
| 147 |
+
Explore the capabilities of Imagine V5 on various platforms including web browsers, Android, and iOS devices. Join the Imagine AI Art community, participate in the Affiliate Program, or delve into technical integrations via the APIs page. Embrace the fusion of art and technology with Imagine AI Art.
|
Imagine/Workflows/Imaginev5-Workflow.json
ADDED
|
@@ -0,0 +1,2307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"id": "a353eeec-1dc4-41d6-b5d3-846916cc12bb",
|
| 3 |
+
"revision": 0,
|
| 4 |
+
"last_node_id": 394,
|
| 5 |
+
"last_link_id": 1209,
|
| 6 |
+
"nodes": [
|
| 7 |
+
{
|
| 8 |
+
"id": 71,
|
| 9 |
+
"type": "Reroute",
|
| 10 |
+
"pos": [
|
| 11 |
+
-706,
|
| 12 |
+
-1007
|
| 13 |
+
],
|
| 14 |
+
"size": [
|
| 15 |
+
75,
|
| 16 |
+
26
|
| 17 |
+
],
|
| 18 |
+
"flags": {},
|
| 19 |
+
"order": 7,
|
| 20 |
+
"mode": 0,
|
| 21 |
+
"inputs": [
|
| 22 |
+
{
|
| 23 |
+
"name": "",
|
| 24 |
+
"type": "*",
|
| 25 |
+
"link": 209
|
| 26 |
+
}
|
| 27 |
+
],
|
| 28 |
+
"outputs": [
|
| 29 |
+
{
|
| 30 |
+
"name": "",
|
| 31 |
+
"type": "VAE",
|
| 32 |
+
"slot_index": 0,
|
| 33 |
+
"links": [
|
| 34 |
+
210
|
| 35 |
+
]
|
| 36 |
+
}
|
| 37 |
+
],
|
| 38 |
+
"properties": {
|
| 39 |
+
"showOutputText": false,
|
| 40 |
+
"horizontal": false
|
| 41 |
+
}
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"id": 147,
|
| 45 |
+
"type": "Reroute",
|
| 46 |
+
"pos": [
|
| 47 |
+
3679,
|
| 48 |
+
-85
|
| 49 |
+
],
|
| 50 |
+
"size": [
|
| 51 |
+
140.8000030517578,
|
| 52 |
+
26
|
| 53 |
+
],
|
| 54 |
+
"flags": {},
|
| 55 |
+
"order": 25,
|
| 56 |
+
"mode": 0,
|
| 57 |
+
"inputs": [
|
| 58 |
+
{
|
| 59 |
+
"name": "",
|
| 60 |
+
"type": "*",
|
| 61 |
+
"link": 435
|
| 62 |
+
}
|
| 63 |
+
],
|
| 64 |
+
"outputs": [
|
| 65 |
+
{
|
| 66 |
+
"name": "CONDITIONING",
|
| 67 |
+
"type": "CONDITIONING",
|
| 68 |
+
"slot_index": 0,
|
| 69 |
+
"links": [
|
| 70 |
+
439,
|
| 71 |
+
445
|
| 72 |
+
]
|
| 73 |
+
}
|
| 74 |
+
],
|
| 75 |
+
"properties": {
|
| 76 |
+
"showOutputText": true,
|
| 77 |
+
"horizontal": false
|
| 78 |
+
}
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"id": 148,
|
| 82 |
+
"type": "Reroute",
|
| 83 |
+
"pos": [
|
| 84 |
+
3681,
|
| 85 |
+
-44
|
| 86 |
+
],
|
| 87 |
+
"size": [
|
| 88 |
+
140.8000030517578,
|
| 89 |
+
26
|
| 90 |
+
],
|
| 91 |
+
"flags": {},
|
| 92 |
+
"order": 26,
|
| 93 |
+
"mode": 0,
|
| 94 |
+
"inputs": [
|
| 95 |
+
{
|
| 96 |
+
"name": "",
|
| 97 |
+
"type": "*",
|
| 98 |
+
"link": 436
|
| 99 |
+
}
|
| 100 |
+
],
|
| 101 |
+
"outputs": [
|
| 102 |
+
{
|
| 103 |
+
"name": "CONDITIONING",
|
| 104 |
+
"type": "CONDITIONING",
|
| 105 |
+
"slot_index": 0,
|
| 106 |
+
"links": [
|
| 107 |
+
440,
|
| 108 |
+
446
|
| 109 |
+
]
|
| 110 |
+
}
|
| 111 |
+
],
|
| 112 |
+
"properties": {
|
| 113 |
+
"showOutputText": true,
|
| 114 |
+
"horizontal": false
|
| 115 |
+
}
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"id": 150,
|
| 119 |
+
"type": "Reroute",
|
| 120 |
+
"pos": [
|
| 121 |
+
3683.89599609375,
|
| 122 |
+
15.209931373596191
|
| 123 |
+
],
|
| 124 |
+
"size": [
|
| 125 |
+
75,
|
| 126 |
+
26
|
| 127 |
+
],
|
| 128 |
+
"flags": {},
|
| 129 |
+
"order": 22,
|
| 130 |
+
"mode": 0,
|
| 131 |
+
"inputs": [
|
| 132 |
+
{
|
| 133 |
+
"name": "",
|
| 134 |
+
"type": "*",
|
| 135 |
+
"widget": {
|
| 136 |
+
"name": "value"
|
| 137 |
+
},
|
| 138 |
+
"link": 442
|
| 139 |
+
}
|
| 140 |
+
],
|
| 141 |
+
"outputs": [
|
| 142 |
+
{
|
| 143 |
+
"name": "INT",
|
| 144 |
+
"type": "INT",
|
| 145 |
+
"slot_index": 0,
|
| 146 |
+
"links": [
|
| 147 |
+
443,
|
| 148 |
+
448
|
| 149 |
+
]
|
| 150 |
+
}
|
| 151 |
+
],
|
| 152 |
+
"properties": {
|
| 153 |
+
"showOutputText": true,
|
| 154 |
+
"horizontal": false
|
| 155 |
+
}
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"id": 63,
|
| 159 |
+
"type": "KSamplerAdvanced",
|
| 160 |
+
"pos": [
|
| 161 |
+
4274,
|
| 162 |
+
-795
|
| 163 |
+
],
|
| 164 |
+
"size": [
|
| 165 |
+
315,
|
| 166 |
+
518
|
| 167 |
+
],
|
| 168 |
+
"flags": {},
|
| 169 |
+
"order": 30,
|
| 170 |
+
"mode": 0,
|
| 171 |
+
"inputs": [
|
| 172 |
+
{
|
| 173 |
+
"name": "model",
|
| 174 |
+
"type": "MODEL",
|
| 175 |
+
"link": 734
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"name": "positive",
|
| 179 |
+
"type": "CONDITIONING",
|
| 180 |
+
"link": 211
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"name": "negative",
|
| 184 |
+
"type": "CONDITIONING",
|
| 185 |
+
"link": 212
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"name": "latent_image",
|
| 189 |
+
"type": "LATENT",
|
| 190 |
+
"link": 176
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"name": "noise_seed",
|
| 194 |
+
"type": "INT",
|
| 195 |
+
"widget": {
|
| 196 |
+
"name": "noise_seed"
|
| 197 |
+
},
|
| 198 |
+
"link": 430
|
| 199 |
+
}
|
| 200 |
+
],
|
| 201 |
+
"outputs": [
|
| 202 |
+
{
|
| 203 |
+
"name": "LATENT",
|
| 204 |
+
"shape": 3,
|
| 205 |
+
"type": "LATENT",
|
| 206 |
+
"slot_index": 0,
|
| 207 |
+
"links": [
|
| 208 |
+
441
|
| 209 |
+
]
|
| 210 |
+
}
|
| 211 |
+
],
|
| 212 |
+
"properties": {
|
| 213 |
+
"cnr_id": "comfy-core",
|
| 214 |
+
"ver": "0.3.27",
|
| 215 |
+
"Node name for S&R": "KSamplerAdvanced"
|
| 216 |
+
},
|
| 217 |
+
"widgets_values": [
|
| 218 |
+
"enable",
|
| 219 |
+
95094378581456,
|
| 220 |
+
"randomize",
|
| 221 |
+
40,
|
| 222 |
+
7,
|
| 223 |
+
"dpmpp_3m_sde_gpu",
|
| 224 |
+
"simple",
|
| 225 |
+
20,
|
| 226 |
+
40,
|
| 227 |
+
"disable"
|
| 228 |
+
]
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"id": 149,
|
| 232 |
+
"type": "Reroute",
|
| 233 |
+
"pos": [
|
| 234 |
+
3730,
|
| 235 |
+
-125
|
| 236 |
+
],
|
| 237 |
+
"size": [
|
| 238 |
+
82,
|
| 239 |
+
26
|
| 240 |
+
],
|
| 241 |
+
"flags": {},
|
| 242 |
+
"order": 24,
|
| 243 |
+
"mode": 0,
|
| 244 |
+
"inputs": [
|
| 245 |
+
{
|
| 246 |
+
"name": "",
|
| 247 |
+
"type": "*",
|
| 248 |
+
"link": 437
|
| 249 |
+
}
|
| 250 |
+
],
|
| 251 |
+
"outputs": [
|
| 252 |
+
{
|
| 253 |
+
"name": "MODEL",
|
| 254 |
+
"type": "MODEL",
|
| 255 |
+
"slot_index": 0,
|
| 256 |
+
"links": [
|
| 257 |
+
444,
|
| 258 |
+
734
|
| 259 |
+
]
|
| 260 |
+
}
|
| 261 |
+
],
|
| 262 |
+
"properties": {
|
| 263 |
+
"showOutputText": true,
|
| 264 |
+
"horizontal": false
|
| 265 |
+
}
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"id": 106,
|
| 269 |
+
"type": "Note",
|
| 270 |
+
"pos": [
|
| 271 |
+
-990,
|
| 272 |
+
-936
|
| 273 |
+
],
|
| 274 |
+
"size": [
|
| 275 |
+
210,
|
| 276 |
+
140.22134399414062
|
| 277 |
+
],
|
| 278 |
+
"flags": {},
|
| 279 |
+
"order": 0,
|
| 280 |
+
"mode": 0,
|
| 281 |
+
"inputs": [],
|
| 282 |
+
"outputs": [],
|
| 283 |
+
"properties": {
|
| 284 |
+
"text": ""
|
| 285 |
+
},
|
| 286 |
+
"widgets_values": [
|
| 287 |
+
"To simuulate image coming via API, right click on pipe input and click 'convert init_img to input'.\n(or face swap)\n\nDrag output from Vyro Image to String to init_img connector"
|
| 288 |
+
],
|
| 289 |
+
"color": "#432",
|
| 290 |
+
"bgcolor": "#653"
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"id": 103,
|
| 294 |
+
"type": "Vyro Image to String",
|
| 295 |
+
"pos": [
|
| 296 |
+
-932,
|
| 297 |
+
-711
|
| 298 |
+
],
|
| 299 |
+
"size": [
|
| 300 |
+
168,
|
| 301 |
+
26
|
| 302 |
+
],
|
| 303 |
+
"flags": {},
|
| 304 |
+
"order": 8,
|
| 305 |
+
"mode": 0,
|
| 306 |
+
"inputs": [
|
| 307 |
+
{
|
| 308 |
+
"name": "image",
|
| 309 |
+
"type": "IMAGE",
|
| 310 |
+
"link": 326
|
| 311 |
+
}
|
| 312 |
+
],
|
| 313 |
+
"outputs": [
|
| 314 |
+
{
|
| 315 |
+
"name": "string",
|
| 316 |
+
"shape": 3,
|
| 317 |
+
"type": "STRING",
|
| 318 |
+
"slot_index": 0,
|
| 319 |
+
"links": [
|
| 320 |
+
950
|
| 321 |
+
]
|
| 322 |
+
}
|
| 323 |
+
],
|
| 324 |
+
"properties": {
|
| 325 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
| 326 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
| 327 |
+
"Node name for S&R": "Vyro Image to String"
|
| 328 |
+
},
|
| 329 |
+
"widgets_values": []
|
| 330 |
+
},
|
| 331 |
+
{
|
| 332 |
+
"id": 68,
|
| 333 |
+
"type": "Note",
|
| 334 |
+
"pos": [
|
| 335 |
+
111,
|
| 336 |
+
-1016
|
| 337 |
+
],
|
| 338 |
+
"size": [
|
| 339 |
+
228.4390106201172,
|
| 340 |
+
416.8971862792969
|
| 341 |
+
],
|
| 342 |
+
"flags": {},
|
| 343 |
+
"order": 1,
|
| 344 |
+
"mode": 0,
|
| 345 |
+
"inputs": [],
|
| 346 |
+
"outputs": [],
|
| 347 |
+
"properties": {
|
| 348 |
+
"text": ""
|
| 349 |
+
},
|
| 350 |
+
"widgets_values": [
|
| 351 |
+
"640 x 1536\n768 x 1344\n832 x 1216\n896 x 1152\n1024 x 1024\n1152 x 896\n1216 x 832\n1344 x 768\n1536 x 640\n\n\"3d render\",\n \"abstract art\",\n \"anime\",\n \"architecture\",\n \"cinematic\",\n \"conceptual art\",\n \"dark fantasy\",\n \"fantasy realism\",\n \"fashion\",\n \"graffiti\",\n \"illustration\",\n \"interior design\",\n \"logo\",\n \"painting\",\n \"photography:1.2\",\n \"portrait photography\",\n \"poster\",\n \"product:0.75\",\n \"sticker\",\n \"surrealism\",\n \"typography\",\n \"ukiyo-e\",\n \"vector design\",\n \"vibrant digital artwork:0.1\",\n \"watercolor\",\n \"wildlife photography\""
|
| 352 |
+
],
|
| 353 |
+
"color": "#432",
|
| 354 |
+
"bgcolor": "#653"
|
| 355 |
+
},
|
| 356 |
+
{
|
| 357 |
+
"id": 2,
|
| 358 |
+
"type": "VAELoader",
|
| 359 |
+
"pos": [
|
| 360 |
+
-1066,
|
| 361 |
+
-1026
|
| 362 |
+
],
|
| 363 |
+
"size": [
|
| 364 |
+
315,
|
| 365 |
+
58
|
| 366 |
+
],
|
| 367 |
+
"flags": {},
|
| 368 |
+
"order": 2,
|
| 369 |
+
"mode": 0,
|
| 370 |
+
"inputs": [],
|
| 371 |
+
"outputs": [
|
| 372 |
+
{
|
| 373 |
+
"name": "VAE",
|
| 374 |
+
"shape": 3,
|
| 375 |
+
"type": "VAE",
|
| 376 |
+
"slot_index": 0,
|
| 377 |
+
"links": [
|
| 378 |
+
209
|
| 379 |
+
]
|
| 380 |
+
}
|
| 381 |
+
],
|
| 382 |
+
"properties": {
|
| 383 |
+
"cnr_id": "comfy-core",
|
| 384 |
+
"ver": "0.3.27",
|
| 385 |
+
"Node name for S&R": "VAELoader"
|
| 386 |
+
},
|
| 387 |
+
"widgets_values": [
|
| 388 |
+
"sdxl_vae.safetensors"
|
| 389 |
+
]
|
| 390 |
+
},
|
| 391 |
+
{
|
| 392 |
+
"id": 27,
|
| 393 |
+
"type": "Vyro Prompt Analyzer",
|
| 394 |
+
"pos": [
|
| 395 |
+
761,
|
| 396 |
+
-525
|
| 397 |
+
],
|
| 398 |
+
"size": [
|
| 399 |
+
315,
|
| 400 |
+
142
|
| 401 |
+
],
|
| 402 |
+
"flags": {},
|
| 403 |
+
"order": 12,
|
| 404 |
+
"mode": 0,
|
| 405 |
+
"inputs": [
|
| 406 |
+
{
|
| 407 |
+
"name": "vyro_params",
|
| 408 |
+
"type": "VYRO_PARAMS",
|
| 409 |
+
"link": 48
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"name": "styles",
|
| 413 |
+
"type": "LIST",
|
| 414 |
+
"link": 75
|
| 415 |
+
},
|
| 416 |
+
{
|
| 417 |
+
"name": "prompt_tree",
|
| 418 |
+
"type": "DICT",
|
| 419 |
+
"link": 50
|
| 420 |
+
},
|
| 421 |
+
{
|
| 422 |
+
"name": "classifier",
|
| 423 |
+
"type": "TRANSFORMER",
|
| 424 |
+
"link": 51
|
| 425 |
+
}
|
| 426 |
+
],
|
| 427 |
+
"outputs": [
|
| 428 |
+
{
|
| 429 |
+
"name": "vyro_params",
|
| 430 |
+
"shape": 3,
|
| 431 |
+
"type": "VYRO_PARAMS",
|
| 432 |
+
"slot_index": 0,
|
| 433 |
+
"links": [
|
| 434 |
+
147,
|
| 435 |
+
1205
|
| 436 |
+
]
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"name": "style",
|
| 440 |
+
"shape": 3,
|
| 441 |
+
"type": "STYLE",
|
| 442 |
+
"slot_index": 1,
|
| 443 |
+
"links": [
|
| 444 |
+
1147
|
| 445 |
+
]
|
| 446 |
+
}
|
| 447 |
+
],
|
| 448 |
+
"properties": {
|
| 449 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
| 450 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
| 451 |
+
"Node name for S&R": "Vyro Prompt Analyzer"
|
| 452 |
+
},
|
| 453 |
+
"widgets_values": [
|
| 454 |
+
"enabled",
|
| 455 |
+
"disabled"
|
| 456 |
+
]
|
| 457 |
+
},
|
| 458 |
+
{
|
| 459 |
+
"id": 385,
|
| 460 |
+
"type": "Reroute",
|
| 461 |
+
"pos": [
|
| 462 |
+
643,
|
| 463 |
+
-895
|
| 464 |
+
],
|
| 465 |
+
"size": [
|
| 466 |
+
82,
|
| 467 |
+
26
|
| 468 |
+
],
|
| 469 |
+
"flags": {},
|
| 470 |
+
"order": 14,
|
| 471 |
+
"mode": 0,
|
| 472 |
+
"inputs": [
|
| 473 |
+
{
|
| 474 |
+
"name": "",
|
| 475 |
+
"type": "*",
|
| 476 |
+
"link": 1147
|
| 477 |
+
}
|
| 478 |
+
],
|
| 479 |
+
"outputs": [
|
| 480 |
+
{
|
| 481 |
+
"name": "STYLE",
|
| 482 |
+
"type": "STYLE",
|
| 483 |
+
"slot_index": 0,
|
| 484 |
+
"links": [
|
| 485 |
+
1152,
|
| 486 |
+
1153
|
| 487 |
+
]
|
| 488 |
+
}
|
| 489 |
+
],
|
| 490 |
+
"properties": {
|
| 491 |
+
"showOutputText": true,
|
| 492 |
+
"horizontal": false
|
| 493 |
+
}
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"id": 386,
|
| 497 |
+
"type": "Reroute",
|
| 498 |
+
"pos": [
|
| 499 |
+
620,
|
| 500 |
+
-1042
|
| 501 |
+
],
|
| 502 |
+
"size": [
|
| 503 |
+
75,
|
| 504 |
+
26
|
| 505 |
+
],
|
| 506 |
+
"flags": {},
|
| 507 |
+
"order": 9,
|
| 508 |
+
"mode": 0,
|
| 509 |
+
"inputs": [
|
| 510 |
+
{
|
| 511 |
+
"name": "",
|
| 512 |
+
"type": "*",
|
| 513 |
+
"link": 1149
|
| 514 |
+
}
|
| 515 |
+
],
|
| 516 |
+
"outputs": [
|
| 517 |
+
{
|
| 518 |
+
"name": "DICT",
|
| 519 |
+
"type": "DICT",
|
| 520 |
+
"slot_index": 0,
|
| 521 |
+
"links": [
|
| 522 |
+
1150,
|
| 523 |
+
1155
|
| 524 |
+
]
|
| 525 |
+
}
|
| 526 |
+
],
|
| 527 |
+
"properties": {
|
| 528 |
+
"showOutputText": true,
|
| 529 |
+
"horizontal": false
|
| 530 |
+
}
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"id": 387,
|
| 534 |
+
"type": "Reroute",
|
| 535 |
+
"pos": [
|
| 536 |
+
639,
|
| 537 |
+
-968
|
| 538 |
+
],
|
| 539 |
+
"size": [
|
| 540 |
+
75,
|
| 541 |
+
26
|
| 542 |
+
],
|
| 543 |
+
"flags": {},
|
| 544 |
+
"order": 10,
|
| 545 |
+
"mode": 0,
|
| 546 |
+
"inputs": [
|
| 547 |
+
{
|
| 548 |
+
"name": "",
|
| 549 |
+
"type": "*",
|
| 550 |
+
"link": 1148
|
| 551 |
+
}
|
| 552 |
+
],
|
| 553 |
+
"outputs": [
|
| 554 |
+
{
|
| 555 |
+
"name": "DICT",
|
| 556 |
+
"type": "DICT",
|
| 557 |
+
"slot_index": 0,
|
| 558 |
+
"links": [
|
| 559 |
+
1151,
|
| 560 |
+
1156
|
| 561 |
+
]
|
| 562 |
+
}
|
| 563 |
+
],
|
| 564 |
+
"properties": {
|
| 565 |
+
"showOutputText": true,
|
| 566 |
+
"horizontal": false
|
| 567 |
+
}
|
| 568 |
+
},
|
| 569 |
+
{
|
| 570 |
+
"id": 384,
|
| 571 |
+
"type": "Vyro Oneflow Refiner Model Loader",
|
| 572 |
+
"pos": [
|
| 573 |
+
871,
|
| 574 |
+
-826
|
| 575 |
+
],
|
| 576 |
+
"size": [
|
| 577 |
+
330,
|
| 578 |
+
66
|
| 579 |
+
],
|
| 580 |
+
"flags": {},
|
| 581 |
+
"order": 17,
|
| 582 |
+
"mode": 0,
|
| 583 |
+
"inputs": [
|
| 584 |
+
{
|
| 585 |
+
"name": "style",
|
| 586 |
+
"type": "STYLE",
|
| 587 |
+
"link": 1153
|
| 588 |
+
},
|
| 589 |
+
{
|
| 590 |
+
"name": "prompt_tree",
|
| 591 |
+
"type": "DICT",
|
| 592 |
+
"link": 1155
|
| 593 |
+
},
|
| 594 |
+
{
|
| 595 |
+
"name": "model_config",
|
| 596 |
+
"type": "DICT",
|
| 597 |
+
"link": 1156
|
| 598 |
+
}
|
| 599 |
+
],
|
| 600 |
+
"outputs": [
|
| 601 |
+
{
|
| 602 |
+
"name": "refiner_model",
|
| 603 |
+
"shape": 3,
|
| 604 |
+
"type": "MODEL",
|
| 605 |
+
"slot_index": 0,
|
| 606 |
+
"links": [
|
| 607 |
+
1165
|
| 608 |
+
]
|
| 609 |
+
},
|
| 610 |
+
{
|
| 611 |
+
"name": "refiner_clip",
|
| 612 |
+
"shape": 3,
|
| 613 |
+
"type": "CLIP",
|
| 614 |
+
"slot_index": 1,
|
| 615 |
+
"links": [
|
| 616 |
+
1158
|
| 617 |
+
]
|
| 618 |
+
}
|
| 619 |
+
],
|
| 620 |
+
"properties": {
|
| 621 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
| 622 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
| 623 |
+
"Node name for S&R": "Vyro Oneflow Refiner Model Loader"
|
| 624 |
+
},
|
| 625 |
+
"widgets_values": []
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"id": 57,
|
| 629 |
+
"type": "VAEDecode",
|
| 630 |
+
"pos": [
|
| 631 |
+
5441,
|
| 632 |
+
-641
|
| 633 |
+
],
|
| 634 |
+
"size": [
|
| 635 |
+
210,
|
| 636 |
+
46
|
| 637 |
+
],
|
| 638 |
+
"flags": {},
|
| 639 |
+
"order": 33,
|
| 640 |
+
"mode": 0,
|
| 641 |
+
"inputs": [
|
| 642 |
+
{
|
| 643 |
+
"name": "samples",
|
| 644 |
+
"type": "LATENT",
|
| 645 |
+
"link": 728
|
| 646 |
+
},
|
| 647 |
+
{
|
| 648 |
+
"name": "vae",
|
| 649 |
+
"type": "VAE",
|
| 650 |
+
"link": 323
|
| 651 |
+
}
|
| 652 |
+
],
|
| 653 |
+
"outputs": [
|
| 654 |
+
{
|
| 655 |
+
"name": "IMAGE",
|
| 656 |
+
"shape": 3,
|
| 657 |
+
"type": "IMAGE",
|
| 658 |
+
"slot_index": 0,
|
| 659 |
+
"links": [
|
| 660 |
+
1142
|
| 661 |
+
]
|
| 662 |
+
}
|
| 663 |
+
],
|
| 664 |
+
"properties": {
|
| 665 |
+
"cnr_id": "comfy-core",
|
| 666 |
+
"ver": "0.3.27",
|
| 667 |
+
"Node name for S&R": "VAEDecode"
|
| 668 |
+
},
|
| 669 |
+
"widgets_values": []
|
| 670 |
+
},
|
| 671 |
+
{
|
| 672 |
+
"id": 84,
|
| 673 |
+
"type": "PreviewImage",
|
| 674 |
+
"pos": [
|
| 675 |
+
5746,
|
| 676 |
+
-719
|
| 677 |
+
],
|
| 678 |
+
"size": [
|
| 679 |
+
511.7968444824219,
|
| 680 |
+
426.3374938964844
|
| 681 |
+
],
|
| 682 |
+
"flags": {},
|
| 683 |
+
"order": 34,
|
| 684 |
+
"mode": 0,
|
| 685 |
+
"inputs": [
|
| 686 |
+
{
|
| 687 |
+
"name": "images",
|
| 688 |
+
"type": "IMAGE",
|
| 689 |
+
"link": 1142
|
| 690 |
+
}
|
| 691 |
+
],
|
| 692 |
+
"outputs": [],
|
| 693 |
+
"properties": {
|
| 694 |
+
"cnr_id": "comfy-core",
|
| 695 |
+
"ver": "0.3.27",
|
| 696 |
+
"Node name for S&R": "PreviewImage"
|
| 697 |
+
},
|
| 698 |
+
"widgets_values": [
|
| 699 |
+
""
|
| 700 |
+
]
|
| 701 |
+
},
|
| 702 |
+
{
|
| 703 |
+
"id": 145,
|
| 704 |
+
"type": "KSamplerAdvanced",
|
| 705 |
+
"pos": [
|
| 706 |
+
4694,
|
| 707 |
+
-293
|
| 708 |
+
],
|
| 709 |
+
"size": [
|
| 710 |
+
315,
|
| 711 |
+
518
|
| 712 |
+
],
|
| 713 |
+
"flags": {},
|
| 714 |
+
"order": 31,
|
| 715 |
+
"mode": 0,
|
| 716 |
+
"inputs": [
|
| 717 |
+
{
|
| 718 |
+
"name": "model",
|
| 719 |
+
"type": "MODEL",
|
| 720 |
+
"link": 732
|
| 721 |
+
},
|
| 722 |
+
{
|
| 723 |
+
"name": "positive",
|
| 724 |
+
"type": "CONDITIONING",
|
| 725 |
+
"link": 439
|
| 726 |
+
},
|
| 727 |
+
{
|
| 728 |
+
"name": "negative",
|
| 729 |
+
"type": "CONDITIONING",
|
| 730 |
+
"link": 440
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"name": "latent_image",
|
| 734 |
+
"type": "LATENT",
|
| 735 |
+
"link": 441
|
| 736 |
+
},
|
| 737 |
+
{
|
| 738 |
+
"name": "noise_seed",
|
| 739 |
+
"type": "INT",
|
| 740 |
+
"widget": {
|
| 741 |
+
"name": "noise_seed"
|
| 742 |
+
},
|
| 743 |
+
"link": 443
|
| 744 |
+
}
|
| 745 |
+
],
|
| 746 |
+
"outputs": [
|
| 747 |
+
{
|
| 748 |
+
"name": "LATENT",
|
| 749 |
+
"shape": 3,
|
| 750 |
+
"type": "LATENT",
|
| 751 |
+
"slot_index": 0,
|
| 752 |
+
"links": [
|
| 753 |
+
447
|
| 754 |
+
]
|
| 755 |
+
}
|
| 756 |
+
],
|
| 757 |
+
"title": "Step1",
|
| 758 |
+
"properties": {
|
| 759 |
+
"cnr_id": "comfy-core",
|
| 760 |
+
"ver": "0.3.27",
|
| 761 |
+
"Node name for S&R": "KSamplerAdvanced"
|
| 762 |
+
},
|
| 763 |
+
"widgets_values": [
|
| 764 |
+
"enable",
|
| 765 |
+
1114398158696762,
|
| 766 |
+
"randomize",
|
| 767 |
+
30,
|
| 768 |
+
7,
|
| 769 |
+
"ddim",
|
| 770 |
+
"karras",
|
| 771 |
+
25,
|
| 772 |
+
27,
|
| 773 |
+
"enable"
|
| 774 |
+
]
|
| 775 |
+
},
|
| 776 |
+
{
|
| 777 |
+
"id": 151,
|
| 778 |
+
"type": "KSamplerAdvanced",
|
| 779 |
+
"pos": [
|
| 780 |
+
5085,
|
| 781 |
+
-268
|
| 782 |
+
],
|
| 783 |
+
"size": [
|
| 784 |
+
315,
|
| 785 |
+
518
|
| 786 |
+
],
|
| 787 |
+
"flags": {},
|
| 788 |
+
"order": 32,
|
| 789 |
+
"mode": 0,
|
| 790 |
+
"inputs": [
|
| 791 |
+
{
|
| 792 |
+
"name": "model",
|
| 793 |
+
"type": "MODEL",
|
| 794 |
+
"link": 444
|
| 795 |
+
},
|
| 796 |
+
{
|
| 797 |
+
"name": "positive",
|
| 798 |
+
"type": "CONDITIONING",
|
| 799 |
+
"link": 445
|
| 800 |
+
},
|
| 801 |
+
{
|
| 802 |
+
"name": "negative",
|
| 803 |
+
"type": "CONDITIONING",
|
| 804 |
+
"link": 446
|
| 805 |
+
},
|
| 806 |
+
{
|
| 807 |
+
"name": "latent_image",
|
| 808 |
+
"type": "LATENT",
|
| 809 |
+
"link": 447
|
| 810 |
+
},
|
| 811 |
+
{
|
| 812 |
+
"name": "noise_seed",
|
| 813 |
+
"type": "INT",
|
| 814 |
+
"widget": {
|
| 815 |
+
"name": "noise_seed"
|
| 816 |
+
},
|
| 817 |
+
"link": 448
|
| 818 |
+
}
|
| 819 |
+
],
|
| 820 |
+
"outputs": [
|
| 821 |
+
{
|
| 822 |
+
"name": "LATENT",
|
| 823 |
+
"shape": 3,
|
| 824 |
+
"type": "LATENT",
|
| 825 |
+
"slot_index": 0,
|
| 826 |
+
"links": [
|
| 827 |
+
728
|
| 828 |
+
]
|
| 829 |
+
}
|
| 830 |
+
],
|
| 831 |
+
"title": "Step2",
|
| 832 |
+
"properties": {
|
| 833 |
+
"cnr_id": "comfy-core",
|
| 834 |
+
"ver": "0.3.27",
|
| 835 |
+
"Node name for S&R": "KSamplerAdvanced"
|
| 836 |
+
},
|
| 837 |
+
"widgets_values": [
|
| 838 |
+
"disable",
|
| 839 |
+
1089159239373161,
|
| 840 |
+
"randomize",
|
| 841 |
+
30,
|
| 842 |
+
7,
|
| 843 |
+
"ddim",
|
| 844 |
+
"karras",
|
| 845 |
+
27,
|
| 846 |
+
30,
|
| 847 |
+
"enable"
|
| 848 |
+
]
|
| 849 |
+
},
|
| 850 |
+
{
|
| 851 |
+
"id": 254,
|
| 852 |
+
"type": "Reroute",
|
| 853 |
+
"pos": [
|
| 854 |
+
1837,
|
| 855 |
+
-1031
|
| 856 |
+
],
|
| 857 |
+
"size": [
|
| 858 |
+
82,
|
| 859 |
+
26
|
| 860 |
+
],
|
| 861 |
+
"flags": {},
|
| 862 |
+
"order": 19,
|
| 863 |
+
"mode": 0,
|
| 864 |
+
"inputs": [
|
| 865 |
+
{
|
| 866 |
+
"name": "",
|
| 867 |
+
"type": "*",
|
| 868 |
+
"link": 1164
|
| 869 |
+
}
|
| 870 |
+
],
|
| 871 |
+
"outputs": [
|
| 872 |
+
{
|
| 873 |
+
"name": "MODEL",
|
| 874 |
+
"type": "MODEL",
|
| 875 |
+
"slot_index": 0,
|
| 876 |
+
"links": [
|
| 877 |
+
1195
|
| 878 |
+
]
|
| 879 |
+
}
|
| 880 |
+
],
|
| 881 |
+
"properties": {
|
| 882 |
+
"showOutputText": true,
|
| 883 |
+
"horizontal": false
|
| 884 |
+
}
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"id": 28,
|
| 888 |
+
"type": "Vyro Prompt Encoder",
|
| 889 |
+
"pos": [
|
| 890 |
+
1908,
|
| 891 |
+
-959
|
| 892 |
+
],
|
| 893 |
+
"size": [
|
| 894 |
+
367.79998779296875,
|
| 895 |
+
118
|
| 896 |
+
],
|
| 897 |
+
"flags": {},
|
| 898 |
+
"order": 21,
|
| 899 |
+
"mode": 0,
|
| 900 |
+
"inputs": [
|
| 901 |
+
{
|
| 902 |
+
"name": "base_clip",
|
| 903 |
+
"type": "CLIP",
|
| 904 |
+
"link": 1144
|
| 905 |
+
},
|
| 906 |
+
{
|
| 907 |
+
"name": "refiner_clip",
|
| 908 |
+
"type": "CLIP",
|
| 909 |
+
"link": 1158
|
| 910 |
+
},
|
| 911 |
+
{
|
| 912 |
+
"name": "params",
|
| 913 |
+
"type": "VYRO_PARAMS",
|
| 914 |
+
"link": 1205
|
| 915 |
+
}
|
| 916 |
+
],
|
| 917 |
+
"outputs": [
|
| 918 |
+
{
|
| 919 |
+
"name": "base_positive",
|
| 920 |
+
"shape": 3,
|
| 921 |
+
"type": "CONDITIONING",
|
| 922 |
+
"slot_index": 0,
|
| 923 |
+
"links": [
|
| 924 |
+
1166
|
| 925 |
+
]
|
| 926 |
+
},
|
| 927 |
+
{
|
| 928 |
+
"name": "base_negative",
|
| 929 |
+
"shape": 3,
|
| 930 |
+
"type": "CONDITIONING",
|
| 931 |
+
"slot_index": 1,
|
| 932 |
+
"links": [
|
| 933 |
+
1167
|
| 934 |
+
]
|
| 935 |
+
},
|
| 936 |
+
{
|
| 937 |
+
"name": "refiner_positive",
|
| 938 |
+
"shape": 3,
|
| 939 |
+
"type": "CONDITIONING",
|
| 940 |
+
"slot_index": 2,
|
| 941 |
+
"links": [
|
| 942 |
+
211,
|
| 943 |
+
435
|
| 944 |
+
]
|
| 945 |
+
},
|
| 946 |
+
{
|
| 947 |
+
"name": "refiner_negative",
|
| 948 |
+
"shape": 3,
|
| 949 |
+
"type": "CONDITIONING",
|
| 950 |
+
"slot_index": 3,
|
| 951 |
+
"links": [
|
| 952 |
+
212,
|
| 953 |
+
436
|
| 954 |
+
]
|
| 955 |
+
}
|
| 956 |
+
],
|
| 957 |
+
"properties": {
|
| 958 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
| 959 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
| 960 |
+
"Node name for S&R": "Vyro Prompt Encoder"
|
| 961 |
+
},
|
| 962 |
+
"widgets_values": [
|
| 963 |
+
0
|
| 964 |
+
]
|
| 965 |
+
},
|
| 966 |
+
{
|
| 967 |
+
"id": 55,
|
| 968 |
+
"type": "Reroute",
|
| 969 |
+
"pos": [
|
| 970 |
+
2227,
|
| 971 |
+
-688
|
| 972 |
+
],
|
| 973 |
+
"size": [
|
| 974 |
+
75,
|
| 975 |
+
26
|
| 976 |
+
],
|
| 977 |
+
"flags": {},
|
| 978 |
+
"order": 13,
|
| 979 |
+
"mode": 0,
|
| 980 |
+
"inputs": [
|
| 981 |
+
{
|
| 982 |
+
"name": "",
|
| 983 |
+
"type": "*",
|
| 984 |
+
"link": 147
|
| 985 |
+
}
|
| 986 |
+
],
|
| 987 |
+
"outputs": [
|
| 988 |
+
{
|
| 989 |
+
"name": "",
|
| 990 |
+
"type": "VYRO_PARAMS",
|
| 991 |
+
"slot_index": 0,
|
| 992 |
+
"links": [
|
| 993 |
+
624
|
| 994 |
+
]
|
| 995 |
+
}
|
| 996 |
+
],
|
| 997 |
+
"properties": {
|
| 998 |
+
"showOutputText": false,
|
| 999 |
+
"horizontal": false
|
| 1000 |
+
}
|
| 1001 |
+
},
|
| 1002 |
+
{
|
| 1003 |
+
"id": 135,
|
| 1004 |
+
"type": "Vyro Mode Filter",
|
| 1005 |
+
"pos": [
|
| 1006 |
+
2738,
|
| 1007 |
+
-899
|
| 1008 |
+
],
|
| 1009 |
+
"size": [
|
| 1010 |
+
315,
|
| 1011 |
+
250
|
| 1012 |
+
],
|
| 1013 |
+
"flags": {},
|
| 1014 |
+
"order": 15,
|
| 1015 |
+
"mode": 0,
|
| 1016 |
+
"inputs": [
|
| 1017 |
+
{
|
| 1018 |
+
"name": "vyro_params",
|
| 1019 |
+
"type": "VYRO_PARAMS",
|
| 1020 |
+
"link": 624
|
| 1021 |
+
}
|
| 1022 |
+
],
|
| 1023 |
+
"outputs": [
|
| 1024 |
+
{
|
| 1025 |
+
"name": "vyro_params",
|
| 1026 |
+
"shape": 3,
|
| 1027 |
+
"type": "VYRO_PARAMS",
|
| 1028 |
+
"slot_index": 0,
|
| 1029 |
+
"links": [
|
| 1030 |
+
429
|
| 1031 |
+
]
|
| 1032 |
+
}
|
| 1033 |
+
],
|
| 1034 |
+
"properties": {
|
| 1035 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
| 1036 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
| 1037 |
+
"Node name for S&R": "Vyro Mode Filter"
|
| 1038 |
+
},
|
| 1039 |
+
"widgets_values": [
|
| 1040 |
+
"allow",
|
| 1041 |
+
"allow",
|
| 1042 |
+
"allow"
|
| 1043 |
+
]
|
| 1044 |
+
},
|
| 1045 |
+
{
|
| 1046 |
+
"id": 101,
|
| 1047 |
+
"type": "Reroute",
|
| 1048 |
+
"pos": [
|
| 1049 |
+
2229,
|
| 1050 |
+
-766
|
| 1051 |
+
],
|
| 1052 |
+
"size": [
|
| 1053 |
+
75,
|
| 1054 |
+
26
|
| 1055 |
+
],
|
| 1056 |
+
"flags": {},
|
| 1057 |
+
"order": 20,
|
| 1058 |
+
"mode": 0,
|
| 1059 |
+
"inputs": [
|
| 1060 |
+
{
|
| 1061 |
+
"name": "",
|
| 1062 |
+
"type": "*",
|
| 1063 |
+
"link": 1165
|
| 1064 |
+
}
|
| 1065 |
+
],
|
| 1066 |
+
"outputs": [
|
| 1067 |
+
{
|
| 1068 |
+
"name": "",
|
| 1069 |
+
"type": "MODEL",
|
| 1070 |
+
"slot_index": 0,
|
| 1071 |
+
"links": [
|
| 1072 |
+
437,
|
| 1073 |
+
732
|
| 1074 |
+
]
|
| 1075 |
+
}
|
| 1076 |
+
],
|
| 1077 |
+
"properties": {
|
| 1078 |
+
"showOutputText": false,
|
| 1079 |
+
"horizontal": false
|
| 1080 |
+
}
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"id": 390,
|
| 1084 |
+
"type": "KSamplerAdvanced",
|
| 1085 |
+
"pos": [
|
| 1086 |
+
3448,
|
| 1087 |
+
-1001
|
| 1088 |
+
],
|
| 1089 |
+
"size": [
|
| 1090 |
+
315,
|
| 1091 |
+
334
|
| 1092 |
+
],
|
| 1093 |
+
"flags": {},
|
| 1094 |
+
"order": 27,
|
| 1095 |
+
"mode": 0,
|
| 1096 |
+
"inputs": [
|
| 1097 |
+
{
|
| 1098 |
+
"name": "model",
|
| 1099 |
+
"type": "MODEL",
|
| 1100 |
+
"link": 1196
|
| 1101 |
+
},
|
| 1102 |
+
{
|
| 1103 |
+
"name": "positive",
|
| 1104 |
+
"type": "CONDITIONING",
|
| 1105 |
+
"link": 1166
|
| 1106 |
+
},
|
| 1107 |
+
{
|
| 1108 |
+
"name": "negative",
|
| 1109 |
+
"type": "CONDITIONING",
|
| 1110 |
+
"link": 1167
|
| 1111 |
+
},
|
| 1112 |
+
{
|
| 1113 |
+
"name": "latent_image",
|
| 1114 |
+
"type": "LATENT",
|
| 1115 |
+
"link": 1168
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"name": "noise_seed",
|
| 1119 |
+
"type": "INT",
|
| 1120 |
+
"widget": {
|
| 1121 |
+
"name": "noise_seed"
|
| 1122 |
+
},
|
| 1123 |
+
"link": 1169
|
| 1124 |
+
}
|
| 1125 |
+
],
|
| 1126 |
+
"outputs": [
|
| 1127 |
+
{
|
| 1128 |
+
"name": "LATENT",
|
| 1129 |
+
"shape": 3,
|
| 1130 |
+
"type": "LATENT",
|
| 1131 |
+
"slot_index": 0,
|
| 1132 |
+
"links": [
|
| 1133 |
+
1204
|
| 1134 |
+
]
|
| 1135 |
+
}
|
| 1136 |
+
],
|
| 1137 |
+
"properties": {
|
| 1138 |
+
"cnr_id": "comfy-core",
|
| 1139 |
+
"ver": "0.3.27",
|
| 1140 |
+
"Node name for S&R": "KSamplerAdvanced"
|
| 1141 |
+
},
|
| 1142 |
+
"widgets_values": [
|
| 1143 |
+
"enable",
|
| 1144 |
+
144870654803597,
|
| 1145 |
+
"randomize",
|
| 1146 |
+
20,
|
| 1147 |
+
8,
|
| 1148 |
+
"euler",
|
| 1149 |
+
"normal",
|
| 1150 |
+
0,
|
| 1151 |
+
10000,
|
| 1152 |
+
"disable"
|
| 1153 |
+
]
|
| 1154 |
+
},
|
| 1155 |
+
{
|
| 1156 |
+
"id": 100,
|
| 1157 |
+
"type": "VAELoader",
|
| 1158 |
+
"pos": [
|
| 1159 |
+
1540,
|
| 1160 |
+
143
|
| 1161 |
+
],
|
| 1162 |
+
"size": [
|
| 1163 |
+
412.548095703125,
|
| 1164 |
+
58
|
| 1165 |
+
],
|
| 1166 |
+
"flags": {},
|
| 1167 |
+
"order": 3,
|
| 1168 |
+
"mode": 0,
|
| 1169 |
+
"inputs": [],
|
| 1170 |
+
"outputs": [
|
| 1171 |
+
{
|
| 1172 |
+
"name": "VAE",
|
| 1173 |
+
"shape": 3,
|
| 1174 |
+
"type": "VAE",
|
| 1175 |
+
"slot_index": 0,
|
| 1176 |
+
"links": [
|
| 1177 |
+
323
|
| 1178 |
+
]
|
| 1179 |
+
}
|
| 1180 |
+
],
|
| 1181 |
+
"properties": {
|
| 1182 |
+
"cnr_id": "comfy-core",
|
| 1183 |
+
"ver": "0.3.27",
|
| 1184 |
+
"Node name for S&R": "VAELoader"
|
| 1185 |
+
},
|
| 1186 |
+
"widgets_values": [
|
| 1187 |
+
"vae-ft-mse-840000-ema-pruned.safetensors"
|
| 1188 |
+
]
|
| 1189 |
+
},
|
| 1190 |
+
{
|
| 1191 |
+
"id": 48,
|
| 1192 |
+
"type": "VyroLatentInterposer",
|
| 1193 |
+
"pos": [
|
| 1194 |
+
3861,
|
| 1195 |
+
-1029
|
| 1196 |
+
],
|
| 1197 |
+
"size": [
|
| 1198 |
+
315,
|
| 1199 |
+
82
|
| 1200 |
+
],
|
| 1201 |
+
"flags": {},
|
| 1202 |
+
"order": 28,
|
| 1203 |
+
"mode": 0,
|
| 1204 |
+
"inputs": [
|
| 1205 |
+
{
|
| 1206 |
+
"name": "samples",
|
| 1207 |
+
"type": "LATENT",
|
| 1208 |
+
"link": 1204
|
| 1209 |
+
}
|
| 1210 |
+
],
|
| 1211 |
+
"outputs": [
|
| 1212 |
+
{
|
| 1213 |
+
"name": "LATENT",
|
| 1214 |
+
"shape": 3,
|
| 1215 |
+
"type": "LATENT",
|
| 1216 |
+
"slot_index": 0,
|
| 1217 |
+
"links": [
|
| 1218 |
+
140
|
| 1219 |
+
]
|
| 1220 |
+
}
|
| 1221 |
+
],
|
| 1222 |
+
"properties": {
|
| 1223 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
| 1224 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
| 1225 |
+
"Node name for S&R": "VyroLatentInterposer"
|
| 1226 |
+
},
|
| 1227 |
+
"widgets_values": [
|
| 1228 |
+
"xl",
|
| 1229 |
+
"v1"
|
| 1230 |
+
]
|
| 1231 |
+
},
|
| 1232 |
+
{
|
| 1233 |
+
"id": 393,
|
| 1234 |
+
"type": "Reroute",
|
| 1235 |
+
"pos": [
|
| 1236 |
+
3095,
|
| 1237 |
+
-1056
|
| 1238 |
+
],
|
| 1239 |
+
"size": [
|
| 1240 |
+
75,
|
| 1241 |
+
26
|
| 1242 |
+
],
|
| 1243 |
+
"flags": {},
|
| 1244 |
+
"order": 23,
|
| 1245 |
+
"mode": 0,
|
| 1246 |
+
"inputs": [
|
| 1247 |
+
{
|
| 1248 |
+
"name": "",
|
| 1249 |
+
"type": "*",
|
| 1250 |
+
"link": 1195
|
| 1251 |
+
}
|
| 1252 |
+
],
|
| 1253 |
+
"outputs": [
|
| 1254 |
+
{
|
| 1255 |
+
"name": "",
|
| 1256 |
+
"type": "MODEL",
|
| 1257 |
+
"slot_index": 0,
|
| 1258 |
+
"links": [
|
| 1259 |
+
1196
|
| 1260 |
+
]
|
| 1261 |
+
}
|
| 1262 |
+
],
|
| 1263 |
+
"properties": {
|
| 1264 |
+
"showOutputText": false,
|
| 1265 |
+
"horizontal": false
|
| 1266 |
+
}
|
| 1267 |
+
},
|
| 1268 |
+
{
|
| 1269 |
+
"id": 102,
|
| 1270 |
+
"type": "LoadImage",
|
| 1271 |
+
"pos": [
|
| 1272 |
+
-1527,
|
| 1273 |
+
-880
|
| 1274 |
+
],
|
| 1275 |
+
"size": [
|
| 1276 |
+
315,
|
| 1277 |
+
314
|
| 1278 |
+
],
|
| 1279 |
+
"flags": {},
|
| 1280 |
+
"order": 4,
|
| 1281 |
+
"mode": 0,
|
| 1282 |
+
"inputs": [],
|
| 1283 |
+
"outputs": [
|
| 1284 |
+
{
|
| 1285 |
+
"name": "IMAGE",
|
| 1286 |
+
"shape": 3,
|
| 1287 |
+
"type": "IMAGE",
|
| 1288 |
+
"slot_index": 0,
|
| 1289 |
+
"links": [
|
| 1290 |
+
326
|
| 1291 |
+
]
|
| 1292 |
+
},
|
| 1293 |
+
{
|
| 1294 |
+
"name": "MASK",
|
| 1295 |
+
"shape": 3,
|
| 1296 |
+
"type": "MASK",
|
| 1297 |
+
"links": null
|
| 1298 |
+
}
|
| 1299 |
+
],
|
| 1300 |
+
"properties": {
|
| 1301 |
+
"cnr_id": "comfy-core",
|
| 1302 |
+
"ver": "0.3.27",
|
| 1303 |
+
"Node name for S&R": "LoadImage"
|
| 1304 |
+
},
|
| 1305 |
+
"widgets_values": [
|
| 1306 |
+
"example.png",
|
| 1307 |
+
"image",
|
| 1308 |
+
""
|
| 1309 |
+
]
|
| 1310 |
+
},
|
| 1311 |
+
{
|
| 1312 |
+
"id": 25,
|
| 1313 |
+
"type": "Vyro Config Loader",
|
| 1314 |
+
"pos": [
|
| 1315 |
+
125,
|
| 1316 |
+
-526
|
| 1317 |
+
],
|
| 1318 |
+
"size": [
|
| 1319 |
+
315,
|
| 1320 |
+
162
|
| 1321 |
+
],
|
| 1322 |
+
"flags": {},
|
| 1323 |
+
"order": 5,
|
| 1324 |
+
"mode": 0,
|
| 1325 |
+
"inputs": [],
|
| 1326 |
+
"outputs": [
|
| 1327 |
+
{
|
| 1328 |
+
"name": "styles",
|
| 1329 |
+
"shape": 3,
|
| 1330 |
+
"type": "LIST",
|
| 1331 |
+
"slot_index": 0,
|
| 1332 |
+
"links": [
|
| 1333 |
+
75
|
| 1334 |
+
]
|
| 1335 |
+
},
|
| 1336 |
+
{
|
| 1337 |
+
"name": "prompt_tree",
|
| 1338 |
+
"shape": 3,
|
| 1339 |
+
"type": "DICT",
|
| 1340 |
+
"slot_index": 1,
|
| 1341 |
+
"links": [
|
| 1342 |
+
50,
|
| 1343 |
+
1149
|
| 1344 |
+
]
|
| 1345 |
+
},
|
| 1346 |
+
{
|
| 1347 |
+
"name": "model_config",
|
| 1348 |
+
"shape": 3,
|
| 1349 |
+
"type": "DICT",
|
| 1350 |
+
"slot_index": 2,
|
| 1351 |
+
"links": [
|
| 1352 |
+
1148
|
| 1353 |
+
]
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"name": "classifier",
|
| 1357 |
+
"shape": 3,
|
| 1358 |
+
"type": "TRANSFORMER",
|
| 1359 |
+
"slot_index": 3,
|
| 1360 |
+
"links": [
|
| 1361 |
+
51
|
| 1362 |
+
]
|
| 1363 |
+
},
|
| 1364 |
+
{
|
| 1365 |
+
"name": "unweighted_styles",
|
| 1366 |
+
"shape": 3,
|
| 1367 |
+
"type": "LIST",
|
| 1368 |
+
"slot_index": 4,
|
| 1369 |
+
"links": []
|
| 1370 |
+
}
|
| 1371 |
+
],
|
| 1372 |
+
"properties": {
|
| 1373 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
| 1374 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
| 1375 |
+
"Node name for S&R": "Vyro Config Loader"
|
| 1376 |
+
},
|
| 1377 |
+
"widgets_values": [
|
| 1378 |
+
"v5.json",
|
| 1379 |
+
"en_core_web_trf-3.8.0"
|
| 1380 |
+
]
|
| 1381 |
+
},
|
| 1382 |
+
{
|
| 1383 |
+
"id": 382,
|
| 1384 |
+
"type": "Vyro Oneflow Base Model Loader",
|
| 1385 |
+
"pos": [
|
| 1386 |
+
644.8353881835938,
|
| 1387 |
+
-1211.888671875
|
| 1388 |
+
],
|
| 1389 |
+
"size": [
|
| 1390 |
+
315,
|
| 1391 |
+
78
|
| 1392 |
+
],
|
| 1393 |
+
"flags": {},
|
| 1394 |
+
"order": 6,
|
| 1395 |
+
"mode": 0,
|
| 1396 |
+
"inputs": [],
|
| 1397 |
+
"outputs": [
|
| 1398 |
+
{
|
| 1399 |
+
"name": "base_model",
|
| 1400 |
+
"shape": 3,
|
| 1401 |
+
"type": "MODEL",
|
| 1402 |
+
"slot_index": 0,
|
| 1403 |
+
"links": [
|
| 1404 |
+
1206
|
| 1405 |
+
]
|
| 1406 |
+
},
|
| 1407 |
+
{
|
| 1408 |
+
"name": "base_clip",
|
| 1409 |
+
"shape": 3,
|
| 1410 |
+
"type": "CLIP",
|
| 1411 |
+
"slot_index": 1,
|
| 1412 |
+
"links": [
|
| 1413 |
+
1146
|
| 1414 |
+
]
|
| 1415 |
+
}
|
| 1416 |
+
],
|
| 1417 |
+
"properties": {
|
| 1418 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
| 1419 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
| 1420 |
+
"Node name for S&R": "Vyro Oneflow Base Model Loader"
|
| 1421 |
+
},
|
| 1422 |
+
"widgets_values": [
|
| 1423 |
+
"sd_xl_base_1.0.safetensors"
|
| 1424 |
+
]
|
| 1425 |
+
},
|
| 1426 |
+
{
|
| 1427 |
+
"id": 383,
|
| 1428 |
+
"type": "Vyro LoRa Loader",
|
| 1429 |
+
"pos": [
|
| 1430 |
+
1137.228515625,
|
| 1431 |
+
-1234.281005859375
|
| 1432 |
+
],
|
| 1433 |
+
"size": [
|
| 1434 |
+
292.20001220703125,
|
| 1435 |
+
106
|
| 1436 |
+
],
|
| 1437 |
+
"flags": {},
|
| 1438 |
+
"order": 16,
|
| 1439 |
+
"mode": 0,
|
| 1440 |
+
"inputs": [
|
| 1441 |
+
{
|
| 1442 |
+
"name": "base_model",
|
| 1443 |
+
"type": "MODEL",
|
| 1444 |
+
"link": 1206
|
| 1445 |
+
},
|
| 1446 |
+
{
|
| 1447 |
+
"name": "base_clip",
|
| 1448 |
+
"type": "CLIP",
|
| 1449 |
+
"link": 1146
|
| 1450 |
+
},
|
| 1451 |
+
{
|
| 1452 |
+
"name": "style",
|
| 1453 |
+
"type": "STYLE",
|
| 1454 |
+
"link": 1152
|
| 1455 |
+
},
|
| 1456 |
+
{
|
| 1457 |
+
"name": "prompt_tree",
|
| 1458 |
+
"type": "DICT",
|
| 1459 |
+
"link": 1150
|
| 1460 |
+
},
|
| 1461 |
+
{
|
| 1462 |
+
"name": "model_config",
|
| 1463 |
+
"type": "DICT",
|
| 1464 |
+
"link": 1151
|
| 1465 |
+
}
|
| 1466 |
+
],
|
| 1467 |
+
"outputs": [
|
| 1468 |
+
{
|
| 1469 |
+
"name": "base_model",
|
| 1470 |
+
"shape": 3,
|
| 1471 |
+
"type": "MODEL",
|
| 1472 |
+
"slot_index": 0,
|
| 1473 |
+
"links": [
|
| 1474 |
+
1164
|
| 1475 |
+
]
|
| 1476 |
+
},
|
| 1477 |
+
{
|
| 1478 |
+
"name": "base_clip",
|
| 1479 |
+
"shape": 3,
|
| 1480 |
+
"type": "CLIP",
|
| 1481 |
+
"slot_index": 1,
|
| 1482 |
+
"links": [
|
| 1483 |
+
1144
|
| 1484 |
+
]
|
| 1485 |
+
}
|
| 1486 |
+
],
|
| 1487 |
+
"properties": {
|
| 1488 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
| 1489 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
| 1490 |
+
"Node name for S&R": "Vyro LoRa Loader"
|
| 1491 |
+
},
|
| 1492 |
+
"widgets_values": []
|
| 1493 |
+
},
|
| 1494 |
+
{
|
| 1495 |
+
"id": 144,
|
| 1496 |
+
"type": "Vyro Param Extractor",
|
| 1497 |
+
"pos": [
|
| 1498 |
+
2857.13623046875,
|
| 1499 |
+
-499.512939453125
|
| 1500 |
+
],
|
| 1501 |
+
"size": [
|
| 1502 |
+
418.1999816894531,
|
| 1503 |
+
466
|
| 1504 |
+
],
|
| 1505 |
+
"flags": {},
|
| 1506 |
+
"order": 18,
|
| 1507 |
+
"mode": 0,
|
| 1508 |
+
"inputs": [
|
| 1509 |
+
{
|
| 1510 |
+
"name": "vyro_params",
|
| 1511 |
+
"type": "VYRO_PARAMS",
|
| 1512 |
+
"link": 429
|
| 1513 |
+
}
|
| 1514 |
+
],
|
| 1515 |
+
"outputs": [
|
| 1516 |
+
{
|
| 1517 |
+
"name": "latents",
|
| 1518 |
+
"shape": 3,
|
| 1519 |
+
"type": "LATENT",
|
| 1520 |
+
"slot_index": 0,
|
| 1521 |
+
"links": [
|
| 1522 |
+
1168
|
| 1523 |
+
]
|
| 1524 |
+
},
|
| 1525 |
+
{
|
| 1526 |
+
"name": "user_prompt",
|
| 1527 |
+
"shape": 3,
|
| 1528 |
+
"type": "STRING",
|
| 1529 |
+
"links": null
|
| 1530 |
+
},
|
| 1531 |
+
{
|
| 1532 |
+
"name": "user_neg_prompt",
|
| 1533 |
+
"shape": 3,
|
| 1534 |
+
"type": "STRING",
|
| 1535 |
+
"links": null
|
| 1536 |
+
},
|
| 1537 |
+
{
|
| 1538 |
+
"name": "mode",
|
| 1539 |
+
"shape": 3,
|
| 1540 |
+
"type": "STRING",
|
| 1541 |
+
"links": null
|
| 1542 |
+
},
|
| 1543 |
+
{
|
| 1544 |
+
"name": "cfg",
|
| 1545 |
+
"shape": 3,
|
| 1546 |
+
"type": "FLOAT",
|
| 1547 |
+
"links": null
|
| 1548 |
+
},
|
| 1549 |
+
{
|
| 1550 |
+
"name": "batch_size",
|
| 1551 |
+
"shape": 3,
|
| 1552 |
+
"type": "INT",
|
| 1553 |
+
"links": null
|
| 1554 |
+
},
|
| 1555 |
+
{
|
| 1556 |
+
"name": "steps",
|
| 1557 |
+
"shape": 3,
|
| 1558 |
+
"type": "INT",
|
| 1559 |
+
"links": null
|
| 1560 |
+
},
|
| 1561 |
+
{
|
| 1562 |
+
"name": "width",
|
| 1563 |
+
"shape": 3,
|
| 1564 |
+
"type": "INT",
|
| 1565 |
+
"links": null
|
| 1566 |
+
},
|
| 1567 |
+
{
|
| 1568 |
+
"name": "height",
|
| 1569 |
+
"shape": 3,
|
| 1570 |
+
"type": "INT",
|
| 1571 |
+
"links": null
|
| 1572 |
+
},
|
| 1573 |
+
{
|
| 1574 |
+
"name": "seed",
|
| 1575 |
+
"shape": 3,
|
| 1576 |
+
"type": "INT",
|
| 1577 |
+
"slot_index": 9,
|
| 1578 |
+
"links": [
|
| 1579 |
+
430,
|
| 1580 |
+
442,
|
| 1581 |
+
1169
|
| 1582 |
+
]
|
| 1583 |
+
},
|
| 1584 |
+
{
|
| 1585 |
+
"name": "denoise",
|
| 1586 |
+
"shape": 3,
|
| 1587 |
+
"type": "FLOAT",
|
| 1588 |
+
"slot_index": 10,
|
| 1589 |
+
"links": []
|
| 1590 |
+
},
|
| 1591 |
+
{
|
| 1592 |
+
"name": "stage1_strength",
|
| 1593 |
+
"shape": 3,
|
| 1594 |
+
"type": "FLOAT",
|
| 1595 |
+
"links": null
|
| 1596 |
+
},
|
| 1597 |
+
{
|
| 1598 |
+
"name": "stage2_strength",
|
| 1599 |
+
"shape": 3,
|
| 1600 |
+
"type": "FLOAT",
|
| 1601 |
+
"links": []
|
| 1602 |
+
},
|
| 1603 |
+
{
|
| 1604 |
+
"name": "efficiency_multiplier",
|
| 1605 |
+
"shape": 3,
|
| 1606 |
+
"type": "FLOAT",
|
| 1607 |
+
"links": [
|
| 1608 |
+
1209
|
| 1609 |
+
]
|
| 1610 |
+
},
|
| 1611 |
+
{
|
| 1612 |
+
"name": "style",
|
| 1613 |
+
"shape": 3,
|
| 1614 |
+
"type": "STRING",
|
| 1615 |
+
"links": null
|
| 1616 |
+
},
|
| 1617 |
+
{
|
| 1618 |
+
"name": "final_positive_prompt",
|
| 1619 |
+
"shape": 3,
|
| 1620 |
+
"type": "STRING",
|
| 1621 |
+
"slot_index": 15,
|
| 1622 |
+
"links": []
|
| 1623 |
+
},
|
| 1624 |
+
{
|
| 1625 |
+
"name": "final_negative_prompt",
|
| 1626 |
+
"shape": 3,
|
| 1627 |
+
"type": "STRING",
|
| 1628 |
+
"links": null
|
| 1629 |
+
},
|
| 1630 |
+
{
|
| 1631 |
+
"name": "is_raw",
|
| 1632 |
+
"shape": 3,
|
| 1633 |
+
"type": "BOOLEAN",
|
| 1634 |
+
"links": null
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"name": "final_negative_prompt",
|
| 1638 |
+
"shape": 3,
|
| 1639 |
+
"type": "STRING",
|
| 1640 |
+
"links": null
|
| 1641 |
+
},
|
| 1642 |
+
{
|
| 1643 |
+
"name": "is_raw",
|
| 1644 |
+
"shape": 3,
|
| 1645 |
+
"type": "BOOLEAN",
|
| 1646 |
+
"links": null
|
| 1647 |
+
},
|
| 1648 |
+
{
|
| 1649 |
+
"name": "face_swap_img",
|
| 1650 |
+
"shape": 3,
|
| 1651 |
+
"type": "IMAGE",
|
| 1652 |
+
"links": null
|
| 1653 |
+
},
|
| 1654 |
+
{
|
| 1655 |
+
"name": "image_prompt_weights",
|
| 1656 |
+
"shape": 3,
|
| 1657 |
+
"type": "STRING",
|
| 1658 |
+
"links": null
|
| 1659 |
+
},
|
| 1660 |
+
{
|
| 1661 |
+
"name": "control_net_input_img",
|
| 1662 |
+
"shape": 3,
|
| 1663 |
+
"type": "IMAGE",
|
| 1664 |
+
"links": null
|
| 1665 |
+
}
|
| 1666 |
+
],
|
| 1667 |
+
"properties": {
|
| 1668 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
| 1669 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
| 1670 |
+
"Node name for S&R": "Vyro Param Extractor"
|
| 1671 |
+
},
|
| 1672 |
+
"widgets_values": []
|
| 1673 |
+
},
|
| 1674 |
+
{
|
| 1675 |
+
"id": 49,
|
| 1676 |
+
"type": "LatentUpscaleBy",
|
| 1677 |
+
"pos": [
|
| 1678 |
+
4250,
|
| 1679 |
+
-1046
|
| 1680 |
+
],
|
| 1681 |
+
"size": [
|
| 1682 |
+
315,
|
| 1683 |
+
82
|
| 1684 |
+
],
|
| 1685 |
+
"flags": {},
|
| 1686 |
+
"order": 29,
|
| 1687 |
+
"mode": 0,
|
| 1688 |
+
"inputs": [
|
| 1689 |
+
{
|
| 1690 |
+
"name": "samples",
|
| 1691 |
+
"type": "LATENT",
|
| 1692 |
+
"link": 140
|
| 1693 |
+
},
|
| 1694 |
+
{
|
| 1695 |
+
"name": "scale_by",
|
| 1696 |
+
"type": "FLOAT",
|
| 1697 |
+
"widget": {
|
| 1698 |
+
"name": "scale_by"
|
| 1699 |
+
},
|
| 1700 |
+
"link": 1209
|
| 1701 |
+
}
|
| 1702 |
+
],
|
| 1703 |
+
"outputs": [
|
| 1704 |
+
{
|
| 1705 |
+
"name": "LATENT",
|
| 1706 |
+
"shape": 3,
|
| 1707 |
+
"type": "LATENT",
|
| 1708 |
+
"slot_index": 0,
|
| 1709 |
+
"links": [
|
| 1710 |
+
176
|
| 1711 |
+
]
|
| 1712 |
+
}
|
| 1713 |
+
],
|
| 1714 |
+
"properties": {
|
| 1715 |
+
"cnr_id": "comfy-core",
|
| 1716 |
+
"ver": "0.3.27",
|
| 1717 |
+
"Node name for S&R": "LatentUpscaleBy"
|
| 1718 |
+
},
|
| 1719 |
+
"widgets_values": [
|
| 1720 |
+
"nearest-exact",
|
| 1721 |
+
1.333
|
| 1722 |
+
]
|
| 1723 |
+
},
|
| 1724 |
+
{
|
| 1725 |
+
"id": 16,
|
| 1726 |
+
"type": "Vyro Pipe Input V2",
|
| 1727 |
+
"pos": [
|
| 1728 |
+
-584,
|
| 1729 |
+
-1007
|
| 1730 |
+
],
|
| 1731 |
+
"size": [
|
| 1732 |
+
400,
|
| 1733 |
+
732
|
| 1734 |
+
],
|
| 1735 |
+
"flags": {},
|
| 1736 |
+
"order": 11,
|
| 1737 |
+
"mode": 0,
|
| 1738 |
+
"inputs": [
|
| 1739 |
+
{
|
| 1740 |
+
"name": "vae",
|
| 1741 |
+
"type": "VAE",
|
| 1742 |
+
"link": 210
|
| 1743 |
+
},
|
| 1744 |
+
{
|
| 1745 |
+
"name": "init_img",
|
| 1746 |
+
"type": "STRING",
|
| 1747 |
+
"widget": {
|
| 1748 |
+
"name": "init_img"
|
| 1749 |
+
},
|
| 1750 |
+
"link": 950
|
| 1751 |
+
}
|
| 1752 |
+
],
|
| 1753 |
+
"outputs": [
|
| 1754 |
+
{
|
| 1755 |
+
"name": "vyro_params",
|
| 1756 |
+
"shape": 3,
|
| 1757 |
+
"type": "VYRO_PARAMS",
|
| 1758 |
+
"slot_index": 0,
|
| 1759 |
+
"links": [
|
| 1760 |
+
48
|
| 1761 |
+
]
|
| 1762 |
+
}
|
| 1763 |
+
],
|
| 1764 |
+
"properties": {
|
| 1765 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
| 1766 |
+
"ver": "bf85eeb45327c24b3fa1c946e86a28fae2056e80",
|
| 1767 |
+
"Node name for S&R": "Vyro Pipe Input V2"
|
| 1768 |
+
},
|
| 1769 |
+
"widgets_values": [
|
| 1770 |
+
"professor working in lab",
|
| 1771 |
+
"t2i",
|
| 1772 |
+
"perlin1",
|
| 1773 |
+
"",
|
| 1774 |
+
1,
|
| 1775 |
+
8,
|
| 1776 |
+
10,
|
| 1777 |
+
1024,
|
| 1778 |
+
1024,
|
| 1779 |
+
2890257064,
|
| 1780 |
+
"randomize",
|
| 1781 |
+
"",
|
| 1782 |
+
0.8,
|
| 1783 |
+
1,
|
| 1784 |
+
1,
|
| 1785 |
+
1
|
| 1786 |
+
]
|
| 1787 |
+
}
|
| 1788 |
+
],
|
| 1789 |
+
"links": [
|
| 1790 |
+
[
|
| 1791 |
+
48,
|
| 1792 |
+
16,
|
| 1793 |
+
0,
|
| 1794 |
+
27,
|
| 1795 |
+
0,
|
| 1796 |
+
"VYRO_PARAMS"
|
| 1797 |
+
],
|
| 1798 |
+
[
|
| 1799 |
+
50,
|
| 1800 |
+
25,
|
| 1801 |
+
1,
|
| 1802 |
+
27,
|
| 1803 |
+
2,
|
| 1804 |
+
"DICT"
|
| 1805 |
+
],
|
| 1806 |
+
[
|
| 1807 |
+
51,
|
| 1808 |
+
25,
|
| 1809 |
+
3,
|
| 1810 |
+
27,
|
| 1811 |
+
3,
|
| 1812 |
+
"TRANSFORMER"
|
| 1813 |
+
],
|
| 1814 |
+
[
|
| 1815 |
+
75,
|
| 1816 |
+
25,
|
| 1817 |
+
0,
|
| 1818 |
+
27,
|
| 1819 |
+
1,
|
| 1820 |
+
"LIST"
|
| 1821 |
+
],
|
| 1822 |
+
[
|
| 1823 |
+
140,
|
| 1824 |
+
48,
|
| 1825 |
+
0,
|
| 1826 |
+
49,
|
| 1827 |
+
0,
|
| 1828 |
+
"LATENT"
|
| 1829 |
+
],
|
| 1830 |
+
[
|
| 1831 |
+
147,
|
| 1832 |
+
27,
|
| 1833 |
+
0,
|
| 1834 |
+
55,
|
| 1835 |
+
0,
|
| 1836 |
+
"*"
|
| 1837 |
+
],
|
| 1838 |
+
[
|
| 1839 |
+
176,
|
| 1840 |
+
49,
|
| 1841 |
+
0,
|
| 1842 |
+
63,
|
| 1843 |
+
3,
|
| 1844 |
+
"LATENT"
|
| 1845 |
+
],
|
| 1846 |
+
[
|
| 1847 |
+
209,
|
| 1848 |
+
2,
|
| 1849 |
+
0,
|
| 1850 |
+
71,
|
| 1851 |
+
0,
|
| 1852 |
+
"*"
|
| 1853 |
+
],
|
| 1854 |
+
[
|
| 1855 |
+
210,
|
| 1856 |
+
71,
|
| 1857 |
+
0,
|
| 1858 |
+
16,
|
| 1859 |
+
0,
|
| 1860 |
+
"VAE"
|
| 1861 |
+
],
|
| 1862 |
+
[
|
| 1863 |
+
211,
|
| 1864 |
+
28,
|
| 1865 |
+
2,
|
| 1866 |
+
63,
|
| 1867 |
+
1,
|
| 1868 |
+
"CONDITIONING"
|
| 1869 |
+
],
|
| 1870 |
+
[
|
| 1871 |
+
212,
|
| 1872 |
+
28,
|
| 1873 |
+
3,
|
| 1874 |
+
63,
|
| 1875 |
+
2,
|
| 1876 |
+
"CONDITIONING"
|
| 1877 |
+
],
|
| 1878 |
+
[
|
| 1879 |
+
323,
|
| 1880 |
+
100,
|
| 1881 |
+
0,
|
| 1882 |
+
57,
|
| 1883 |
+
1,
|
| 1884 |
+
"VAE"
|
| 1885 |
+
],
|
| 1886 |
+
[
|
| 1887 |
+
326,
|
| 1888 |
+
102,
|
| 1889 |
+
0,
|
| 1890 |
+
103,
|
| 1891 |
+
0,
|
| 1892 |
+
"IMAGE"
|
| 1893 |
+
],
|
| 1894 |
+
[
|
| 1895 |
+
429,
|
| 1896 |
+
135,
|
| 1897 |
+
0,
|
| 1898 |
+
144,
|
| 1899 |
+
0,
|
| 1900 |
+
"VYRO_PARAMS"
|
| 1901 |
+
],
|
| 1902 |
+
[
|
| 1903 |
+
430,
|
| 1904 |
+
144,
|
| 1905 |
+
9,
|
| 1906 |
+
63,
|
| 1907 |
+
4,
|
| 1908 |
+
"INT"
|
| 1909 |
+
],
|
| 1910 |
+
[
|
| 1911 |
+
435,
|
| 1912 |
+
28,
|
| 1913 |
+
2,
|
| 1914 |
+
147,
|
| 1915 |
+
0,
|
| 1916 |
+
"*"
|
| 1917 |
+
],
|
| 1918 |
+
[
|
| 1919 |
+
436,
|
| 1920 |
+
28,
|
| 1921 |
+
3,
|
| 1922 |
+
148,
|
| 1923 |
+
0,
|
| 1924 |
+
"*"
|
| 1925 |
+
],
|
| 1926 |
+
[
|
| 1927 |
+
437,
|
| 1928 |
+
101,
|
| 1929 |
+
0,
|
| 1930 |
+
149,
|
| 1931 |
+
0,
|
| 1932 |
+
"*"
|
| 1933 |
+
],
|
| 1934 |
+
[
|
| 1935 |
+
439,
|
| 1936 |
+
147,
|
| 1937 |
+
0,
|
| 1938 |
+
145,
|
| 1939 |
+
1,
|
| 1940 |
+
"CONDITIONING"
|
| 1941 |
+
],
|
| 1942 |
+
[
|
| 1943 |
+
440,
|
| 1944 |
+
148,
|
| 1945 |
+
0,
|
| 1946 |
+
145,
|
| 1947 |
+
2,
|
| 1948 |
+
"CONDITIONING"
|
| 1949 |
+
],
|
| 1950 |
+
[
|
| 1951 |
+
441,
|
| 1952 |
+
63,
|
| 1953 |
+
0,
|
| 1954 |
+
145,
|
| 1955 |
+
3,
|
| 1956 |
+
"LATENT"
|
| 1957 |
+
],
|
| 1958 |
+
[
|
| 1959 |
+
442,
|
| 1960 |
+
144,
|
| 1961 |
+
9,
|
| 1962 |
+
150,
|
| 1963 |
+
0,
|
| 1964 |
+
"*"
|
| 1965 |
+
],
|
| 1966 |
+
[
|
| 1967 |
+
443,
|
| 1968 |
+
150,
|
| 1969 |
+
0,
|
| 1970 |
+
145,
|
| 1971 |
+
4,
|
| 1972 |
+
"INT"
|
| 1973 |
+
],
|
| 1974 |
+
[
|
| 1975 |
+
444,
|
| 1976 |
+
149,
|
| 1977 |
+
0,
|
| 1978 |
+
151,
|
| 1979 |
+
0,
|
| 1980 |
+
"MODEL"
|
| 1981 |
+
],
|
| 1982 |
+
[
|
| 1983 |
+
445,
|
| 1984 |
+
147,
|
| 1985 |
+
0,
|
| 1986 |
+
151,
|
| 1987 |
+
1,
|
| 1988 |
+
"CONDITIONING"
|
| 1989 |
+
],
|
| 1990 |
+
[
|
| 1991 |
+
446,
|
| 1992 |
+
148,
|
| 1993 |
+
0,
|
| 1994 |
+
151,
|
| 1995 |
+
2,
|
| 1996 |
+
"CONDITIONING"
|
| 1997 |
+
],
|
| 1998 |
+
[
|
| 1999 |
+
447,
|
| 2000 |
+
145,
|
| 2001 |
+
0,
|
| 2002 |
+
151,
|
| 2003 |
+
3,
|
| 2004 |
+
"LATENT"
|
| 2005 |
+
],
|
| 2006 |
+
[
|
| 2007 |
+
448,
|
| 2008 |
+
150,
|
| 2009 |
+
0,
|
| 2010 |
+
151,
|
| 2011 |
+
4,
|
| 2012 |
+
"INT"
|
| 2013 |
+
],
|
| 2014 |
+
[
|
| 2015 |
+
624,
|
| 2016 |
+
55,
|
| 2017 |
+
0,
|
| 2018 |
+
135,
|
| 2019 |
+
0,
|
| 2020 |
+
"VYRO_PARAMS"
|
| 2021 |
+
],
|
| 2022 |
+
[
|
| 2023 |
+
728,
|
| 2024 |
+
151,
|
| 2025 |
+
0,
|
| 2026 |
+
57,
|
| 2027 |
+
0,
|
| 2028 |
+
"LATENT"
|
| 2029 |
+
],
|
| 2030 |
+
[
|
| 2031 |
+
732,
|
| 2032 |
+
101,
|
| 2033 |
+
0,
|
| 2034 |
+
145,
|
| 2035 |
+
0,
|
| 2036 |
+
"MODEL"
|
| 2037 |
+
],
|
| 2038 |
+
[
|
| 2039 |
+
734,
|
| 2040 |
+
149,
|
| 2041 |
+
0,
|
| 2042 |
+
63,
|
| 2043 |
+
0,
|
| 2044 |
+
"MODEL"
|
| 2045 |
+
],
|
| 2046 |
+
[
|
| 2047 |
+
950,
|
| 2048 |
+
103,
|
| 2049 |
+
0,
|
| 2050 |
+
16,
|
| 2051 |
+
1,
|
| 2052 |
+
"STRING"
|
| 2053 |
+
],
|
| 2054 |
+
[
|
| 2055 |
+
1142,
|
| 2056 |
+
57,
|
| 2057 |
+
0,
|
| 2058 |
+
84,
|
| 2059 |
+
0,
|
| 2060 |
+
"IMAGE"
|
| 2061 |
+
],
|
| 2062 |
+
[
|
| 2063 |
+
1144,
|
| 2064 |
+
383,
|
| 2065 |
+
1,
|
| 2066 |
+
28,
|
| 2067 |
+
0,
|
| 2068 |
+
"CLIP"
|
| 2069 |
+
],
|
| 2070 |
+
[
|
| 2071 |
+
1146,
|
| 2072 |
+
382,
|
| 2073 |
+
1,
|
| 2074 |
+
383,
|
| 2075 |
+
1,
|
| 2076 |
+
"CLIP"
|
| 2077 |
+
],
|
| 2078 |
+
[
|
| 2079 |
+
1147,
|
| 2080 |
+
27,
|
| 2081 |
+
1,
|
| 2082 |
+
385,
|
| 2083 |
+
0,
|
| 2084 |
+
"*"
|
| 2085 |
+
],
|
| 2086 |
+
[
|
| 2087 |
+
1148,
|
| 2088 |
+
25,
|
| 2089 |
+
2,
|
| 2090 |
+
387,
|
| 2091 |
+
0,
|
| 2092 |
+
"*"
|
| 2093 |
+
],
|
| 2094 |
+
[
|
| 2095 |
+
1149,
|
| 2096 |
+
25,
|
| 2097 |
+
1,
|
| 2098 |
+
386,
|
| 2099 |
+
0,
|
| 2100 |
+
"*"
|
| 2101 |
+
],
|
| 2102 |
+
[
|
| 2103 |
+
1150,
|
| 2104 |
+
386,
|
| 2105 |
+
0,
|
| 2106 |
+
383,
|
| 2107 |
+
3,
|
| 2108 |
+
"DICT"
|
| 2109 |
+
],
|
| 2110 |
+
[
|
| 2111 |
+
1151,
|
| 2112 |
+
387,
|
| 2113 |
+
0,
|
| 2114 |
+
383,
|
| 2115 |
+
4,
|
| 2116 |
+
"DICT"
|
| 2117 |
+
],
|
| 2118 |
+
[
|
| 2119 |
+
1152,
|
| 2120 |
+
385,
|
| 2121 |
+
0,
|
| 2122 |
+
383,
|
| 2123 |
+
2,
|
| 2124 |
+
"STYLE"
|
| 2125 |
+
],
|
| 2126 |
+
[
|
| 2127 |
+
1153,
|
| 2128 |
+
385,
|
| 2129 |
+
0,
|
| 2130 |
+
384,
|
| 2131 |
+
0,
|
| 2132 |
+
"STYLE"
|
| 2133 |
+
],
|
| 2134 |
+
[
|
| 2135 |
+
1155,
|
| 2136 |
+
386,
|
| 2137 |
+
0,
|
| 2138 |
+
384,
|
| 2139 |
+
1,
|
| 2140 |
+
"DICT"
|
| 2141 |
+
],
|
| 2142 |
+
[
|
| 2143 |
+
1156,
|
| 2144 |
+
387,
|
| 2145 |
+
0,
|
| 2146 |
+
384,
|
| 2147 |
+
2,
|
| 2148 |
+
"DICT"
|
| 2149 |
+
],
|
| 2150 |
+
[
|
| 2151 |
+
1158,
|
| 2152 |
+
384,
|
| 2153 |
+
1,
|
| 2154 |
+
28,
|
| 2155 |
+
1,
|
| 2156 |
+
"CLIP"
|
| 2157 |
+
],
|
| 2158 |
+
[
|
| 2159 |
+
1164,
|
| 2160 |
+
383,
|
| 2161 |
+
0,
|
| 2162 |
+
254,
|
| 2163 |
+
0,
|
| 2164 |
+
"*"
|
| 2165 |
+
],
|
| 2166 |
+
[
|
| 2167 |
+
1165,
|
| 2168 |
+
384,
|
| 2169 |
+
0,
|
| 2170 |
+
101,
|
| 2171 |
+
0,
|
| 2172 |
+
"*"
|
| 2173 |
+
],
|
| 2174 |
+
[
|
| 2175 |
+
1166,
|
| 2176 |
+
28,
|
| 2177 |
+
0,
|
| 2178 |
+
390,
|
| 2179 |
+
1,
|
| 2180 |
+
"CONDITIONING"
|
| 2181 |
+
],
|
| 2182 |
+
[
|
| 2183 |
+
1167,
|
| 2184 |
+
28,
|
| 2185 |
+
1,
|
| 2186 |
+
390,
|
| 2187 |
+
2,
|
| 2188 |
+
"CONDITIONING"
|
| 2189 |
+
],
|
| 2190 |
+
[
|
| 2191 |
+
1168,
|
| 2192 |
+
144,
|
| 2193 |
+
0,
|
| 2194 |
+
390,
|
| 2195 |
+
3,
|
| 2196 |
+
"LATENT"
|
| 2197 |
+
],
|
| 2198 |
+
[
|
| 2199 |
+
1169,
|
| 2200 |
+
144,
|
| 2201 |
+
9,
|
| 2202 |
+
390,
|
| 2203 |
+
4,
|
| 2204 |
+
"INT"
|
| 2205 |
+
],
|
| 2206 |
+
[
|
| 2207 |
+
1195,
|
| 2208 |
+
254,
|
| 2209 |
+
0,
|
| 2210 |
+
393,
|
| 2211 |
+
0,
|
| 2212 |
+
"*"
|
| 2213 |
+
],
|
| 2214 |
+
[
|
| 2215 |
+
1196,
|
| 2216 |
+
393,
|
| 2217 |
+
0,
|
| 2218 |
+
390,
|
| 2219 |
+
0,
|
| 2220 |
+
"MODEL"
|
| 2221 |
+
],
|
| 2222 |
+
[
|
| 2223 |
+
1204,
|
| 2224 |
+
390,
|
| 2225 |
+
0,
|
| 2226 |
+
48,
|
| 2227 |
+
0,
|
| 2228 |
+
"LATENT"
|
| 2229 |
+
],
|
| 2230 |
+
[
|
| 2231 |
+
1205,
|
| 2232 |
+
27,
|
| 2233 |
+
0,
|
| 2234 |
+
28,
|
| 2235 |
+
2,
|
| 2236 |
+
"VYRO_PARAMS"
|
| 2237 |
+
],
|
| 2238 |
+
[
|
| 2239 |
+
1206,
|
| 2240 |
+
382,
|
| 2241 |
+
0,
|
| 2242 |
+
383,
|
| 2243 |
+
0,
|
| 2244 |
+
"MODEL"
|
| 2245 |
+
],
|
| 2246 |
+
[
|
| 2247 |
+
1209,
|
| 2248 |
+
144,
|
| 2249 |
+
13,
|
| 2250 |
+
49,
|
| 2251 |
+
1,
|
| 2252 |
+
"FLOAT"
|
| 2253 |
+
]
|
| 2254 |
+
],
|
| 2255 |
+
"groups": [
|
| 2256 |
+
{
|
| 2257 |
+
"id": 1,
|
| 2258 |
+
"title": "I/O",
|
| 2259 |
+
"bounding": [
|
| 2260 |
+
-673,
|
| 2261 |
+
-1108,
|
| 2262 |
+
1094,
|
| 2263 |
+
787
|
| 2264 |
+
],
|
| 2265 |
+
"color": "#3f789e",
|
| 2266 |
+
"font_size": 24,
|
| 2267 |
+
"flags": {}
|
| 2268 |
+
},
|
| 2269 |
+
{
|
| 2270 |
+
"id": 2,
|
| 2271 |
+
"title": "Analysis/Encoding",
|
| 2272 |
+
"bounding": [
|
| 2273 |
+
842,
|
| 2274 |
+
-1110,
|
| 2275 |
+
1491,
|
| 2276 |
+
810
|
| 2277 |
+
],
|
| 2278 |
+
"color": "#8AA",
|
| 2279 |
+
"font_size": 24,
|
| 2280 |
+
"flags": {}
|
| 2281 |
+
},
|
| 2282 |
+
{
|
| 2283 |
+
"id": 3,
|
| 2284 |
+
"title": "T2I/I2I",
|
| 2285 |
+
"bounding": [
|
| 2286 |
+
2661,
|
| 2287 |
+
-1160,
|
| 2288 |
+
3644,
|
| 2289 |
+
1695
|
| 2290 |
+
],
|
| 2291 |
+
"color": "#3f789e",
|
| 2292 |
+
"font_size": 24,
|
| 2293 |
+
"flags": {}
|
| 2294 |
+
}
|
| 2295 |
+
],
|
| 2296 |
+
"config": {},
|
| 2297 |
+
"extra": {
|
| 2298 |
+
"ds": {
|
| 2299 |
+
"scale": 0.2853116706110015,
|
| 2300 |
+
"offset": [
|
| 2301 |
+
2577.217082241404,
|
| 2302 |
+
2131.7449438691942
|
| 2303 |
+
]
|
| 2304 |
+
}
|
| 2305 |
+
},
|
| 2306 |
+
"version": 0.4
|
| 2307 |
+
}
|
Imagine/Workflows/Imaginev5-ultra-Workflow.json
ADDED
|
@@ -0,0 +1,1433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"id": "f2d9da4d-a1e8-47f3-b08e-e6bc0ea46feb",
|
| 3 |
+
"revision": 0,
|
| 4 |
+
"last_node_id": 99,
|
| 5 |
+
"last_link_id": 263,
|
| 6 |
+
"nodes": [
|
| 7 |
+
{
|
| 8 |
+
"id": 35,
|
| 9 |
+
"type": "Reroute",
|
| 10 |
+
"pos": [
|
| 11 |
+
530,
|
| 12 |
+
770
|
| 13 |
+
],
|
| 14 |
+
"size": [
|
| 15 |
+
75,
|
| 16 |
+
26
|
| 17 |
+
],
|
| 18 |
+
"flags": {},
|
| 19 |
+
"order": 0,
|
| 20 |
+
"mode": 0,
|
| 21 |
+
"inputs": [
|
| 22 |
+
{
|
| 23 |
+
"name": "",
|
| 24 |
+
"type": "*",
|
| 25 |
+
"link": null
|
| 26 |
+
}
|
| 27 |
+
],
|
| 28 |
+
"outputs": [
|
| 29 |
+
{
|
| 30 |
+
"name": "",
|
| 31 |
+
"type": "*",
|
| 32 |
+
"links": []
|
| 33 |
+
}
|
| 34 |
+
],
|
| 35 |
+
"properties": {
|
| 36 |
+
"showOutputText": false,
|
| 37 |
+
"horizontal": false
|
| 38 |
+
}
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"id": 36,
|
| 42 |
+
"type": "Reroute",
|
| 43 |
+
"pos": [
|
| 44 |
+
530,
|
| 45 |
+
820
|
| 46 |
+
],
|
| 47 |
+
"size": [
|
| 48 |
+
75,
|
| 49 |
+
26
|
| 50 |
+
],
|
| 51 |
+
"flags": {},
|
| 52 |
+
"order": 1,
|
| 53 |
+
"mode": 0,
|
| 54 |
+
"inputs": [
|
| 55 |
+
{
|
| 56 |
+
"name": "",
|
| 57 |
+
"type": "*",
|
| 58 |
+
"link": null
|
| 59 |
+
}
|
| 60 |
+
],
|
| 61 |
+
"outputs": [
|
| 62 |
+
{
|
| 63 |
+
"name": "",
|
| 64 |
+
"type": "*",
|
| 65 |
+
"links": []
|
| 66 |
+
}
|
| 67 |
+
],
|
| 68 |
+
"properties": {
|
| 69 |
+
"showOutputText": false,
|
| 70 |
+
"horizontal": false
|
| 71 |
+
}
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"id": 45,
|
| 75 |
+
"type": "Reroute",
|
| 76 |
+
"pos": [
|
| 77 |
+
840,
|
| 78 |
+
50
|
| 79 |
+
],
|
| 80 |
+
"size": [
|
| 81 |
+
75,
|
| 82 |
+
26
|
| 83 |
+
],
|
| 84 |
+
"flags": {},
|
| 85 |
+
"order": 5,
|
| 86 |
+
"mode": 0,
|
| 87 |
+
"inputs": [
|
| 88 |
+
{
|
| 89 |
+
"name": "",
|
| 90 |
+
"type": "*",
|
| 91 |
+
"link": 82
|
| 92 |
+
}
|
| 93 |
+
],
|
| 94 |
+
"outputs": [
|
| 95 |
+
{
|
| 96 |
+
"name": "",
|
| 97 |
+
"type": "CLIP",
|
| 98 |
+
"slot_index": 0,
|
| 99 |
+
"links": [
|
| 100 |
+
83,
|
| 101 |
+
84
|
| 102 |
+
]
|
| 103 |
+
}
|
| 104 |
+
],
|
| 105 |
+
"properties": {
|
| 106 |
+
"showOutputText": false,
|
| 107 |
+
"horizontal": false
|
| 108 |
+
}
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"id": 66,
|
| 112 |
+
"type": "Reroute",
|
| 113 |
+
"pos": [
|
| 114 |
+
830,
|
| 115 |
+
110
|
| 116 |
+
],
|
| 117 |
+
"size": [
|
| 118 |
+
75,
|
| 119 |
+
26
|
| 120 |
+
],
|
| 121 |
+
"flags": {},
|
| 122 |
+
"order": 6,
|
| 123 |
+
"mode": 0,
|
| 124 |
+
"inputs": [
|
| 125 |
+
{
|
| 126 |
+
"name": "",
|
| 127 |
+
"type": "*",
|
| 128 |
+
"link": 150
|
| 129 |
+
}
|
| 130 |
+
],
|
| 131 |
+
"outputs": [
|
| 132 |
+
{
|
| 133 |
+
"name": "",
|
| 134 |
+
"type": "VAE",
|
| 135 |
+
"slot_index": 0,
|
| 136 |
+
"links": [
|
| 137 |
+
188
|
| 138 |
+
]
|
| 139 |
+
}
|
| 140 |
+
],
|
| 141 |
+
"properties": {
|
| 142 |
+
"showOutputText": false,
|
| 143 |
+
"horizontal": false
|
| 144 |
+
}
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"id": 87,
|
| 148 |
+
"type": "Reroute",
|
| 149 |
+
"pos": [
|
| 150 |
+
85,
|
| 151 |
+
253
|
| 152 |
+
],
|
| 153 |
+
"size": [
|
| 154 |
+
75,
|
| 155 |
+
26
|
| 156 |
+
],
|
| 157 |
+
"flags": {},
|
| 158 |
+
"order": 9,
|
| 159 |
+
"mode": 0,
|
| 160 |
+
"inputs": [
|
| 161 |
+
{
|
| 162 |
+
"name": "",
|
| 163 |
+
"type": "*",
|
| 164 |
+
"widget": {
|
| 165 |
+
"name": "value"
|
| 166 |
+
},
|
| 167 |
+
"link": 227
|
| 168 |
+
}
|
| 169 |
+
],
|
| 170 |
+
"outputs": [
|
| 171 |
+
{
|
| 172 |
+
"name": "",
|
| 173 |
+
"type": "STRING",
|
| 174 |
+
"slot_index": 0,
|
| 175 |
+
"links": [
|
| 176 |
+
228,
|
| 177 |
+
229
|
| 178 |
+
]
|
| 179 |
+
}
|
| 180 |
+
],
|
| 181 |
+
"properties": {
|
| 182 |
+
"showOutputText": false,
|
| 183 |
+
"horizontal": false
|
| 184 |
+
}
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"id": 92,
|
| 188 |
+
"type": "EmptyLatentImage",
|
| 189 |
+
"pos": [
|
| 190 |
+
1001,
|
| 191 |
+
1057
|
| 192 |
+
],
|
| 193 |
+
"size": [
|
| 194 |
+
315,
|
| 195 |
+
106
|
| 196 |
+
],
|
| 197 |
+
"flags": {},
|
| 198 |
+
"order": 11,
|
| 199 |
+
"mode": 0,
|
| 200 |
+
"inputs": [
|
| 201 |
+
{
|
| 202 |
+
"name": "width",
|
| 203 |
+
"type": "INT",
|
| 204 |
+
"widget": {
|
| 205 |
+
"name": "width"
|
| 206 |
+
},
|
| 207 |
+
"link": 241
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"name": "height",
|
| 211 |
+
"type": "INT",
|
| 212 |
+
"widget": {
|
| 213 |
+
"name": "height"
|
| 214 |
+
},
|
| 215 |
+
"link": 242
|
| 216 |
+
}
|
| 217 |
+
],
|
| 218 |
+
"outputs": [
|
| 219 |
+
{
|
| 220 |
+
"name": "LATENT",
|
| 221 |
+
"shape": 3,
|
| 222 |
+
"type": "LATENT",
|
| 223 |
+
"slot_index": 0,
|
| 224 |
+
"links": [
|
| 225 |
+
243
|
| 226 |
+
]
|
| 227 |
+
}
|
| 228 |
+
],
|
| 229 |
+
"properties": {
|
| 230 |
+
"cnr_id": "comfy-core",
|
| 231 |
+
"ver": "0.3.27",
|
| 232 |
+
"Node name for S&R": "EmptyLatentImage"
|
| 233 |
+
},
|
| 234 |
+
"widgets_values": [
|
| 235 |
+
512,
|
| 236 |
+
512,
|
| 237 |
+
1
|
| 238 |
+
]
|
| 239 |
+
},
|
| 240 |
+
{
|
| 241 |
+
"id": 86,
|
| 242 |
+
"type": "Vyro Param Extractor",
|
| 243 |
+
"pos": [
|
| 244 |
+
-379,
|
| 245 |
+
228
|
| 246 |
+
],
|
| 247 |
+
"size": [
|
| 248 |
+
418.1999816894531,
|
| 249 |
+
466
|
| 250 |
+
],
|
| 251 |
+
"flags": {},
|
| 252 |
+
"order": 8,
|
| 253 |
+
"mode": 0,
|
| 254 |
+
"inputs": [
|
| 255 |
+
{
|
| 256 |
+
"name": "vyro_params",
|
| 257 |
+
"type": "VYRO_PARAMS",
|
| 258 |
+
"link": 226
|
| 259 |
+
}
|
| 260 |
+
],
|
| 261 |
+
"outputs": [
|
| 262 |
+
{
|
| 263 |
+
"name": "latents",
|
| 264 |
+
"shape": 3,
|
| 265 |
+
"type": "LATENT",
|
| 266 |
+
"slot_index": 0,
|
| 267 |
+
"links": null
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"name": "user_prompt",
|
| 271 |
+
"shape": 3,
|
| 272 |
+
"type": "STRING",
|
| 273 |
+
"slot_index": 1,
|
| 274 |
+
"links": [
|
| 275 |
+
227
|
| 276 |
+
]
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"name": "user_neg_prompt",
|
| 280 |
+
"shape": 3,
|
| 281 |
+
"type": "STRING",
|
| 282 |
+
"slot_index": 2,
|
| 283 |
+
"links": [
|
| 284 |
+
238
|
| 285 |
+
]
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"name": "mode",
|
| 289 |
+
"shape": 3,
|
| 290 |
+
"type": "STRING",
|
| 291 |
+
"links": null
|
| 292 |
+
},
|
| 293 |
+
{
|
| 294 |
+
"name": "cfg",
|
| 295 |
+
"shape": 3,
|
| 296 |
+
"type": "FLOAT",
|
| 297 |
+
"links": null
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"name": "batch_size",
|
| 301 |
+
"shape": 3,
|
| 302 |
+
"type": "INT",
|
| 303 |
+
"links": null
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"name": "steps",
|
| 307 |
+
"shape": 3,
|
| 308 |
+
"type": "INT",
|
| 309 |
+
"links": null
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"name": "width",
|
| 313 |
+
"shape": 3,
|
| 314 |
+
"type": "INT",
|
| 315 |
+
"slot_index": 7,
|
| 316 |
+
"links": [
|
| 317 |
+
241
|
| 318 |
+
]
|
| 319 |
+
},
|
| 320 |
+
{
|
| 321 |
+
"name": "height",
|
| 322 |
+
"shape": 3,
|
| 323 |
+
"type": "INT",
|
| 324 |
+
"slot_index": 8,
|
| 325 |
+
"links": [
|
| 326 |
+
242
|
| 327 |
+
]
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"name": "seed",
|
| 331 |
+
"shape": 3,
|
| 332 |
+
"type": "INT",
|
| 333 |
+
"links": [
|
| 334 |
+
247,
|
| 335 |
+
248
|
| 336 |
+
]
|
| 337 |
+
},
|
| 338 |
+
{
|
| 339 |
+
"name": "denoise",
|
| 340 |
+
"shape": 3,
|
| 341 |
+
"type": "FLOAT",
|
| 342 |
+
"links": null
|
| 343 |
+
},
|
| 344 |
+
{
|
| 345 |
+
"name": "stage1_strength",
|
| 346 |
+
"shape": 3,
|
| 347 |
+
"type": "FLOAT",
|
| 348 |
+
"links": null
|
| 349 |
+
},
|
| 350 |
+
{
|
| 351 |
+
"name": "stage2_strength",
|
| 352 |
+
"shape": 3,
|
| 353 |
+
"type": "FLOAT",
|
| 354 |
+
"links": null
|
| 355 |
+
},
|
| 356 |
+
{
|
| 357 |
+
"name": "efficiency_multiplier",
|
| 358 |
+
"shape": 3,
|
| 359 |
+
"type": "FLOAT",
|
| 360 |
+
"links": null
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"name": "style",
|
| 364 |
+
"shape": 3,
|
| 365 |
+
"type": "STRING",
|
| 366 |
+
"links": null
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"name": "final_positive_prompt",
|
| 370 |
+
"shape": 3,
|
| 371 |
+
"type": "STRING",
|
| 372 |
+
"links": null
|
| 373 |
+
},
|
| 374 |
+
{
|
| 375 |
+
"name": "final_negative_prompt",
|
| 376 |
+
"shape": 3,
|
| 377 |
+
"type": "STRING",
|
| 378 |
+
"links": null
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"name": "is_raw",
|
| 382 |
+
"shape": 3,
|
| 383 |
+
"type": "BOOLEAN",
|
| 384 |
+
"links": null
|
| 385 |
+
},
|
| 386 |
+
{
|
| 387 |
+
"name": "final_negative_prompt",
|
| 388 |
+
"shape": 3,
|
| 389 |
+
"type": "STRING",
|
| 390 |
+
"links": null
|
| 391 |
+
},
|
| 392 |
+
{
|
| 393 |
+
"name": "is_raw",
|
| 394 |
+
"shape": 3,
|
| 395 |
+
"type": "BOOLEAN",
|
| 396 |
+
"links": null
|
| 397 |
+
},
|
| 398 |
+
{
|
| 399 |
+
"name": "face_swap_img",
|
| 400 |
+
"shape": 3,
|
| 401 |
+
"type": "IMAGE",
|
| 402 |
+
"links": null
|
| 403 |
+
},
|
| 404 |
+
{
|
| 405 |
+
"name": "image_prompt_weights",
|
| 406 |
+
"shape": 3,
|
| 407 |
+
"type": "STRING",
|
| 408 |
+
"links": null
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"name": "control_net_input_img",
|
| 412 |
+
"shape": 3,
|
| 413 |
+
"type": "IMAGE",
|
| 414 |
+
"links": null
|
| 415 |
+
}
|
| 416 |
+
],
|
| 417 |
+
"properties": {
|
| 418 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
| 419 |
+
"ver": "987bd627ca63ee6815b42082eccf1b2199bf53ed",
|
| 420 |
+
"Node name for S&R": "Vyro Param Extractor"
|
| 421 |
+
},
|
| 422 |
+
"widgets_values": []
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"id": 89,
|
| 426 |
+
"type": "Reroute",
|
| 427 |
+
"pos": [
|
| 428 |
+
141,
|
| 429 |
+
329
|
| 430 |
+
],
|
| 431 |
+
"size": [
|
| 432 |
+
75,
|
| 433 |
+
26
|
| 434 |
+
],
|
| 435 |
+
"flags": {},
|
| 436 |
+
"order": 10,
|
| 437 |
+
"mode": 0,
|
| 438 |
+
"inputs": [
|
| 439 |
+
{
|
| 440 |
+
"name": "",
|
| 441 |
+
"type": "*",
|
| 442 |
+
"widget": {
|
| 443 |
+
"name": "value"
|
| 444 |
+
},
|
| 445 |
+
"link": 238
|
| 446 |
+
}
|
| 447 |
+
],
|
| 448 |
+
"outputs": [
|
| 449 |
+
{
|
| 450 |
+
"name": "",
|
| 451 |
+
"type": "STRING",
|
| 452 |
+
"slot_index": 0,
|
| 453 |
+
"links": [
|
| 454 |
+
239,
|
| 455 |
+
240
|
| 456 |
+
]
|
| 457 |
+
}
|
| 458 |
+
],
|
| 459 |
+
"properties": {
|
| 460 |
+
"showOutputText": false,
|
| 461 |
+
"horizontal": false
|
| 462 |
+
}
|
| 463 |
+
},
|
| 464 |
+
{
|
| 465 |
+
"id": 30,
|
| 466 |
+
"type": "CLIPTextEncodeSDXL",
|
| 467 |
+
"pos": [
|
| 468 |
+
1009,
|
| 469 |
+
728
|
| 470 |
+
],
|
| 471 |
+
"size": [
|
| 472 |
+
400,
|
| 473 |
+
270.0000305175781
|
| 474 |
+
],
|
| 475 |
+
"flags": {},
|
| 476 |
+
"order": 13,
|
| 477 |
+
"mode": 0,
|
| 478 |
+
"inputs": [
|
| 479 |
+
{
|
| 480 |
+
"name": "clip",
|
| 481 |
+
"type": "CLIP",
|
| 482 |
+
"link": 84
|
| 483 |
+
},
|
| 484 |
+
{
|
| 485 |
+
"name": "text_g",
|
| 486 |
+
"type": "STRING",
|
| 487 |
+
"widget": {
|
| 488 |
+
"name": "text_g"
|
| 489 |
+
},
|
| 490 |
+
"link": 239
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"name": "text_l",
|
| 494 |
+
"type": "STRING",
|
| 495 |
+
"widget": {
|
| 496 |
+
"name": "text_l"
|
| 497 |
+
},
|
| 498 |
+
"link": 240
|
| 499 |
+
},
|
| 500 |
+
{
|
| 501 |
+
"name": "width",
|
| 502 |
+
"type": "INT",
|
| 503 |
+
"widget": {
|
| 504 |
+
"name": "width"
|
| 505 |
+
},
|
| 506 |
+
"link": 234
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"name": "height",
|
| 510 |
+
"type": "INT",
|
| 511 |
+
"widget": {
|
| 512 |
+
"name": "height"
|
| 513 |
+
},
|
| 514 |
+
"link": 235
|
| 515 |
+
},
|
| 516 |
+
{
|
| 517 |
+
"name": "target_width",
|
| 518 |
+
"type": "INT",
|
| 519 |
+
"widget": {
|
| 520 |
+
"name": "target_width"
|
| 521 |
+
},
|
| 522 |
+
"link": 236
|
| 523 |
+
},
|
| 524 |
+
{
|
| 525 |
+
"name": "target_height",
|
| 526 |
+
"type": "INT",
|
| 527 |
+
"widget": {
|
| 528 |
+
"name": "target_height"
|
| 529 |
+
},
|
| 530 |
+
"link": 237
|
| 531 |
+
}
|
| 532 |
+
],
|
| 533 |
+
"outputs": [
|
| 534 |
+
{
|
| 535 |
+
"name": "CONDITIONING",
|
| 536 |
+
"shape": 3,
|
| 537 |
+
"type": "CONDITIONING",
|
| 538 |
+
"slot_index": 0,
|
| 539 |
+
"links": [
|
| 540 |
+
159,
|
| 541 |
+
163
|
| 542 |
+
]
|
| 543 |
+
}
|
| 544 |
+
],
|
| 545 |
+
"title": "negativePromt_sdxl1Base",
|
| 546 |
+
"properties": {
|
| 547 |
+
"cnr_id": "comfy-core",
|
| 548 |
+
"ver": "0.3.27",
|
| 549 |
+
"Node name for S&R": "CLIPTextEncodeSDXL"
|
| 550 |
+
},
|
| 551 |
+
"widgets_values": [
|
| 552 |
+
4096,
|
| 553 |
+
4096,
|
| 554 |
+
0,
|
| 555 |
+
0,
|
| 556 |
+
4096,
|
| 557 |
+
4096,
|
| 558 |
+
"blurry, bokeh,",
|
| 559 |
+
"blurry, bokeh,"
|
| 560 |
+
],
|
| 561 |
+
"color": "#322",
|
| 562 |
+
"bgcolor": "#533"
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"id": 29,
|
| 566 |
+
"type": "CLIPTextEncodeSDXL",
|
| 567 |
+
"pos": [
|
| 568 |
+
1001,
|
| 569 |
+
383
|
| 570 |
+
],
|
| 571 |
+
"size": [
|
| 572 |
+
400,
|
| 573 |
+
270.0000305175781
|
| 574 |
+
],
|
| 575 |
+
"flags": {},
|
| 576 |
+
"order": 12,
|
| 577 |
+
"mode": 0,
|
| 578 |
+
"inputs": [
|
| 579 |
+
{
|
| 580 |
+
"name": "clip",
|
| 581 |
+
"type": "CLIP",
|
| 582 |
+
"link": 83
|
| 583 |
+
},
|
| 584 |
+
{
|
| 585 |
+
"name": "text_g",
|
| 586 |
+
"type": "STRING",
|
| 587 |
+
"widget": {
|
| 588 |
+
"name": "text_g"
|
| 589 |
+
},
|
| 590 |
+
"link": 228
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"name": "text_l",
|
| 594 |
+
"type": "STRING",
|
| 595 |
+
"widget": {
|
| 596 |
+
"name": "text_l"
|
| 597 |
+
},
|
| 598 |
+
"link": 229
|
| 599 |
+
},
|
| 600 |
+
{
|
| 601 |
+
"name": "width",
|
| 602 |
+
"type": "INT",
|
| 603 |
+
"widget": {
|
| 604 |
+
"name": "width"
|
| 605 |
+
},
|
| 606 |
+
"link": 230
|
| 607 |
+
},
|
| 608 |
+
{
|
| 609 |
+
"name": "height",
|
| 610 |
+
"type": "INT",
|
| 611 |
+
"widget": {
|
| 612 |
+
"name": "height"
|
| 613 |
+
},
|
| 614 |
+
"link": 231
|
| 615 |
+
},
|
| 616 |
+
{
|
| 617 |
+
"name": "target_width",
|
| 618 |
+
"type": "INT",
|
| 619 |
+
"widget": {
|
| 620 |
+
"name": "target_width"
|
| 621 |
+
},
|
| 622 |
+
"link": 232
|
| 623 |
+
},
|
| 624 |
+
{
|
| 625 |
+
"name": "target_height",
|
| 626 |
+
"type": "INT",
|
| 627 |
+
"widget": {
|
| 628 |
+
"name": "target_height"
|
| 629 |
+
},
|
| 630 |
+
"link": 233
|
| 631 |
+
}
|
| 632 |
+
],
|
| 633 |
+
"outputs": [
|
| 634 |
+
{
|
| 635 |
+
"name": "CONDITIONING",
|
| 636 |
+
"shape": 3,
|
| 637 |
+
"type": "CONDITIONING",
|
| 638 |
+
"slot_index": 0,
|
| 639 |
+
"links": [
|
| 640 |
+
158,
|
| 641 |
+
162
|
| 642 |
+
]
|
| 643 |
+
}
|
| 644 |
+
],
|
| 645 |
+
"title": "positivePromt_sdxl1Base",
|
| 646 |
+
"properties": {
|
| 647 |
+
"cnr_id": "comfy-core",
|
| 648 |
+
"ver": "0.3.27",
|
| 649 |
+
"Node name for S&R": "CLIPTextEncodeSDXL"
|
| 650 |
+
},
|
| 651 |
+
"widgets_values": [
|
| 652 |
+
4096,
|
| 653 |
+
4096,
|
| 654 |
+
0,
|
| 655 |
+
0,
|
| 656 |
+
4096,
|
| 657 |
+
4096,
|
| 658 |
+
"photo of beautiful 24 years woman, closeup, peach fuzz, skin pores, teal punk rocker hair style, sitting on a couch",
|
| 659 |
+
"photo of beautiful 24 years woman, closeup, peach fuzz, skin pores, teal punk rocker hair style, sitting on a couch"
|
| 660 |
+
],
|
| 661 |
+
"color": "#232",
|
| 662 |
+
"bgcolor": "#353"
|
| 663 |
+
},
|
| 664 |
+
{
|
| 665 |
+
"id": 67,
|
| 666 |
+
"type": "KSamplerAdvanced",
|
| 667 |
+
"pos": [
|
| 668 |
+
1571,
|
| 669 |
+
209
|
| 670 |
+
],
|
| 671 |
+
"size": [
|
| 672 |
+
315,
|
| 673 |
+
546
|
| 674 |
+
],
|
| 675 |
+
"flags": {
|
| 676 |
+
"collapsed": false
|
| 677 |
+
},
|
| 678 |
+
"order": 14,
|
| 679 |
+
"mode": 0,
|
| 680 |
+
"inputs": [
|
| 681 |
+
{
|
| 682 |
+
"name": "model",
|
| 683 |
+
"type": "MODEL",
|
| 684 |
+
"link": 156
|
| 685 |
+
},
|
| 686 |
+
{
|
| 687 |
+
"name": "positive",
|
| 688 |
+
"type": "CONDITIONING",
|
| 689 |
+
"link": 158
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"name": "negative",
|
| 693 |
+
"type": "CONDITIONING",
|
| 694 |
+
"link": 159
|
| 695 |
+
},
|
| 696 |
+
{
|
| 697 |
+
"name": "latent_image",
|
| 698 |
+
"type": "LATENT",
|
| 699 |
+
"link": 243
|
| 700 |
+
},
|
| 701 |
+
{
|
| 702 |
+
"name": "noise_seed",
|
| 703 |
+
"type": "INT",
|
| 704 |
+
"widget": {
|
| 705 |
+
"name": "noise_seed"
|
| 706 |
+
},
|
| 707 |
+
"link": 247
|
| 708 |
+
}
|
| 709 |
+
],
|
| 710 |
+
"outputs": [
|
| 711 |
+
{
|
| 712 |
+
"name": "LATENT",
|
| 713 |
+
"shape": 3,
|
| 714 |
+
"type": "LATENT",
|
| 715 |
+
"slot_index": 0,
|
| 716 |
+
"links": [
|
| 717 |
+
261
|
| 718 |
+
]
|
| 719 |
+
}
|
| 720 |
+
],
|
| 721 |
+
"properties": {
|
| 722 |
+
"cnr_id": "comfy-core",
|
| 723 |
+
"ver": "0.3.27",
|
| 724 |
+
"Node name for S&R": "KSamplerAdvanced"
|
| 725 |
+
},
|
| 726 |
+
"widgets_values": [
|
| 727 |
+
"enable",
|
| 728 |
+
987654321357988,
|
| 729 |
+
"increment",
|
| 730 |
+
6,
|
| 731 |
+
1.1,
|
| 732 |
+
"dpmpp_2m_sde",
|
| 733 |
+
"karras",
|
| 734 |
+
0,
|
| 735 |
+
12,
|
| 736 |
+
"enable"
|
| 737 |
+
]
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"id": 68,
|
| 741 |
+
"type": "KSamplerAdvanced",
|
| 742 |
+
"pos": [
|
| 743 |
+
2263,
|
| 744 |
+
212
|
| 745 |
+
],
|
| 746 |
+
"size": [
|
| 747 |
+
315,
|
| 748 |
+
546
|
| 749 |
+
],
|
| 750 |
+
"flags": {},
|
| 751 |
+
"order": 16,
|
| 752 |
+
"mode": 0,
|
| 753 |
+
"inputs": [
|
| 754 |
+
{
|
| 755 |
+
"name": "model",
|
| 756 |
+
"type": "MODEL",
|
| 757 |
+
"link": 161
|
| 758 |
+
},
|
| 759 |
+
{
|
| 760 |
+
"name": "positive",
|
| 761 |
+
"type": "CONDITIONING",
|
| 762 |
+
"link": 162
|
| 763 |
+
},
|
| 764 |
+
{
|
| 765 |
+
"name": "negative",
|
| 766 |
+
"type": "CONDITIONING",
|
| 767 |
+
"link": 163
|
| 768 |
+
},
|
| 769 |
+
{
|
| 770 |
+
"name": "latent_image",
|
| 771 |
+
"type": "LATENT",
|
| 772 |
+
"link": 246
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"name": "noise_seed",
|
| 776 |
+
"type": "INT",
|
| 777 |
+
"widget": {
|
| 778 |
+
"name": "noise_seed"
|
| 779 |
+
},
|
| 780 |
+
"link": 248
|
| 781 |
+
}
|
| 782 |
+
],
|
| 783 |
+
"outputs": [
|
| 784 |
+
{
|
| 785 |
+
"name": "LATENT",
|
| 786 |
+
"shape": 3,
|
| 787 |
+
"type": "LATENT",
|
| 788 |
+
"slot_index": 0,
|
| 789 |
+
"links": [
|
| 790 |
+
189
|
| 791 |
+
]
|
| 792 |
+
}
|
| 793 |
+
],
|
| 794 |
+
"properties": {
|
| 795 |
+
"cnr_id": "comfy-core",
|
| 796 |
+
"ver": "0.3.27",
|
| 797 |
+
"Node name for S&R": "KSamplerAdvanced"
|
| 798 |
+
},
|
| 799 |
+
"widgets_values": [
|
| 800 |
+
"enable",
|
| 801 |
+
987654321357988,
|
| 802 |
+
"increment",
|
| 803 |
+
12,
|
| 804 |
+
1.1,
|
| 805 |
+
"dpmpp_2m_sde",
|
| 806 |
+
"karras",
|
| 807 |
+
5,
|
| 808 |
+
10000,
|
| 809 |
+
"disable"
|
| 810 |
+
]
|
| 811 |
+
},
|
| 812 |
+
{
|
| 813 |
+
"id": 88,
|
| 814 |
+
"type": "PrimitiveNode",
|
| 815 |
+
"pos": [
|
| 816 |
+
655,
|
| 817 |
+
488
|
| 818 |
+
],
|
| 819 |
+
"size": [
|
| 820 |
+
210,
|
| 821 |
+
82
|
| 822 |
+
],
|
| 823 |
+
"flags": {},
|
| 824 |
+
"order": 2,
|
| 825 |
+
"mode": 0,
|
| 826 |
+
"inputs": [],
|
| 827 |
+
"outputs": [
|
| 828 |
+
{
|
| 829 |
+
"name": "INT",
|
| 830 |
+
"type": "INT",
|
| 831 |
+
"widget": {
|
| 832 |
+
"name": "width"
|
| 833 |
+
},
|
| 834 |
+
"slot_index": 0,
|
| 835 |
+
"links": [
|
| 836 |
+
230,
|
| 837 |
+
231,
|
| 838 |
+
232,
|
| 839 |
+
233,
|
| 840 |
+
234,
|
| 841 |
+
235,
|
| 842 |
+
236,
|
| 843 |
+
237
|
| 844 |
+
]
|
| 845 |
+
}
|
| 846 |
+
],
|
| 847 |
+
"properties": {
|
| 848 |
+
"Run widget replace on values": false
|
| 849 |
+
},
|
| 850 |
+
"widgets_values": [
|
| 851 |
+
4096,
|
| 852 |
+
"fixed"
|
| 853 |
+
]
|
| 854 |
+
},
|
| 855 |
+
{
|
| 856 |
+
"id": 93,
|
| 857 |
+
"type": "LatentUpscaleBy",
|
| 858 |
+
"pos": [
|
| 859 |
+
1920,
|
| 860 |
+
87
|
| 861 |
+
],
|
| 862 |
+
"size": [
|
| 863 |
+
315,
|
| 864 |
+
82
|
| 865 |
+
],
|
| 866 |
+
"flags": {},
|
| 867 |
+
"order": 15,
|
| 868 |
+
"mode": 0,
|
| 869 |
+
"inputs": [
|
| 870 |
+
{
|
| 871 |
+
"name": "samples",
|
| 872 |
+
"type": "LATENT",
|
| 873 |
+
"link": 261
|
| 874 |
+
}
|
| 875 |
+
],
|
| 876 |
+
"outputs": [
|
| 877 |
+
{
|
| 878 |
+
"name": "LATENT",
|
| 879 |
+
"shape": 3,
|
| 880 |
+
"type": "LATENT",
|
| 881 |
+
"slot_index": 0,
|
| 882 |
+
"links": [
|
| 883 |
+
246
|
| 884 |
+
]
|
| 885 |
+
}
|
| 886 |
+
],
|
| 887 |
+
"properties": {
|
| 888 |
+
"cnr_id": "comfy-core",
|
| 889 |
+
"ver": "0.3.27",
|
| 890 |
+
"Node name for S&R": "LatentUpscaleBy"
|
| 891 |
+
},
|
| 892 |
+
"widgets_values": [
|
| 893 |
+
"nearest-exact",
|
| 894 |
+
2
|
| 895 |
+
]
|
| 896 |
+
},
|
| 897 |
+
{
|
| 898 |
+
"id": 46,
|
| 899 |
+
"type": "Reroute",
|
| 900 |
+
"pos": [
|
| 901 |
+
840,
|
| 902 |
+
10
|
| 903 |
+
],
|
| 904 |
+
"size": [
|
| 905 |
+
75,
|
| 906 |
+
26
|
| 907 |
+
],
|
| 908 |
+
"flags": {},
|
| 909 |
+
"order": 4,
|
| 910 |
+
"mode": 0,
|
| 911 |
+
"inputs": [
|
| 912 |
+
{
|
| 913 |
+
"name": "",
|
| 914 |
+
"type": "*",
|
| 915 |
+
"link": 262
|
| 916 |
+
}
|
| 917 |
+
],
|
| 918 |
+
"outputs": [
|
| 919 |
+
{
|
| 920 |
+
"name": "",
|
| 921 |
+
"type": "MODEL",
|
| 922 |
+
"slot_index": 0,
|
| 923 |
+
"links": [
|
| 924 |
+
156,
|
| 925 |
+
161
|
| 926 |
+
]
|
| 927 |
+
}
|
| 928 |
+
],
|
| 929 |
+
"properties": {
|
| 930 |
+
"showOutputText": false,
|
| 931 |
+
"horizontal": false
|
| 932 |
+
}
|
| 933 |
+
},
|
| 934 |
+
{
|
| 935 |
+
"id": 20,
|
| 936 |
+
"type": "CheckpointLoaderSimple",
|
| 937 |
+
"pos": [
|
| 938 |
+
-474,
|
| 939 |
+
-165
|
| 940 |
+
],
|
| 941 |
+
"size": [
|
| 942 |
+
645.7987060546875,
|
| 943 |
+
98
|
| 944 |
+
],
|
| 945 |
+
"flags": {},
|
| 946 |
+
"order": 3,
|
| 947 |
+
"mode": 0,
|
| 948 |
+
"inputs": [],
|
| 949 |
+
"outputs": [
|
| 950 |
+
{
|
| 951 |
+
"name": "MODEL",
|
| 952 |
+
"shape": 3,
|
| 953 |
+
"type": "MODEL",
|
| 954 |
+
"slot_index": 0,
|
| 955 |
+
"links": [
|
| 956 |
+
262
|
| 957 |
+
]
|
| 958 |
+
},
|
| 959 |
+
{
|
| 960 |
+
"name": "CLIP",
|
| 961 |
+
"shape": 3,
|
| 962 |
+
"type": "CLIP",
|
| 963 |
+
"slot_index": 1,
|
| 964 |
+
"links": [
|
| 965 |
+
82
|
| 966 |
+
]
|
| 967 |
+
},
|
| 968 |
+
{
|
| 969 |
+
"name": "VAE",
|
| 970 |
+
"shape": 3,
|
| 971 |
+
"type": "VAE",
|
| 972 |
+
"slot_index": 2,
|
| 973 |
+
"links": [
|
| 974 |
+
150,
|
| 975 |
+
244
|
| 976 |
+
]
|
| 977 |
+
}
|
| 978 |
+
],
|
| 979 |
+
"properties": {
|
| 980 |
+
"cnr_id": "comfy-core",
|
| 981 |
+
"ver": "0.3.27",
|
| 982 |
+
"Node name for S&R": "CheckpointLoaderSimple"
|
| 983 |
+
},
|
| 984 |
+
"widgets_values": [
|
| 985 |
+
"turbovisionxlSuperFastXLBasedOnNew_alphaV0101Bakedvae.safetensors"
|
| 986 |
+
]
|
| 987 |
+
},
|
| 988 |
+
{
|
| 989 |
+
"id": 77,
|
| 990 |
+
"type": "VAEDecode",
|
| 991 |
+
"pos": [
|
| 992 |
+
2645.012939453125,
|
| 993 |
+
381.77679443359375
|
| 994 |
+
],
|
| 995 |
+
"size": [
|
| 996 |
+
210,
|
| 997 |
+
46
|
| 998 |
+
],
|
| 999 |
+
"flags": {
|
| 1000 |
+
"collapsed": true
|
| 1001 |
+
},
|
| 1002 |
+
"order": 17,
|
| 1003 |
+
"mode": 0,
|
| 1004 |
+
"inputs": [
|
| 1005 |
+
{
|
| 1006 |
+
"name": "samples",
|
| 1007 |
+
"type": "LATENT",
|
| 1008 |
+
"link": 189
|
| 1009 |
+
},
|
| 1010 |
+
{
|
| 1011 |
+
"name": "vae",
|
| 1012 |
+
"type": "VAE",
|
| 1013 |
+
"link": 188
|
| 1014 |
+
}
|
| 1015 |
+
],
|
| 1016 |
+
"outputs": [
|
| 1017 |
+
{
|
| 1018 |
+
"name": "IMAGE",
|
| 1019 |
+
"shape": 3,
|
| 1020 |
+
"type": "IMAGE",
|
| 1021 |
+
"slot_index": 0,
|
| 1022 |
+
"links": [
|
| 1023 |
+
190,
|
| 1024 |
+
263
|
| 1025 |
+
]
|
| 1026 |
+
}
|
| 1027 |
+
],
|
| 1028 |
+
"properties": {
|
| 1029 |
+
"cnr_id": "comfy-core",
|
| 1030 |
+
"ver": "0.3.27",
|
| 1031 |
+
"Node name for S&R": "VAEDecode"
|
| 1032 |
+
},
|
| 1033 |
+
"widgets_values": []
|
| 1034 |
+
},
|
| 1035 |
+
{
|
| 1036 |
+
"id": 99,
|
| 1037 |
+
"type": "PreviewImage",
|
| 1038 |
+
"pos": [
|
| 1039 |
+
2965.96533203125,
|
| 1040 |
+
326.4072570800781
|
| 1041 |
+
],
|
| 1042 |
+
"size": [
|
| 1043 |
+
584.3117065429688,
|
| 1044 |
+
613.8179931640625
|
| 1045 |
+
],
|
| 1046 |
+
"flags": {},
|
| 1047 |
+
"order": 18,
|
| 1048 |
+
"mode": 0,
|
| 1049 |
+
"inputs": [
|
| 1050 |
+
{
|
| 1051 |
+
"name": "images",
|
| 1052 |
+
"type": "IMAGE",
|
| 1053 |
+
"link": 263
|
| 1054 |
+
}
|
| 1055 |
+
],
|
| 1056 |
+
"outputs": [],
|
| 1057 |
+
"properties": {
|
| 1058 |
+
"cnr_id": "comfy-core",
|
| 1059 |
+
"ver": "0.3.27",
|
| 1060 |
+
"Node name for S&R": "PreviewImage"
|
| 1061 |
+
},
|
| 1062 |
+
"widgets_values": [
|
| 1063 |
+
""
|
| 1064 |
+
]
|
| 1065 |
+
},
|
| 1066 |
+
{
|
| 1067 |
+
"id": 85,
|
| 1068 |
+
"type": "Vyro Pipe Input V2",
|
| 1069 |
+
"pos": [
|
| 1070 |
+
-811,
|
| 1071 |
+
200
|
| 1072 |
+
],
|
| 1073 |
+
"size": [
|
| 1074 |
+
400,
|
| 1075 |
+
748
|
| 1076 |
+
],
|
| 1077 |
+
"flags": {},
|
| 1078 |
+
"order": 7,
|
| 1079 |
+
"mode": 0,
|
| 1080 |
+
"inputs": [
|
| 1081 |
+
{
|
| 1082 |
+
"name": "vae",
|
| 1083 |
+
"type": "VAE",
|
| 1084 |
+
"link": 244
|
| 1085 |
+
}
|
| 1086 |
+
],
|
| 1087 |
+
"outputs": [
|
| 1088 |
+
{
|
| 1089 |
+
"name": "vyro_params",
|
| 1090 |
+
"shape": 3,
|
| 1091 |
+
"type": "VYRO_PARAMS",
|
| 1092 |
+
"slot_index": 0,
|
| 1093 |
+
"links": [
|
| 1094 |
+
226
|
| 1095 |
+
]
|
| 1096 |
+
}
|
| 1097 |
+
],
|
| 1098 |
+
"properties": {
|
| 1099 |
+
"aux_id": "Vyro-ai/vyro-workflows",
|
| 1100 |
+
"ver": "987bd627ca63ee6815b42082eccf1b2199bf53ed",
|
| 1101 |
+
"Node name for S&R": "Vyro Pipe Input V2"
|
| 1102 |
+
},
|
| 1103 |
+
"widgets_values": [
|
| 1104 |
+
"digital drawing of cyberpunk skull with armor, maximalist detailing, colorful, vibrant, --ar 9:16 --chaos 30",
|
| 1105 |
+
"t2i",
|
| 1106 |
+
"perlin1",
|
| 1107 |
+
"trees",
|
| 1108 |
+
1,
|
| 1109 |
+
7.5,
|
| 1110 |
+
10,
|
| 1111 |
+
512,
|
| 1112 |
+
512,
|
| 1113 |
+
3465171079,
|
| 1114 |
+
"randomize",
|
| 1115 |
+
"",
|
| 1116 |
+
1,
|
| 1117 |
+
0.25000000000000006,
|
| 1118 |
+
1,
|
| 1119 |
+
1
|
| 1120 |
+
]
|
| 1121 |
+
}
|
| 1122 |
+
],
|
| 1123 |
+
"links": [
|
| 1124 |
+
[
|
| 1125 |
+
82,
|
| 1126 |
+
20,
|
| 1127 |
+
1,
|
| 1128 |
+
45,
|
| 1129 |
+
0,
|
| 1130 |
+
"*"
|
| 1131 |
+
],
|
| 1132 |
+
[
|
| 1133 |
+
83,
|
| 1134 |
+
45,
|
| 1135 |
+
0,
|
| 1136 |
+
29,
|
| 1137 |
+
0,
|
| 1138 |
+
"CLIP"
|
| 1139 |
+
],
|
| 1140 |
+
[
|
| 1141 |
+
84,
|
| 1142 |
+
45,
|
| 1143 |
+
0,
|
| 1144 |
+
30,
|
| 1145 |
+
0,
|
| 1146 |
+
"CLIP"
|
| 1147 |
+
],
|
| 1148 |
+
[
|
| 1149 |
+
150,
|
| 1150 |
+
20,
|
| 1151 |
+
2,
|
| 1152 |
+
66,
|
| 1153 |
+
0,
|
| 1154 |
+
"*"
|
| 1155 |
+
],
|
| 1156 |
+
[
|
| 1157 |
+
156,
|
| 1158 |
+
46,
|
| 1159 |
+
0,
|
| 1160 |
+
67,
|
| 1161 |
+
0,
|
| 1162 |
+
"MODEL"
|
| 1163 |
+
],
|
| 1164 |
+
[
|
| 1165 |
+
158,
|
| 1166 |
+
29,
|
| 1167 |
+
0,
|
| 1168 |
+
67,
|
| 1169 |
+
1,
|
| 1170 |
+
"CONDITIONING"
|
| 1171 |
+
],
|
| 1172 |
+
[
|
| 1173 |
+
159,
|
| 1174 |
+
30,
|
| 1175 |
+
0,
|
| 1176 |
+
67,
|
| 1177 |
+
2,
|
| 1178 |
+
"CONDITIONING"
|
| 1179 |
+
],
|
| 1180 |
+
[
|
| 1181 |
+
161,
|
| 1182 |
+
46,
|
| 1183 |
+
0,
|
| 1184 |
+
68,
|
| 1185 |
+
0,
|
| 1186 |
+
"MODEL"
|
| 1187 |
+
],
|
| 1188 |
+
[
|
| 1189 |
+
162,
|
| 1190 |
+
29,
|
| 1191 |
+
0,
|
| 1192 |
+
68,
|
| 1193 |
+
1,
|
| 1194 |
+
"CONDITIONING"
|
| 1195 |
+
],
|
| 1196 |
+
[
|
| 1197 |
+
163,
|
| 1198 |
+
30,
|
| 1199 |
+
0,
|
| 1200 |
+
68,
|
| 1201 |
+
2,
|
| 1202 |
+
"CONDITIONING"
|
| 1203 |
+
],
|
| 1204 |
+
[
|
| 1205 |
+
188,
|
| 1206 |
+
66,
|
| 1207 |
+
0,
|
| 1208 |
+
77,
|
| 1209 |
+
1,
|
| 1210 |
+
"VAE"
|
| 1211 |
+
],
|
| 1212 |
+
[
|
| 1213 |
+
189,
|
| 1214 |
+
68,
|
| 1215 |
+
0,
|
| 1216 |
+
77,
|
| 1217 |
+
0,
|
| 1218 |
+
"LATENT"
|
| 1219 |
+
],
|
| 1220 |
+
[
|
| 1221 |
+
226,
|
| 1222 |
+
85,
|
| 1223 |
+
0,
|
| 1224 |
+
86,
|
| 1225 |
+
0,
|
| 1226 |
+
"VYRO_PARAMS"
|
| 1227 |
+
],
|
| 1228 |
+
[
|
| 1229 |
+
227,
|
| 1230 |
+
86,
|
| 1231 |
+
1,
|
| 1232 |
+
87,
|
| 1233 |
+
0,
|
| 1234 |
+
"*"
|
| 1235 |
+
],
|
| 1236 |
+
[
|
| 1237 |
+
228,
|
| 1238 |
+
87,
|
| 1239 |
+
0,
|
| 1240 |
+
29,
|
| 1241 |
+
1,
|
| 1242 |
+
"STRING"
|
| 1243 |
+
],
|
| 1244 |
+
[
|
| 1245 |
+
229,
|
| 1246 |
+
87,
|
| 1247 |
+
0,
|
| 1248 |
+
29,
|
| 1249 |
+
2,
|
| 1250 |
+
"STRING"
|
| 1251 |
+
],
|
| 1252 |
+
[
|
| 1253 |
+
230,
|
| 1254 |
+
88,
|
| 1255 |
+
0,
|
| 1256 |
+
29,
|
| 1257 |
+
3,
|
| 1258 |
+
"INT"
|
| 1259 |
+
],
|
| 1260 |
+
[
|
| 1261 |
+
231,
|
| 1262 |
+
88,
|
| 1263 |
+
0,
|
| 1264 |
+
29,
|
| 1265 |
+
4,
|
| 1266 |
+
"INT"
|
| 1267 |
+
],
|
| 1268 |
+
[
|
| 1269 |
+
232,
|
| 1270 |
+
88,
|
| 1271 |
+
0,
|
| 1272 |
+
29,
|
| 1273 |
+
5,
|
| 1274 |
+
"INT"
|
| 1275 |
+
],
|
| 1276 |
+
[
|
| 1277 |
+
233,
|
| 1278 |
+
88,
|
| 1279 |
+
0,
|
| 1280 |
+
29,
|
| 1281 |
+
6,
|
| 1282 |
+
"INT"
|
| 1283 |
+
],
|
| 1284 |
+
[
|
| 1285 |
+
234,
|
| 1286 |
+
88,
|
| 1287 |
+
0,
|
| 1288 |
+
30,
|
| 1289 |
+
3,
|
| 1290 |
+
"INT"
|
| 1291 |
+
],
|
| 1292 |
+
[
|
| 1293 |
+
235,
|
| 1294 |
+
88,
|
| 1295 |
+
0,
|
| 1296 |
+
30,
|
| 1297 |
+
4,
|
| 1298 |
+
"INT"
|
| 1299 |
+
],
|
| 1300 |
+
[
|
| 1301 |
+
236,
|
| 1302 |
+
88,
|
| 1303 |
+
0,
|
| 1304 |
+
30,
|
| 1305 |
+
5,
|
| 1306 |
+
"INT"
|
| 1307 |
+
],
|
| 1308 |
+
[
|
| 1309 |
+
237,
|
| 1310 |
+
88,
|
| 1311 |
+
0,
|
| 1312 |
+
30,
|
| 1313 |
+
6,
|
| 1314 |
+
"INT"
|
| 1315 |
+
],
|
| 1316 |
+
[
|
| 1317 |
+
238,
|
| 1318 |
+
86,
|
| 1319 |
+
2,
|
| 1320 |
+
89,
|
| 1321 |
+
0,
|
| 1322 |
+
"*"
|
| 1323 |
+
],
|
| 1324 |
+
[
|
| 1325 |
+
239,
|
| 1326 |
+
89,
|
| 1327 |
+
0,
|
| 1328 |
+
30,
|
| 1329 |
+
1,
|
| 1330 |
+
"STRING"
|
| 1331 |
+
],
|
| 1332 |
+
[
|
| 1333 |
+
240,
|
| 1334 |
+
89,
|
| 1335 |
+
0,
|
| 1336 |
+
30,
|
| 1337 |
+
2,
|
| 1338 |
+
"STRING"
|
| 1339 |
+
],
|
| 1340 |
+
[
|
| 1341 |
+
241,
|
| 1342 |
+
86,
|
| 1343 |
+
7,
|
| 1344 |
+
92,
|
| 1345 |
+
0,
|
| 1346 |
+
"INT"
|
| 1347 |
+
],
|
| 1348 |
+
[
|
| 1349 |
+
242,
|
| 1350 |
+
86,
|
| 1351 |
+
8,
|
| 1352 |
+
92,
|
| 1353 |
+
1,
|
| 1354 |
+
"INT"
|
| 1355 |
+
],
|
| 1356 |
+
[
|
| 1357 |
+
243,
|
| 1358 |
+
92,
|
| 1359 |
+
0,
|
| 1360 |
+
67,
|
| 1361 |
+
3,
|
| 1362 |
+
"LATENT"
|
| 1363 |
+
],
|
| 1364 |
+
[
|
| 1365 |
+
244,
|
| 1366 |
+
20,
|
| 1367 |
+
2,
|
| 1368 |
+
85,
|
| 1369 |
+
0,
|
| 1370 |
+
"VAE"
|
| 1371 |
+
],
|
| 1372 |
+
[
|
| 1373 |
+
246,
|
| 1374 |
+
93,
|
| 1375 |
+
0,
|
| 1376 |
+
68,
|
| 1377 |
+
3,
|
| 1378 |
+
"LATENT"
|
| 1379 |
+
],
|
| 1380 |
+
[
|
| 1381 |
+
247,
|
| 1382 |
+
86,
|
| 1383 |
+
9,
|
| 1384 |
+
67,
|
| 1385 |
+
4,
|
| 1386 |
+
"INT"
|
| 1387 |
+
],
|
| 1388 |
+
[
|
| 1389 |
+
248,
|
| 1390 |
+
86,
|
| 1391 |
+
9,
|
| 1392 |
+
68,
|
| 1393 |
+
4,
|
| 1394 |
+
"INT"
|
| 1395 |
+
],
|
| 1396 |
+
[
|
| 1397 |
+
261,
|
| 1398 |
+
67,
|
| 1399 |
+
0,
|
| 1400 |
+
93,
|
| 1401 |
+
0,
|
| 1402 |
+
"LATENT"
|
| 1403 |
+
],
|
| 1404 |
+
[
|
| 1405 |
+
262,
|
| 1406 |
+
20,
|
| 1407 |
+
0,
|
| 1408 |
+
46,
|
| 1409 |
+
0,
|
| 1410 |
+
"*"
|
| 1411 |
+
],
|
| 1412 |
+
[
|
| 1413 |
+
263,
|
| 1414 |
+
77,
|
| 1415 |
+
0,
|
| 1416 |
+
99,
|
| 1417 |
+
0,
|
| 1418 |
+
"IMAGE"
|
| 1419 |
+
]
|
| 1420 |
+
],
|
| 1421 |
+
"groups": [],
|
| 1422 |
+
"config": {},
|
| 1423 |
+
"extra": {
|
| 1424 |
+
"ds": {
|
| 1425 |
+
"scale": 0.15030096025614706,
|
| 1426 |
+
"offset": [
|
| 1427 |
+
6414.9972594019255,
|
| 1428 |
+
3091.1902356429177
|
| 1429 |
+
]
|
| 1430 |
+
}
|
| 1431 |
+
},
|
| 1432 |
+
"version": 0.4
|
| 1433 |
+
}
|
Imagine/imagine-v5-ultra/comfy/__pycache__/checkpoint_pickle.cpython-311.pyc
ADDED
|
Binary file (1.12 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/cli_args.cpython-311.pyc
ADDED
|
Binary file (18.2 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/clip_model.cpython-311.pyc
ADDED
|
Binary file (21.2 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/clip_vision.cpython-311.pyc
ADDED
|
Binary file (12.8 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/conds.cpython-311.pyc
ADDED
|
Binary file (5.33 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/controlnet.cpython-311.pyc
ADDED
|
Binary file (53.9 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/diffusers_convert.cpython-311.pyc
ADDED
|
Binary file (9.6 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/diffusers_load.cpython-311.pyc
ADDED
|
Binary file (2.41 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/float.cpython-311.pyc
ADDED
|
Binary file (4.1 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/gligen.cpython-311.pyc
ADDED
|
Binary file (22.1 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/hooks.cpython-311.pyc
ADDED
|
Binary file (43.1 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/latent_formats.cpython-311.pyc
ADDED
|
Binary file (24.7 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/lora.cpython-311.pyc
ADDED
|
Binary file (39.4 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/lora_convert.cpython-311.pyc
ADDED
|
Binary file (1.29 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/model_base.cpython-311.pyc
ADDED
|
Binary file (81.4 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/model_detection.cpython-311.pyc
ADDED
|
Binary file (41.9 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/model_management.cpython-311.pyc
ADDED
|
Binary file (57.6 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/model_patcher.cpython-311.pyc
ADDED
|
Binary file (73.2 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/model_sampling.cpython-311.pyc
ADDED
|
Binary file (23.9 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/ops.cpython-311.pyc
ADDED
|
Binary file (27.2 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/options.cpython-311.pyc
ADDED
|
Binary file (361 Bytes). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/patcher_extension.cpython-311.pyc
ADDED
|
Binary file (10.7 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/sample.cpython-311.pyc
ADDED
|
Binary file (4.97 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/sampler_helpers.cpython-311.pyc
ADDED
|
Binary file (9.21 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/samplers.cpython-311.pyc
ADDED
|
Binary file (64.7 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/sd.cpython-311.pyc
ADDED
|
Binary file (78.1 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/sd1_clip.cpython-311.pyc
ADDED
|
Binary file (38.9 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/sdxl_clip.cpython-311.pyc
ADDED
|
Binary file (10.6 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/supported_models.cpython-311.pyc
ADDED
|
Binary file (49 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/supported_models_base.cpython-311.pyc
ADDED
|
Binary file (6.93 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/__pycache__/utils.cpython-311.pyc
ADDED
|
Binary file (62.6 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/checkpoint_pickle.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
|
| 3 |
+
load = pickle.load
|
| 4 |
+
|
| 5 |
+
class Empty:
|
| 6 |
+
pass
|
| 7 |
+
|
| 8 |
+
class Unpickler(pickle.Unpickler):
|
| 9 |
+
def find_class(self, module, name):
|
| 10 |
+
#TODO: safe unpickle
|
| 11 |
+
if module.startswith("pytorch_lightning"):
|
| 12 |
+
return Empty
|
| 13 |
+
return super().find_class(module, name)
|
Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/cldm.cpython-311.pyc
ADDED
|
Binary file (22.9 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/control_types.cpython-311.pyc
ADDED
|
Binary file (420 Bytes). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/dit_embedder.cpython-311.pyc
ADDED
|
Binary file (5.72 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/cldm/__pycache__/mmdit.cpython-311.pyc
ADDED
|
Binary file (4 kB). View file
|
|
|
Imagine/imagine-v5-ultra/comfy/cldm/cldm.py
ADDED
|
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#taken from: https://github.com/lllyasviel/ControlNet
|
| 2 |
+
#and modified
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
from ..ldm.modules.diffusionmodules.util import (
|
| 8 |
+
timestep_embedding,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
from ..ldm.modules.attention import SpatialTransformer
|
| 12 |
+
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
|
| 13 |
+
from ..ldm.util import exists
|
| 14 |
+
from .control_types import UNION_CONTROLNET_TYPES
|
| 15 |
+
from collections import OrderedDict
|
| 16 |
+
import comfy.ops
|
| 17 |
+
from comfy.ldm.modules.attention import optimized_attention
|
| 18 |
+
|
| 19 |
+
class OptimizedAttention(nn.Module):
|
| 20 |
+
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
|
| 21 |
+
super().__init__()
|
| 22 |
+
self.heads = nhead
|
| 23 |
+
self.c = c
|
| 24 |
+
|
| 25 |
+
self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
|
| 26 |
+
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
|
| 27 |
+
|
| 28 |
+
def forward(self, x):
|
| 29 |
+
x = self.in_proj(x)
|
| 30 |
+
q, k, v = x.split(self.c, dim=2)
|
| 31 |
+
out = optimized_attention(q, k, v, self.heads)
|
| 32 |
+
return self.out_proj(out)
|
| 33 |
+
|
| 34 |
+
class QuickGELU(nn.Module):
|
| 35 |
+
def forward(self, x: torch.Tensor):
|
| 36 |
+
return x * torch.sigmoid(1.702 * x)
|
| 37 |
+
|
| 38 |
+
class ResBlockUnionControlnet(nn.Module):
|
| 39 |
+
def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
|
| 40 |
+
super().__init__()
|
| 41 |
+
self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
|
| 42 |
+
self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
|
| 43 |
+
self.mlp = nn.Sequential(
|
| 44 |
+
OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
|
| 45 |
+
("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
|
| 46 |
+
self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
|
| 47 |
+
|
| 48 |
+
def attention(self, x: torch.Tensor):
|
| 49 |
+
return self.attn(x)
|
| 50 |
+
|
| 51 |
+
def forward(self, x: torch.Tensor):
|
| 52 |
+
x = x + self.attention(self.ln_1(x))
|
| 53 |
+
x = x + self.mlp(self.ln_2(x))
|
| 54 |
+
return x
|
| 55 |
+
|
| 56 |
+
class ControlledUnetModel(UNetModel):
|
| 57 |
+
#implemented in the ldm unet
|
| 58 |
+
pass
|
| 59 |
+
|
| 60 |
+
class ControlNet(nn.Module):
|
| 61 |
+
def __init__(
|
| 62 |
+
self,
|
| 63 |
+
image_size,
|
| 64 |
+
in_channels,
|
| 65 |
+
model_channels,
|
| 66 |
+
hint_channels,
|
| 67 |
+
num_res_blocks,
|
| 68 |
+
dropout=0,
|
| 69 |
+
channel_mult=(1, 2, 4, 8),
|
| 70 |
+
conv_resample=True,
|
| 71 |
+
dims=2,
|
| 72 |
+
num_classes=None,
|
| 73 |
+
use_checkpoint=False,
|
| 74 |
+
dtype=torch.float32,
|
| 75 |
+
num_heads=-1,
|
| 76 |
+
num_head_channels=-1,
|
| 77 |
+
num_heads_upsample=-1,
|
| 78 |
+
use_scale_shift_norm=False,
|
| 79 |
+
resblock_updown=False,
|
| 80 |
+
use_new_attention_order=False,
|
| 81 |
+
use_spatial_transformer=False, # custom transformer support
|
| 82 |
+
transformer_depth=1, # custom transformer support
|
| 83 |
+
context_dim=None, # custom transformer support
|
| 84 |
+
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
| 85 |
+
legacy=True,
|
| 86 |
+
disable_self_attentions=None,
|
| 87 |
+
num_attention_blocks=None,
|
| 88 |
+
disable_middle_self_attn=False,
|
| 89 |
+
use_linear_in_transformer=False,
|
| 90 |
+
adm_in_channels=None,
|
| 91 |
+
transformer_depth_middle=None,
|
| 92 |
+
transformer_depth_output=None,
|
| 93 |
+
attn_precision=None,
|
| 94 |
+
union_controlnet_num_control_type=None,
|
| 95 |
+
device=None,
|
| 96 |
+
operations=comfy.ops.disable_weight_init,
|
| 97 |
+
**kwargs,
|
| 98 |
+
):
|
| 99 |
+
super().__init__()
|
| 100 |
+
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
| 101 |
+
if use_spatial_transformer:
|
| 102 |
+
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
| 103 |
+
|
| 104 |
+
if context_dim is not None:
|
| 105 |
+
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
| 106 |
+
# from omegaconf.listconfig import ListConfig
|
| 107 |
+
# if type(context_dim) == ListConfig:
|
| 108 |
+
# context_dim = list(context_dim)
|
| 109 |
+
|
| 110 |
+
if num_heads_upsample == -1:
|
| 111 |
+
num_heads_upsample = num_heads
|
| 112 |
+
|
| 113 |
+
if num_heads == -1:
|
| 114 |
+
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
| 115 |
+
|
| 116 |
+
if num_head_channels == -1:
|
| 117 |
+
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
| 118 |
+
|
| 119 |
+
self.dims = dims
|
| 120 |
+
self.image_size = image_size
|
| 121 |
+
self.in_channels = in_channels
|
| 122 |
+
self.model_channels = model_channels
|
| 123 |
+
|
| 124 |
+
if isinstance(num_res_blocks, int):
|
| 125 |
+
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
| 126 |
+
else:
|
| 127 |
+
if len(num_res_blocks) != len(channel_mult):
|
| 128 |
+
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
| 129 |
+
"as a list/tuple (per-level) with the same length as channel_mult")
|
| 130 |
+
self.num_res_blocks = num_res_blocks
|
| 131 |
+
|
| 132 |
+
if disable_self_attentions is not None:
|
| 133 |
+
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
| 134 |
+
assert len(disable_self_attentions) == len(channel_mult)
|
| 135 |
+
if num_attention_blocks is not None:
|
| 136 |
+
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
| 137 |
+
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
| 138 |
+
|
| 139 |
+
transformer_depth = transformer_depth[:]
|
| 140 |
+
|
| 141 |
+
self.dropout = dropout
|
| 142 |
+
self.channel_mult = channel_mult
|
| 143 |
+
self.conv_resample = conv_resample
|
| 144 |
+
self.num_classes = num_classes
|
| 145 |
+
self.use_checkpoint = use_checkpoint
|
| 146 |
+
self.dtype = dtype
|
| 147 |
+
self.num_heads = num_heads
|
| 148 |
+
self.num_head_channels = num_head_channels
|
| 149 |
+
self.num_heads_upsample = num_heads_upsample
|
| 150 |
+
self.predict_codebook_ids = n_embed is not None
|
| 151 |
+
|
| 152 |
+
time_embed_dim = model_channels * 4
|
| 153 |
+
self.time_embed = nn.Sequential(
|
| 154 |
+
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
| 155 |
+
nn.SiLU(),
|
| 156 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
if self.num_classes is not None:
|
| 160 |
+
if isinstance(self.num_classes, int):
|
| 161 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
| 162 |
+
elif self.num_classes == "continuous":
|
| 163 |
+
self.label_emb = nn.Linear(1, time_embed_dim)
|
| 164 |
+
elif self.num_classes == "sequential":
|
| 165 |
+
assert adm_in_channels is not None
|
| 166 |
+
self.label_emb = nn.Sequential(
|
| 167 |
+
nn.Sequential(
|
| 168 |
+
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
| 169 |
+
nn.SiLU(),
|
| 170 |
+
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
| 171 |
+
)
|
| 172 |
+
)
|
| 173 |
+
else:
|
| 174 |
+
raise ValueError()
|
| 175 |
+
|
| 176 |
+
self.input_blocks = nn.ModuleList(
|
| 177 |
+
[
|
| 178 |
+
TimestepEmbedSequential(
|
| 179 |
+
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
| 180 |
+
)
|
| 181 |
+
]
|
| 182 |
+
)
|
| 183 |
+
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
|
| 184 |
+
|
| 185 |
+
self.input_hint_block = TimestepEmbedSequential(
|
| 186 |
+
operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
|
| 187 |
+
nn.SiLU(),
|
| 188 |
+
operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
|
| 189 |
+
nn.SiLU(),
|
| 190 |
+
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
| 191 |
+
nn.SiLU(),
|
| 192 |
+
operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
|
| 193 |
+
nn.SiLU(),
|
| 194 |
+
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
| 195 |
+
nn.SiLU(),
|
| 196 |
+
operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
|
| 197 |
+
nn.SiLU(),
|
| 198 |
+
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
| 199 |
+
nn.SiLU(),
|
| 200 |
+
operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
self._feature_size = model_channels
|
| 204 |
+
input_block_chans = [model_channels]
|
| 205 |
+
ch = model_channels
|
| 206 |
+
ds = 1
|
| 207 |
+
for level, mult in enumerate(channel_mult):
|
| 208 |
+
for nr in range(self.num_res_blocks[level]):
|
| 209 |
+
layers = [
|
| 210 |
+
ResBlock(
|
| 211 |
+
ch,
|
| 212 |
+
time_embed_dim,
|
| 213 |
+
dropout,
|
| 214 |
+
out_channels=mult * model_channels,
|
| 215 |
+
dims=dims,
|
| 216 |
+
use_checkpoint=use_checkpoint,
|
| 217 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 218 |
+
dtype=self.dtype,
|
| 219 |
+
device=device,
|
| 220 |
+
operations=operations,
|
| 221 |
+
)
|
| 222 |
+
]
|
| 223 |
+
ch = mult * model_channels
|
| 224 |
+
num_transformers = transformer_depth.pop(0)
|
| 225 |
+
if num_transformers > 0:
|
| 226 |
+
if num_head_channels == -1:
|
| 227 |
+
dim_head = ch // num_heads
|
| 228 |
+
else:
|
| 229 |
+
num_heads = ch // num_head_channels
|
| 230 |
+
dim_head = num_head_channels
|
| 231 |
+
if legacy:
|
| 232 |
+
#num_heads = 1
|
| 233 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 234 |
+
if exists(disable_self_attentions):
|
| 235 |
+
disabled_sa = disable_self_attentions[level]
|
| 236 |
+
else:
|
| 237 |
+
disabled_sa = False
|
| 238 |
+
|
| 239 |
+
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
| 240 |
+
layers.append(
|
| 241 |
+
SpatialTransformer(
|
| 242 |
+
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
| 243 |
+
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
| 244 |
+
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
| 245 |
+
)
|
| 246 |
+
)
|
| 247 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
| 248 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
| 249 |
+
self._feature_size += ch
|
| 250 |
+
input_block_chans.append(ch)
|
| 251 |
+
if level != len(channel_mult) - 1:
|
| 252 |
+
out_ch = ch
|
| 253 |
+
self.input_blocks.append(
|
| 254 |
+
TimestepEmbedSequential(
|
| 255 |
+
ResBlock(
|
| 256 |
+
ch,
|
| 257 |
+
time_embed_dim,
|
| 258 |
+
dropout,
|
| 259 |
+
out_channels=out_ch,
|
| 260 |
+
dims=dims,
|
| 261 |
+
use_checkpoint=use_checkpoint,
|
| 262 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 263 |
+
down=True,
|
| 264 |
+
dtype=self.dtype,
|
| 265 |
+
device=device,
|
| 266 |
+
operations=operations
|
| 267 |
+
)
|
| 268 |
+
if resblock_updown
|
| 269 |
+
else Downsample(
|
| 270 |
+
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
|
| 271 |
+
)
|
| 272 |
+
)
|
| 273 |
+
)
|
| 274 |
+
ch = out_ch
|
| 275 |
+
input_block_chans.append(ch)
|
| 276 |
+
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
|
| 277 |
+
ds *= 2
|
| 278 |
+
self._feature_size += ch
|
| 279 |
+
|
| 280 |
+
if num_head_channels == -1:
|
| 281 |
+
dim_head = ch // num_heads
|
| 282 |
+
else:
|
| 283 |
+
num_heads = ch // num_head_channels
|
| 284 |
+
dim_head = num_head_channels
|
| 285 |
+
if legacy:
|
| 286 |
+
#num_heads = 1
|
| 287 |
+
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
| 288 |
+
mid_block = [
|
| 289 |
+
ResBlock(
|
| 290 |
+
ch,
|
| 291 |
+
time_embed_dim,
|
| 292 |
+
dropout,
|
| 293 |
+
dims=dims,
|
| 294 |
+
use_checkpoint=use_checkpoint,
|
| 295 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 296 |
+
dtype=self.dtype,
|
| 297 |
+
device=device,
|
| 298 |
+
operations=operations
|
| 299 |
+
)]
|
| 300 |
+
if transformer_depth_middle >= 0:
|
| 301 |
+
mid_block += [SpatialTransformer( # always uses a self-attn
|
| 302 |
+
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
| 303 |
+
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
| 304 |
+
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
|
| 305 |
+
),
|
| 306 |
+
ResBlock(
|
| 307 |
+
ch,
|
| 308 |
+
time_embed_dim,
|
| 309 |
+
dropout,
|
| 310 |
+
dims=dims,
|
| 311 |
+
use_checkpoint=use_checkpoint,
|
| 312 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
| 313 |
+
dtype=self.dtype,
|
| 314 |
+
device=device,
|
| 315 |
+
operations=operations
|
| 316 |
+
)]
|
| 317 |
+
self.middle_block = TimestepEmbedSequential(*mid_block)
|
| 318 |
+
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
|
| 319 |
+
self._feature_size += ch
|
| 320 |
+
|
| 321 |
+
if union_controlnet_num_control_type is not None:
|
| 322 |
+
self.num_control_type = union_controlnet_num_control_type
|
| 323 |
+
num_trans_channel = 320
|
| 324 |
+
num_trans_head = 8
|
| 325 |
+
num_trans_layer = 1
|
| 326 |
+
num_proj_channel = 320
|
| 327 |
+
# task_scale_factor = num_trans_channel ** 0.5
|
| 328 |
+
self.task_embedding = nn.Parameter(torch.empty(self.num_control_type, num_trans_channel, dtype=self.dtype, device=device))
|
| 329 |
+
|
| 330 |
+
self.transformer_layes = nn.Sequential(*[ResBlockUnionControlnet(num_trans_channel, num_trans_head, dtype=self.dtype, device=device, operations=operations) for _ in range(num_trans_layer)])
|
| 331 |
+
self.spatial_ch_projs = operations.Linear(num_trans_channel, num_proj_channel, dtype=self.dtype, device=device)
|
| 332 |
+
#-----------------------------------------------------------------------------------------------------
|
| 333 |
+
|
| 334 |
+
control_add_embed_dim = 256
|
| 335 |
+
class ControlAddEmbedding(nn.Module):
|
| 336 |
+
def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations=None):
|
| 337 |
+
super().__init__()
|
| 338 |
+
self.num_control_type = num_control_type
|
| 339 |
+
self.in_dim = in_dim
|
| 340 |
+
self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
|
| 341 |
+
self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
|
| 342 |
+
def forward(self, control_type, dtype, device):
|
| 343 |
+
c_type = torch.zeros((self.num_control_type,), device=device)
|
| 344 |
+
c_type[control_type] = 1.0
|
| 345 |
+
c_type = timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
|
| 346 |
+
return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
|
| 347 |
+
|
| 348 |
+
self.control_add_embedding = ControlAddEmbedding(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
|
| 349 |
+
else:
|
| 350 |
+
self.task_embedding = None
|
| 351 |
+
self.control_add_embedding = None
|
| 352 |
+
|
| 353 |
+
def union_controlnet_merge(self, hint, control_type, emb, context):
|
| 354 |
+
# Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
|
| 355 |
+
inputs = []
|
| 356 |
+
condition_list = []
|
| 357 |
+
|
| 358 |
+
for idx in range(min(1, len(control_type))):
|
| 359 |
+
controlnet_cond = self.input_hint_block(hint[idx], emb, context)
|
| 360 |
+
feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
|
| 361 |
+
if idx < len(control_type):
|
| 362 |
+
feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device)
|
| 363 |
+
|
| 364 |
+
inputs.append(feat_seq.unsqueeze(1))
|
| 365 |
+
condition_list.append(controlnet_cond)
|
| 366 |
+
|
| 367 |
+
x = torch.cat(inputs, dim=1)
|
| 368 |
+
x = self.transformer_layes(x)
|
| 369 |
+
controlnet_cond_fuser = None
|
| 370 |
+
for idx in range(len(control_type)):
|
| 371 |
+
alpha = self.spatial_ch_projs(x[:, idx])
|
| 372 |
+
alpha = alpha.unsqueeze(-1).unsqueeze(-1)
|
| 373 |
+
o = condition_list[idx] + alpha
|
| 374 |
+
if controlnet_cond_fuser is None:
|
| 375 |
+
controlnet_cond_fuser = o
|
| 376 |
+
else:
|
| 377 |
+
controlnet_cond_fuser += o
|
| 378 |
+
return controlnet_cond_fuser
|
| 379 |
+
|
| 380 |
+
def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
|
| 381 |
+
return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
|
| 382 |
+
|
| 383 |
+
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
|
| 384 |
+
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
| 385 |
+
emb = self.time_embed(t_emb)
|
| 386 |
+
|
| 387 |
+
guided_hint = None
|
| 388 |
+
if self.control_add_embedding is not None: #Union Controlnet
|
| 389 |
+
control_type = kwargs.get("control_type", [])
|
| 390 |
+
|
| 391 |
+
if any([c >= self.num_control_type for c in control_type]):
|
| 392 |
+
max_type = max(control_type)
|
| 393 |
+
max_type_name = {
|
| 394 |
+
v: k for k, v in UNION_CONTROLNET_TYPES.items()
|
| 395 |
+
}[max_type]
|
| 396 |
+
raise ValueError(
|
| 397 |
+
f"Control type {max_type_name}({max_type}) is out of range for the number of control types" +
|
| 398 |
+
f"({self.num_control_type}) supported.\n" +
|
| 399 |
+
"Please consider using the ProMax ControlNet Union model.\n" +
|
| 400 |
+
"https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main"
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
|
| 404 |
+
if len(control_type) > 0:
|
| 405 |
+
if len(hint.shape) < 5:
|
| 406 |
+
hint = hint.unsqueeze(dim=0)
|
| 407 |
+
guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
|
| 408 |
+
|
| 409 |
+
if guided_hint is None:
|
| 410 |
+
guided_hint = self.input_hint_block(hint, emb, context)
|
| 411 |
+
|
| 412 |
+
out_output = []
|
| 413 |
+
out_middle = []
|
| 414 |
+
|
| 415 |
+
if self.num_classes is not None:
|
| 416 |
+
assert y.shape[0] == x.shape[0]
|
| 417 |
+
emb = emb + self.label_emb(y)
|
| 418 |
+
|
| 419 |
+
h = x
|
| 420 |
+
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
|
| 421 |
+
if guided_hint is not None:
|
| 422 |
+
h = module(h, emb, context)
|
| 423 |
+
h += guided_hint
|
| 424 |
+
guided_hint = None
|
| 425 |
+
else:
|
| 426 |
+
h = module(h, emb, context)
|
| 427 |
+
out_output.append(zero_conv(h, emb, context))
|
| 428 |
+
|
| 429 |
+
h = self.middle_block(h, emb, context)
|
| 430 |
+
out_middle.append(self.middle_block_out(h, emb, context))
|
| 431 |
+
|
| 432 |
+
return {"middle": out_middle, "output": out_output}
|
| 433 |
+
|
Imagine/imagine-v5-ultra/comfy/cldm/control_types.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
UNION_CONTROLNET_TYPES = {
|
| 2 |
+
"openpose": 0,
|
| 3 |
+
"depth": 1,
|
| 4 |
+
"hed/pidi/scribble/ted": 2,
|
| 5 |
+
"canny/lineart/anime_lineart/mlsd": 3,
|
| 6 |
+
"normal": 4,
|
| 7 |
+
"segment": 5,
|
| 8 |
+
"tile": 6,
|
| 9 |
+
"repaint": 7,
|
| 10 |
+
}
|
Imagine/imagine-v5-ultra/comfy/cldm/dit_embedder.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import List, Optional, Tuple
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from torch import Tensor
|
| 7 |
+
|
| 8 |
+
from comfy.ldm.modules.diffusionmodules.mmdit import DismantledBlock, PatchEmbed, VectorEmbedder, TimestepEmbedder, get_2d_sincos_pos_embed_torch
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class ControlNetEmbedder(nn.Module):
|
| 12 |
+
|
| 13 |
+
def __init__(
|
| 14 |
+
self,
|
| 15 |
+
img_size: int,
|
| 16 |
+
patch_size: int,
|
| 17 |
+
in_chans: int,
|
| 18 |
+
attention_head_dim: int,
|
| 19 |
+
num_attention_heads: int,
|
| 20 |
+
adm_in_channels: int,
|
| 21 |
+
num_layers: int,
|
| 22 |
+
main_model_double: int,
|
| 23 |
+
double_y_emb: bool,
|
| 24 |
+
device: torch.device,
|
| 25 |
+
dtype: torch.dtype,
|
| 26 |
+
pos_embed_max_size: Optional[int] = None,
|
| 27 |
+
operations = None,
|
| 28 |
+
):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.main_model_double = main_model_double
|
| 31 |
+
self.dtype = dtype
|
| 32 |
+
self.hidden_size = num_attention_heads * attention_head_dim
|
| 33 |
+
self.patch_size = patch_size
|
| 34 |
+
self.x_embedder = PatchEmbed(
|
| 35 |
+
img_size=img_size,
|
| 36 |
+
patch_size=patch_size,
|
| 37 |
+
in_chans=in_chans,
|
| 38 |
+
embed_dim=self.hidden_size,
|
| 39 |
+
strict_img_size=pos_embed_max_size is None,
|
| 40 |
+
device=device,
|
| 41 |
+
dtype=dtype,
|
| 42 |
+
operations=operations,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations)
|
| 46 |
+
|
| 47 |
+
self.double_y_emb = double_y_emb
|
| 48 |
+
if self.double_y_emb:
|
| 49 |
+
self.orig_y_embedder = VectorEmbedder(
|
| 50 |
+
adm_in_channels, self.hidden_size, dtype, device, operations=operations
|
| 51 |
+
)
|
| 52 |
+
self.y_embedder = VectorEmbedder(
|
| 53 |
+
self.hidden_size, self.hidden_size, dtype, device, operations=operations
|
| 54 |
+
)
|
| 55 |
+
else:
|
| 56 |
+
self.y_embedder = VectorEmbedder(
|
| 57 |
+
adm_in_channels, self.hidden_size, dtype, device, operations=operations
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
self.transformer_blocks = nn.ModuleList(
|
| 61 |
+
DismantledBlock(
|
| 62 |
+
hidden_size=self.hidden_size, num_heads=num_attention_heads, qkv_bias=True,
|
| 63 |
+
dtype=dtype, device=device, operations=operations
|
| 64 |
+
)
|
| 65 |
+
for _ in range(num_layers)
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# self.use_y_embedder = pooled_projection_dim != self.time_text_embed.text_embedder.linear_1.in_features
|
| 69 |
+
# TODO double check this logic when 8b
|
| 70 |
+
self.use_y_embedder = True
|
| 71 |
+
|
| 72 |
+
self.controlnet_blocks = nn.ModuleList([])
|
| 73 |
+
for _ in range(len(self.transformer_blocks)):
|
| 74 |
+
controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
| 75 |
+
self.controlnet_blocks.append(controlnet_block)
|
| 76 |
+
|
| 77 |
+
self.pos_embed_input = PatchEmbed(
|
| 78 |
+
img_size=img_size,
|
| 79 |
+
patch_size=patch_size,
|
| 80 |
+
in_chans=in_chans,
|
| 81 |
+
embed_dim=self.hidden_size,
|
| 82 |
+
strict_img_size=False,
|
| 83 |
+
device=device,
|
| 84 |
+
dtype=dtype,
|
| 85 |
+
operations=operations,
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
def forward(
|
| 89 |
+
self,
|
| 90 |
+
x: torch.Tensor,
|
| 91 |
+
timesteps: torch.Tensor,
|
| 92 |
+
y: Optional[torch.Tensor] = None,
|
| 93 |
+
context: Optional[torch.Tensor] = None,
|
| 94 |
+
hint = None,
|
| 95 |
+
) -> Tuple[Tensor, List[Tensor]]:
|
| 96 |
+
x_shape = list(x.shape)
|
| 97 |
+
x = self.x_embedder(x)
|
| 98 |
+
if not self.double_y_emb:
|
| 99 |
+
h = (x_shape[-2] + 1) // self.patch_size
|
| 100 |
+
w = (x_shape[-1] + 1) // self.patch_size
|
| 101 |
+
x += get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=x.device)
|
| 102 |
+
c = self.t_embedder(timesteps, dtype=x.dtype)
|
| 103 |
+
if y is not None and self.y_embedder is not None:
|
| 104 |
+
if self.double_y_emb:
|
| 105 |
+
y = self.orig_y_embedder(y)
|
| 106 |
+
y = self.y_embedder(y)
|
| 107 |
+
c = c + y
|
| 108 |
+
|
| 109 |
+
x = x + self.pos_embed_input(hint)
|
| 110 |
+
|
| 111 |
+
block_out = ()
|
| 112 |
+
|
| 113 |
+
repeat = math.ceil(self.main_model_double / len(self.transformer_blocks))
|
| 114 |
+
for i in range(len(self.transformer_blocks)):
|
| 115 |
+
out = self.transformer_blocks[i](x, c)
|
| 116 |
+
if not self.double_y_emb:
|
| 117 |
+
x = out
|
| 118 |
+
block_out += (self.controlnet_blocks[i](out),) * repeat
|
| 119 |
+
|
| 120 |
+
return {"output": block_out}
|
Imagine/imagine-v5-ultra/comfy/cldm/mmdit.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from typing import Optional
|
| 3 |
+
import comfy.ldm.modules.diffusionmodules.mmdit
|
| 4 |
+
|
| 5 |
+
class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
|
| 6 |
+
def __init__(
|
| 7 |
+
self,
|
| 8 |
+
num_blocks = None,
|
| 9 |
+
control_latent_channels = None,
|
| 10 |
+
dtype = None,
|
| 11 |
+
device = None,
|
| 12 |
+
operations = None,
|
| 13 |
+
**kwargs,
|
| 14 |
+
):
|
| 15 |
+
super().__init__(dtype=dtype, device=device, operations=operations, final_layer=False, num_blocks=num_blocks, **kwargs)
|
| 16 |
+
# controlnet_blocks
|
| 17 |
+
self.controlnet_blocks = torch.nn.ModuleList([])
|
| 18 |
+
for _ in range(len(self.joint_blocks)):
|
| 19 |
+
self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
|
| 20 |
+
|
| 21 |
+
if control_latent_channels is None:
|
| 22 |
+
control_latent_channels = self.in_channels
|
| 23 |
+
|
| 24 |
+
self.pos_embed_input = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
|
| 25 |
+
None,
|
| 26 |
+
self.patch_size,
|
| 27 |
+
control_latent_channels,
|
| 28 |
+
self.hidden_size,
|
| 29 |
+
bias=True,
|
| 30 |
+
strict_img_size=False,
|
| 31 |
+
dtype=dtype,
|
| 32 |
+
device=device,
|
| 33 |
+
operations=operations
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
def forward(
|
| 37 |
+
self,
|
| 38 |
+
x: torch.Tensor,
|
| 39 |
+
timesteps: torch.Tensor,
|
| 40 |
+
y: Optional[torch.Tensor] = None,
|
| 41 |
+
context: Optional[torch.Tensor] = None,
|
| 42 |
+
hint = None,
|
| 43 |
+
) -> torch.Tensor:
|
| 44 |
+
|
| 45 |
+
#weird sd3 controlnet specific stuff
|
| 46 |
+
y = torch.zeros_like(y)
|
| 47 |
+
|
| 48 |
+
if self.context_processor is not None:
|
| 49 |
+
context = self.context_processor(context)
|
| 50 |
+
|
| 51 |
+
hw = x.shape[-2:]
|
| 52 |
+
x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
|
| 53 |
+
x += self.pos_embed_input(hint)
|
| 54 |
+
|
| 55 |
+
c = self.t_embedder(timesteps, dtype=x.dtype)
|
| 56 |
+
if y is not None and self.y_embedder is not None:
|
| 57 |
+
y = self.y_embedder(y)
|
| 58 |
+
c = c + y
|
| 59 |
+
|
| 60 |
+
if context is not None:
|
| 61 |
+
context = self.context_embedder(context)
|
| 62 |
+
|
| 63 |
+
output = []
|
| 64 |
+
|
| 65 |
+
blocks = len(self.joint_blocks)
|
| 66 |
+
for i in range(blocks):
|
| 67 |
+
context, x = self.joint_blocks[i](
|
| 68 |
+
context,
|
| 69 |
+
x,
|
| 70 |
+
c=c,
|
| 71 |
+
use_checkpoint=self.use_checkpoint,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
out = self.controlnet_blocks[i](x)
|
| 75 |
+
count = self.depth // blocks
|
| 76 |
+
if i == blocks - 1:
|
| 77 |
+
count -= 1
|
| 78 |
+
for j in range(count):
|
| 79 |
+
output.append(out)
|
| 80 |
+
|
| 81 |
+
return {"output": output}
|
Imagine/imagine-v5-ultra/comfy/cli_args.py
ADDED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import enum
|
| 3 |
+
import os
|
| 4 |
+
import comfy.options
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class EnumAction(argparse.Action):
|
| 8 |
+
"""
|
| 9 |
+
Argparse action for handling Enums
|
| 10 |
+
"""
|
| 11 |
+
def __init__(self, **kwargs):
|
| 12 |
+
# Pop off the type value
|
| 13 |
+
enum_type = kwargs.pop("type", None)
|
| 14 |
+
|
| 15 |
+
# Ensure an Enum subclass is provided
|
| 16 |
+
if enum_type is None:
|
| 17 |
+
raise ValueError("type must be assigned an Enum when using EnumAction")
|
| 18 |
+
if not issubclass(enum_type, enum.Enum):
|
| 19 |
+
raise TypeError("type must be an Enum when using EnumAction")
|
| 20 |
+
|
| 21 |
+
# Generate choices from the Enum
|
| 22 |
+
choices = tuple(e.value for e in enum_type)
|
| 23 |
+
kwargs.setdefault("choices", choices)
|
| 24 |
+
kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
|
| 25 |
+
|
| 26 |
+
super(EnumAction, self).__init__(**kwargs)
|
| 27 |
+
|
| 28 |
+
self._enum = enum_type
|
| 29 |
+
|
| 30 |
+
def __call__(self, parser, namespace, values, option_string=None):
|
| 31 |
+
# Convert value back into an Enum
|
| 32 |
+
value = self._enum(values)
|
| 33 |
+
setattr(namespace, self.dest, value)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
parser = argparse.ArgumentParser()
|
| 37 |
+
|
| 38 |
+
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0,::", help="Specify the IP address to listen on (default: 127.0.0.1). You can give a list of ip addresses by separating them with a comma like: 127.2.2.2,127.3.3.3 If --listen is provided without an argument, it defaults to 0.0.0.0,:: (listens on all ipv4 and ipv6)")
|
| 39 |
+
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
|
| 40 |
+
parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
|
| 41 |
+
parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
|
| 42 |
+
parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
|
| 43 |
+
parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
|
| 44 |
+
|
| 45 |
+
parser.add_argument("--base-directory", type=str, default=None, help="Set the ComfyUI base directory for models, custom_nodes, input, output, temp, and user directories.")
|
| 46 |
+
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
|
| 47 |
+
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory. Overrides --base-directory.")
|
| 48 |
+
parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory). Overrides --base-directory.")
|
| 49 |
+
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
|
| 50 |
+
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
|
| 51 |
+
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
|
| 52 |
+
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
|
| 53 |
+
cm_group = parser.add_mutually_exclusive_group()
|
| 54 |
+
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
|
| 55 |
+
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
fp_group = parser.add_mutually_exclusive_group()
|
| 59 |
+
fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
|
| 60 |
+
fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
|
| 61 |
+
|
| 62 |
+
fpunet_group = parser.add_mutually_exclusive_group()
|
| 63 |
+
fpunet_group.add_argument("--fp32-unet", action="store_true", help="Run the diffusion model in fp32.")
|
| 64 |
+
fpunet_group.add_argument("--fp64-unet", action="store_true", help="Run the diffusion model in fp64.")
|
| 65 |
+
fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diffusion model in bf16.")
|
| 66 |
+
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
|
| 67 |
+
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
|
| 68 |
+
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
|
| 69 |
+
|
| 70 |
+
fpvae_group = parser.add_mutually_exclusive_group()
|
| 71 |
+
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
|
| 72 |
+
fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
|
| 73 |
+
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
|
| 74 |
+
|
| 75 |
+
parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
|
| 76 |
+
|
| 77 |
+
fpte_group = parser.add_mutually_exclusive_group()
|
| 78 |
+
fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
|
| 79 |
+
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
|
| 80 |
+
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
|
| 81 |
+
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
|
| 82 |
+
fpte_group.add_argument("--bf16-text-enc", action="store_true", help="Store text encoder weights in bf16.")
|
| 83 |
+
|
| 84 |
+
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
|
| 85 |
+
|
| 86 |
+
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
|
| 87 |
+
|
| 88 |
+
parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
|
| 89 |
+
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
|
| 90 |
+
|
| 91 |
+
class LatentPreviewMethod(enum.Enum):
|
| 92 |
+
NoPreviews = "none"
|
| 93 |
+
Auto = "auto"
|
| 94 |
+
Latent2RGB = "latent2rgb"
|
| 95 |
+
TAESD = "taesd"
|
| 96 |
+
|
| 97 |
+
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
|
| 98 |
+
|
| 99 |
+
parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
|
| 100 |
+
|
| 101 |
+
cache_group = parser.add_mutually_exclusive_group()
|
| 102 |
+
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
|
| 103 |
+
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
|
| 104 |
+
|
| 105 |
+
attn_group = parser.add_mutually_exclusive_group()
|
| 106 |
+
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
|
| 107 |
+
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
|
| 108 |
+
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
| 109 |
+
attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
|
| 110 |
+
attn_group.add_argument("--use-flash-attention", action="store_true", help="Use FlashAttention.")
|
| 111 |
+
|
| 112 |
+
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
|
| 113 |
+
|
| 114 |
+
upcast = parser.add_mutually_exclusive_group()
|
| 115 |
+
upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.")
|
| 116 |
+
upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
vram_group = parser.add_mutually_exclusive_group()
|
| 120 |
+
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
|
| 121 |
+
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
|
| 122 |
+
vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
|
| 123 |
+
vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
|
| 124 |
+
vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
|
| 125 |
+
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
|
| 126 |
+
|
| 127 |
+
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
|
| 131 |
+
|
| 132 |
+
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
|
| 133 |
+
parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
|
| 134 |
+
|
| 135 |
+
class PerformanceFeature(enum.Enum):
|
| 136 |
+
Fp16Accumulation = "fp16_accumulation"
|
| 137 |
+
Fp8MatrixMultiplication = "fp8_matrix_mult"
|
| 138 |
+
|
| 139 |
+
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult")
|
| 140 |
+
|
| 141 |
+
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
|
| 142 |
+
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
|
| 143 |
+
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
|
| 144 |
+
|
| 145 |
+
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
|
| 146 |
+
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
|
| 147 |
+
|
| 148 |
+
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
|
| 149 |
+
|
| 150 |
+
parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
|
| 151 |
+
parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).")
|
| 152 |
+
|
| 153 |
+
# The default built-in provider hosted under web/
|
| 154 |
+
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
|
| 155 |
+
|
| 156 |
+
parser.add_argument(
|
| 157 |
+
"--front-end-version",
|
| 158 |
+
type=str,
|
| 159 |
+
default=DEFAULT_VERSION_STRING,
|
| 160 |
+
help="""
|
| 161 |
+
Specifies the version of the frontend to be used. This command needs internet connectivity to query and
|
| 162 |
+
download available frontend implementations from GitHub releases.
|
| 163 |
+
|
| 164 |
+
The version string should be in the format of:
|
| 165 |
+
[repoOwner]/[repoName]@[version]
|
| 166 |
+
where version is one of: "latest" or a valid version number (e.g. "1.0.0")
|
| 167 |
+
""",
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
def is_valid_directory(path: str) -> str:
|
| 171 |
+
"""Validate if the given path is a directory, and check permissions."""
|
| 172 |
+
if not os.path.exists(path):
|
| 173 |
+
raise argparse.ArgumentTypeError(f"The path '{path}' does not exist.")
|
| 174 |
+
if not os.path.isdir(path):
|
| 175 |
+
raise argparse.ArgumentTypeError(f"'{path}' is not a directory.")
|
| 176 |
+
if not os.access(path, os.R_OK):
|
| 177 |
+
raise argparse.ArgumentTypeError(f"You do not have read permissions for '{path}'.")
|
| 178 |
+
return path
|
| 179 |
+
|
| 180 |
+
parser.add_argument(
|
| 181 |
+
"--front-end-root",
|
| 182 |
+
type=is_valid_directory,
|
| 183 |
+
default=None,
|
| 184 |
+
help="The local filesystem path to the directory where the frontend is located. Overrides --front-end-version.",
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
parser.add_argument("--user-directory", type=is_valid_directory, default=None, help="Set the ComfyUI user directory with an absolute path. Overrides --base-directory.")
|
| 188 |
+
|
| 189 |
+
parser.add_argument("--enable-compress-response-body", action="store_true", help="Enable compressing response body.")
|
| 190 |
+
|
| 191 |
+
if comfy.options.args_parsing:
|
| 192 |
+
args = parser.parse_args()
|
| 193 |
+
else:
|
| 194 |
+
args = parser.parse_args([])
|
| 195 |
+
|
| 196 |
+
if args.windows_standalone_build:
|
| 197 |
+
args.auto_launch = True
|
| 198 |
+
|
| 199 |
+
if args.disable_auto_launch:
|
| 200 |
+
args.auto_launch = False
|
| 201 |
+
|
| 202 |
+
if args.force_fp16:
|
| 203 |
+
args.fp16_unet = True
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
# '--fast' is not provided, use an empty set
|
| 207 |
+
if args.fast is None:
|
| 208 |
+
args.fast = set()
|
| 209 |
+
# '--fast' is provided with an empty list, enable all optimizations
|
| 210 |
+
elif args.fast == []:
|
| 211 |
+
args.fast = set(PerformanceFeature)
|
| 212 |
+
# '--fast' is provided with a list of performance features, use that list
|
| 213 |
+
else:
|
| 214 |
+
args.fast = set(args.fast)
|
Imagine/imagine-v5-ultra/comfy/clip_config_bigg.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"CLIPTextModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"dropout": 0.0,
|
| 8 |
+
"eos_token_id": 49407,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_size": 1280,
|
| 11 |
+
"initializer_factor": 1.0,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 5120,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 77,
|
| 16 |
+
"model_type": "clip_text_model",
|
| 17 |
+
"num_attention_heads": 20,
|
| 18 |
+
"num_hidden_layers": 32,
|
| 19 |
+
"pad_token_id": 1,
|
| 20 |
+
"projection_dim": 1280,
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"vocab_size": 49408
|
| 23 |
+
}
|
Imagine/imagine-v5-ultra/comfy/clip_model.py
ADDED
|
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from comfy.ldm.modules.attention import optimized_attention_for_device
|
| 3 |
+
import comfy.ops
|
| 4 |
+
|
| 5 |
+
class CLIPAttention(torch.nn.Module):
|
| 6 |
+
def __init__(self, embed_dim, heads, dtype, device, operations):
|
| 7 |
+
super().__init__()
|
| 8 |
+
|
| 9 |
+
self.heads = heads
|
| 10 |
+
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
| 11 |
+
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
| 12 |
+
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
| 13 |
+
|
| 14 |
+
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
| 15 |
+
|
| 16 |
+
def forward(self, x, mask=None, optimized_attention=None):
|
| 17 |
+
q = self.q_proj(x)
|
| 18 |
+
k = self.k_proj(x)
|
| 19 |
+
v = self.v_proj(x)
|
| 20 |
+
|
| 21 |
+
out = optimized_attention(q, k, v, self.heads, mask)
|
| 22 |
+
return self.out_proj(out)
|
| 23 |
+
|
| 24 |
+
ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
|
| 25 |
+
"gelu": torch.nn.functional.gelu,
|
| 26 |
+
"gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
class CLIPMLP(torch.nn.Module):
|
| 30 |
+
def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
|
| 33 |
+
self.activation = ACTIVATIONS[activation]
|
| 34 |
+
self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
|
| 35 |
+
|
| 36 |
+
def forward(self, x):
|
| 37 |
+
x = self.fc1(x)
|
| 38 |
+
x = self.activation(x)
|
| 39 |
+
x = self.fc2(x)
|
| 40 |
+
return x
|
| 41 |
+
|
| 42 |
+
class CLIPLayer(torch.nn.Module):
|
| 43 |
+
def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
| 46 |
+
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
|
| 47 |
+
self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
| 48 |
+
self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
|
| 49 |
+
|
| 50 |
+
def forward(self, x, mask=None, optimized_attention=None):
|
| 51 |
+
x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
|
| 52 |
+
x += self.mlp(self.layer_norm2(x))
|
| 53 |
+
return x
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class CLIPEncoder(torch.nn.Module):
|
| 57 |
+
def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
|
| 58 |
+
super().__init__()
|
| 59 |
+
self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
|
| 60 |
+
|
| 61 |
+
def forward(self, x, mask=None, intermediate_output=None):
|
| 62 |
+
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
|
| 63 |
+
|
| 64 |
+
if intermediate_output is not None:
|
| 65 |
+
if intermediate_output < 0:
|
| 66 |
+
intermediate_output = len(self.layers) + intermediate_output
|
| 67 |
+
|
| 68 |
+
intermediate = None
|
| 69 |
+
for i, l in enumerate(self.layers):
|
| 70 |
+
x = l(x, mask, optimized_attention)
|
| 71 |
+
if i == intermediate_output:
|
| 72 |
+
intermediate = x.clone()
|
| 73 |
+
return x, intermediate
|
| 74 |
+
|
| 75 |
+
class CLIPEmbeddings(torch.nn.Module):
|
| 76 |
+
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None):
|
| 77 |
+
super().__init__()
|
| 78 |
+
self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
| 79 |
+
self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
| 80 |
+
|
| 81 |
+
def forward(self, input_tokens, dtype=torch.float32):
|
| 82 |
+
return self.token_embedding(input_tokens, out_dtype=dtype) + comfy.ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class CLIPTextModel_(torch.nn.Module):
|
| 86 |
+
def __init__(self, config_dict, dtype, device, operations):
|
| 87 |
+
num_layers = config_dict["num_hidden_layers"]
|
| 88 |
+
embed_dim = config_dict["hidden_size"]
|
| 89 |
+
heads = config_dict["num_attention_heads"]
|
| 90 |
+
intermediate_size = config_dict["intermediate_size"]
|
| 91 |
+
intermediate_activation = config_dict["hidden_act"]
|
| 92 |
+
num_positions = config_dict["max_position_embeddings"]
|
| 93 |
+
self.eos_token_id = config_dict["eos_token_id"]
|
| 94 |
+
|
| 95 |
+
super().__init__()
|
| 96 |
+
self.embeddings = CLIPEmbeddings(embed_dim, num_positions=num_positions, dtype=dtype, device=device, operations=operations)
|
| 97 |
+
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
| 98 |
+
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
| 99 |
+
|
| 100 |
+
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
|
| 101 |
+
if embeds is not None:
|
| 102 |
+
x = embeds + comfy.ops.cast_to(self.embeddings.position_embedding.weight, dtype=dtype, device=embeds.device)
|
| 103 |
+
else:
|
| 104 |
+
x = self.embeddings(input_tokens, dtype=dtype)
|
| 105 |
+
|
| 106 |
+
mask = None
|
| 107 |
+
if attention_mask is not None:
|
| 108 |
+
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
| 109 |
+
mask = mask.masked_fill(mask.to(torch.bool), -torch.finfo(x.dtype).max)
|
| 110 |
+
|
| 111 |
+
causal_mask = torch.full((x.shape[1], x.shape[1]), -torch.finfo(x.dtype).max, dtype=x.dtype, device=x.device).triu_(1)
|
| 112 |
+
|
| 113 |
+
if mask is not None:
|
| 114 |
+
mask += causal_mask
|
| 115 |
+
else:
|
| 116 |
+
mask = causal_mask
|
| 117 |
+
|
| 118 |
+
x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
|
| 119 |
+
x = self.final_layer_norm(x)
|
| 120 |
+
if i is not None and final_layer_norm_intermediate:
|
| 121 |
+
i = self.final_layer_norm(i)
|
| 122 |
+
|
| 123 |
+
if num_tokens is not None:
|
| 124 |
+
pooled_output = x[list(range(x.shape[0])), list(map(lambda a: a - 1, num_tokens))]
|
| 125 |
+
else:
|
| 126 |
+
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
|
| 127 |
+
return x, i, pooled_output
|
| 128 |
+
|
| 129 |
+
class CLIPTextModel(torch.nn.Module):
|
| 130 |
+
def __init__(self, config_dict, dtype, device, operations):
|
| 131 |
+
super().__init__()
|
| 132 |
+
self.num_layers = config_dict["num_hidden_layers"]
|
| 133 |
+
self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
|
| 134 |
+
embed_dim = config_dict["hidden_size"]
|
| 135 |
+
self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
|
| 136 |
+
self.dtype = dtype
|
| 137 |
+
|
| 138 |
+
def get_input_embeddings(self):
|
| 139 |
+
return self.text_model.embeddings.token_embedding
|
| 140 |
+
|
| 141 |
+
def set_input_embeddings(self, embeddings):
|
| 142 |
+
self.text_model.embeddings.token_embedding = embeddings
|
| 143 |
+
|
| 144 |
+
def forward(self, *args, **kwargs):
|
| 145 |
+
x = self.text_model(*args, **kwargs)
|
| 146 |
+
out = self.text_projection(x[2])
|
| 147 |
+
return (x[0], x[1], out, x[2])
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class CLIPVisionEmbeddings(torch.nn.Module):
|
| 151 |
+
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", dtype=None, device=None, operations=None):
|
| 152 |
+
super().__init__()
|
| 153 |
+
|
| 154 |
+
num_patches = (image_size // patch_size) ** 2
|
| 155 |
+
if model_type == "siglip_vision_model":
|
| 156 |
+
self.class_embedding = None
|
| 157 |
+
patch_bias = True
|
| 158 |
+
else:
|
| 159 |
+
num_patches = num_patches + 1
|
| 160 |
+
self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
|
| 161 |
+
patch_bias = False
|
| 162 |
+
|
| 163 |
+
self.patch_embedding = operations.Conv2d(
|
| 164 |
+
in_channels=num_channels,
|
| 165 |
+
out_channels=embed_dim,
|
| 166 |
+
kernel_size=patch_size,
|
| 167 |
+
stride=patch_size,
|
| 168 |
+
bias=patch_bias,
|
| 169 |
+
dtype=dtype,
|
| 170 |
+
device=device
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
self.position_embedding = operations.Embedding(num_patches, embed_dim, dtype=dtype, device=device)
|
| 174 |
+
|
| 175 |
+
def forward(self, pixel_values):
|
| 176 |
+
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
|
| 177 |
+
if self.class_embedding is not None:
|
| 178 |
+
embeds = torch.cat([comfy.ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1)
|
| 179 |
+
return embeds + comfy.ops.cast_to_input(self.position_embedding.weight, embeds)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class CLIPVision(torch.nn.Module):
|
| 183 |
+
def __init__(self, config_dict, dtype, device, operations):
|
| 184 |
+
super().__init__()
|
| 185 |
+
num_layers = config_dict["num_hidden_layers"]
|
| 186 |
+
embed_dim = config_dict["hidden_size"]
|
| 187 |
+
heads = config_dict["num_attention_heads"]
|
| 188 |
+
intermediate_size = config_dict["intermediate_size"]
|
| 189 |
+
intermediate_activation = config_dict["hidden_act"]
|
| 190 |
+
model_type = config_dict["model_type"]
|
| 191 |
+
|
| 192 |
+
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
|
| 193 |
+
if model_type == "siglip_vision_model":
|
| 194 |
+
self.pre_layrnorm = lambda a: a
|
| 195 |
+
self.output_layernorm = True
|
| 196 |
+
else:
|
| 197 |
+
self.pre_layrnorm = operations.LayerNorm(embed_dim)
|
| 198 |
+
self.output_layernorm = False
|
| 199 |
+
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
| 200 |
+
self.post_layernorm = operations.LayerNorm(embed_dim)
|
| 201 |
+
|
| 202 |
+
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
|
| 203 |
+
x = self.embeddings(pixel_values)
|
| 204 |
+
x = self.pre_layrnorm(x)
|
| 205 |
+
#TODO: attention_mask?
|
| 206 |
+
x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
|
| 207 |
+
if self.output_layernorm:
|
| 208 |
+
x = self.post_layernorm(x)
|
| 209 |
+
pooled_output = x
|
| 210 |
+
else:
|
| 211 |
+
pooled_output = self.post_layernorm(x[:, 0, :])
|
| 212 |
+
return x, i, pooled_output
|
| 213 |
+
|
| 214 |
+
class LlavaProjector(torch.nn.Module):
|
| 215 |
+
def __init__(self, in_dim, out_dim, dtype, device, operations):
|
| 216 |
+
super().__init__()
|
| 217 |
+
self.linear_1 = operations.Linear(in_dim, out_dim, bias=True, device=device, dtype=dtype)
|
| 218 |
+
self.linear_2 = operations.Linear(out_dim, out_dim, bias=True, device=device, dtype=dtype)
|
| 219 |
+
|
| 220 |
+
def forward(self, x):
|
| 221 |
+
return self.linear_2(torch.nn.functional.gelu(self.linear_1(x[:, 1:])))
|
| 222 |
+
|
| 223 |
+
class CLIPVisionModelProjection(torch.nn.Module):
|
| 224 |
+
def __init__(self, config_dict, dtype, device, operations):
|
| 225 |
+
super().__init__()
|
| 226 |
+
self.vision_model = CLIPVision(config_dict, dtype, device, operations)
|
| 227 |
+
if "projection_dim" in config_dict:
|
| 228 |
+
self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
|
| 229 |
+
else:
|
| 230 |
+
self.visual_projection = lambda a: a
|
| 231 |
+
|
| 232 |
+
if "llava3" == config_dict.get("projector_type", None):
|
| 233 |
+
self.multi_modal_projector = LlavaProjector(config_dict["hidden_size"], 4096, dtype, device, operations)
|
| 234 |
+
else:
|
| 235 |
+
self.multi_modal_projector = None
|
| 236 |
+
|
| 237 |
+
def forward(self, *args, **kwargs):
|
| 238 |
+
x = self.vision_model(*args, **kwargs)
|
| 239 |
+
out = self.visual_projection(x[2])
|
| 240 |
+
projected = None
|
| 241 |
+
if self.multi_modal_projector is not None:
|
| 242 |
+
projected = self.multi_modal_projector(x[1])
|
| 243 |
+
|
| 244 |
+
return (x[0], x[1], out, projected)
|
Imagine/imagine-v5-ultra/comfy/clip_vision.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
import json
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
import comfy.ops
|
| 8 |
+
import comfy.model_patcher
|
| 9 |
+
import comfy.model_management
|
| 10 |
+
import comfy.utils
|
| 11 |
+
import comfy.clip_model
|
| 12 |
+
import comfy.image_encoders.dino2
|
| 13 |
+
|
| 14 |
+
class Output:
|
| 15 |
+
def __getitem__(self, key):
|
| 16 |
+
return getattr(self, key)
|
| 17 |
+
def __setitem__(self, key, item):
|
| 18 |
+
setattr(self, key, item)
|
| 19 |
+
|
| 20 |
+
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
|
| 21 |
+
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
|
| 22 |
+
std = torch.tensor(std, device=image.device, dtype=image.dtype)
|
| 23 |
+
image = image.movedim(-1, 1)
|
| 24 |
+
if not (image.shape[2] == size and image.shape[3] == size):
|
| 25 |
+
if crop:
|
| 26 |
+
scale = (size / min(image.shape[2], image.shape[3]))
|
| 27 |
+
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
|
| 28 |
+
else:
|
| 29 |
+
scale_size = (size, size)
|
| 30 |
+
|
| 31 |
+
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
|
| 32 |
+
h = (image.shape[2] - size)//2
|
| 33 |
+
w = (image.shape[3] - size)//2
|
| 34 |
+
image = image[:,:,h:h+size,w:w+size]
|
| 35 |
+
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
| 36 |
+
return (image - mean.view([3,1,1])) / std.view([3,1,1])
|
| 37 |
+
|
| 38 |
+
IMAGE_ENCODERS = {
|
| 39 |
+
"clip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
|
| 40 |
+
"siglip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
|
| 41 |
+
"dinov2": comfy.image_encoders.dino2.Dinov2Model,
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
class ClipVisionModel():
|
| 45 |
+
def __init__(self, json_config):
|
| 46 |
+
with open(json_config) as f:
|
| 47 |
+
config = json.load(f)
|
| 48 |
+
|
| 49 |
+
self.image_size = config.get("image_size", 224)
|
| 50 |
+
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
|
| 51 |
+
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
|
| 52 |
+
model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
|
| 53 |
+
self.load_device = comfy.model_management.text_encoder_device()
|
| 54 |
+
offload_device = comfy.model_management.text_encoder_offload_device()
|
| 55 |
+
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
| 56 |
+
self.model = model_class(config, self.dtype, offload_device, comfy.ops.manual_cast)
|
| 57 |
+
self.model.eval()
|
| 58 |
+
|
| 59 |
+
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
| 60 |
+
|
| 61 |
+
def load_sd(self, sd):
|
| 62 |
+
return self.model.load_state_dict(sd, strict=False)
|
| 63 |
+
|
| 64 |
+
def get_sd(self):
|
| 65 |
+
return self.model.state_dict()
|
| 66 |
+
|
| 67 |
+
def encode_image(self, image, crop=True):
|
| 68 |
+
comfy.model_management.load_model_gpu(self.patcher)
|
| 69 |
+
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
|
| 70 |
+
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
|
| 71 |
+
|
| 72 |
+
outputs = Output()
|
| 73 |
+
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
|
| 74 |
+
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
|
| 75 |
+
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
|
| 76 |
+
outputs["mm_projected"] = out[3]
|
| 77 |
+
return outputs
|
| 78 |
+
|
| 79 |
+
def convert_to_transformers(sd, prefix):
|
| 80 |
+
sd_k = sd.keys()
|
| 81 |
+
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
|
| 82 |
+
keys_to_replace = {
|
| 83 |
+
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
|
| 84 |
+
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
|
| 85 |
+
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
|
| 86 |
+
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
|
| 87 |
+
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
|
| 88 |
+
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
|
| 89 |
+
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
for x in keys_to_replace:
|
| 93 |
+
if x in sd_k:
|
| 94 |
+
sd[keys_to_replace[x]] = sd.pop(x)
|
| 95 |
+
|
| 96 |
+
if "{}proj".format(prefix) in sd_k:
|
| 97 |
+
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
|
| 98 |
+
|
| 99 |
+
sd = transformers_convert(sd, prefix, "vision_model.", 48)
|
| 100 |
+
else:
|
| 101 |
+
replace_prefix = {prefix: ""}
|
| 102 |
+
sd = state_dict_prefix_replace(sd, replace_prefix)
|
| 103 |
+
return sd
|
| 104 |
+
|
| 105 |
+
def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
| 106 |
+
if convert_keys:
|
| 107 |
+
sd = convert_to_transformers(sd, prefix)
|
| 108 |
+
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
|
| 109 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
|
| 110 |
+
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
| 111 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
|
| 112 |
+
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
| 113 |
+
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
|
| 114 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
|
| 115 |
+
elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
|
| 116 |
+
if "multi_modal_projector.linear_1.bias" in sd:
|
| 117 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")
|
| 118 |
+
else:
|
| 119 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
|
| 120 |
+
else:
|
| 121 |
+
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
| 122 |
+
elif "embeddings.patch_embeddings.projection.weight" in sd:
|
| 123 |
+
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
|
| 124 |
+
else:
|
| 125 |
+
return None
|
| 126 |
+
|
| 127 |
+
clip = ClipVisionModel(json_config)
|
| 128 |
+
m, u = clip.load_sd(sd)
|
| 129 |
+
if len(m) > 0:
|
| 130 |
+
logging.warning("missing clip vision: {}".format(m))
|
| 131 |
+
u = set(u)
|
| 132 |
+
keys = list(sd.keys())
|
| 133 |
+
for k in keys:
|
| 134 |
+
if k not in u:
|
| 135 |
+
sd.pop(k)
|
| 136 |
+
return clip
|
| 137 |
+
|
| 138 |
+
def load(ckpt_path):
|
| 139 |
+
sd = load_torch_file(ckpt_path)
|
| 140 |
+
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
|
| 141 |
+
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
|
| 142 |
+
else:
|
| 143 |
+
return load_clipvision_from_sd(sd)
|
Imagine/imagine-v5-ultra/comfy/clip_vision_config_g.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_dropout": 0.0,
|
| 3 |
+
"dropout": 0.0,
|
| 4 |
+
"hidden_act": "gelu",
|
| 5 |
+
"hidden_size": 1664,
|
| 6 |
+
"image_size": 224,
|
| 7 |
+
"initializer_factor": 1.0,
|
| 8 |
+
"initializer_range": 0.02,
|
| 9 |
+
"intermediate_size": 8192,
|
| 10 |
+
"layer_norm_eps": 1e-05,
|
| 11 |
+
"model_type": "clip_vision_model",
|
| 12 |
+
"num_attention_heads": 16,
|
| 13 |
+
"num_channels": 3,
|
| 14 |
+
"num_hidden_layers": 48,
|
| 15 |
+
"patch_size": 14,
|
| 16 |
+
"projection_dim": 1280,
|
| 17 |
+
"torch_dtype": "float32"
|
| 18 |
+
}
|
Imagine/imagine-v5-ultra/comfy/clip_vision_config_h.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_dropout": 0.0,
|
| 3 |
+
"dropout": 0.0,
|
| 4 |
+
"hidden_act": "gelu",
|
| 5 |
+
"hidden_size": 1280,
|
| 6 |
+
"image_size": 224,
|
| 7 |
+
"initializer_factor": 1.0,
|
| 8 |
+
"initializer_range": 0.02,
|
| 9 |
+
"intermediate_size": 5120,
|
| 10 |
+
"layer_norm_eps": 1e-05,
|
| 11 |
+
"model_type": "clip_vision_model",
|
| 12 |
+
"num_attention_heads": 16,
|
| 13 |
+
"num_channels": 3,
|
| 14 |
+
"num_hidden_layers": 32,
|
| 15 |
+
"patch_size": 14,
|
| 16 |
+
"projection_dim": 1024,
|
| 17 |
+
"torch_dtype": "float32"
|
| 18 |
+
}
|
Imagine/imagine-v5-ultra/comfy/clip_vision_config_vitl.json
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attention_dropout": 0.0,
|
| 3 |
+
"dropout": 0.0,
|
| 4 |
+
"hidden_act": "quick_gelu",
|
| 5 |
+
"hidden_size": 1024,
|
| 6 |
+
"image_size": 224,
|
| 7 |
+
"initializer_factor": 1.0,
|
| 8 |
+
"initializer_range": 0.02,
|
| 9 |
+
"intermediate_size": 4096,
|
| 10 |
+
"layer_norm_eps": 1e-05,
|
| 11 |
+
"model_type": "clip_vision_model",
|
| 12 |
+
"num_attention_heads": 16,
|
| 13 |
+
"num_channels": 3,
|
| 14 |
+
"num_hidden_layers": 24,
|
| 15 |
+
"patch_size": 14,
|
| 16 |
+
"projection_dim": 768,
|
| 17 |
+
"torch_dtype": "float32"
|
| 18 |
+
}
|