Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,87 +1,72 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
""
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
result = classifier.get_probability(target_text)
|
| 74 |
-
|
| 75 |
-
# Print results
|
| 76 |
-
print("Classification Probabilities:", result)
|
| 77 |
-
```
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
## Citation
|
| 82 |
-
|
| 83 |
-
If you find this model useful, please cite:
|
| 84 |
-
|
| 85 |
-
```plaintext
|
| 86 |
-
[Authors], "[Paper Title]," [Venue], [Year], [URL or DOI].
|
| 87 |
-
```
|
|
|
|
| 1 |
+
# AI Detect Model
|
| 2 |
+
|
| 3 |
+
## Model Description
|
| 4 |
+
|
| 5 |
+
The **AI Detect Model** is a binary classification model designed to determine whether a given text is AI-generated (label=1) or written by a human (label=0). This model plays a crucial role in providing AI detection rewards, helping to prevent reward hacking during Reinforcement Learning with Cycle Consistency (RLCC). For more details, please refer to [our paper](https://tongyi.aliyun.com/qianwen/?sessionId=ea3bbcf36a2346a0a7819b06fcb36a1c#).
|
| 6 |
+
|
| 7 |
+
This model is built upon the [Longformer](https://huggingface.co/allenai/longformer-base-4096) architecture and trained using our proprietary [LMSYS-USP](https://huggingface.co/datasets/wangkevin02/LMSYS-USP) dataset. Specifically, in a dialogue context, texts generated by the assistant are labeled as AI-generated (label=1), while user-generated texts are assigned the opposite label (label=0).
|
| 8 |
+
|
| 9 |
+
> *Note*: Our model is subject to the following constraints:
|
| 10 |
+
>
|
| 11 |
+
> 1. **Maximum Context Length**: Supports up to **4,096 tokens**. Exceeding this may degrade performance; keep inputs within this limit for best results.
|
| 12 |
+
> 2. **Language Limitation**: Optimized for English. Non-English performance may vary due to limited training data.
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
## Quick Start
|
| 17 |
+
|
| 18 |
+
You can utilize our AI detection model as demonstrated below:
|
| 19 |
+
|
| 20 |
+
```python
|
| 21 |
+
from transformers import LongformerTokenizer, LongformerForSequenceClassification
|
| 22 |
+
import torch
|
| 23 |
+
import torch.nn.functional as F
|
| 24 |
+
|
| 25 |
+
class AIDetector:
|
| 26 |
+
def __init__(self, model_name="allenai/longformer-base-4096", max_length=4096):
|
| 27 |
+
"""
|
| 28 |
+
Initialize the AIDetector with a pretrained Longformer model and tokenizer.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
model_name (str): The name or path of the pretrained Longformer model.
|
| 32 |
+
max_length (int): The maximum sequence length for tokenization.
|
| 33 |
+
"""
|
| 34 |
+
self.tokenizer = LongformerTokenizer.from_pretrained(model_name)
|
| 35 |
+
self.model = LongformerForSequenceClassification.from_pretrained(model_name)
|
| 36 |
+
self.model.eval()
|
| 37 |
+
self.max_length = max_length
|
| 38 |
+
self.tokenizer.padding_side = "right"
|
| 39 |
+
|
| 40 |
+
@torch.no_grad()
|
| 41 |
+
def get_probability(self, texts):
|
| 42 |
+
inputs = self.tokenizer(texts, padding=True, truncation=True, max_length=self.max_length, return_tensors='pt')
|
| 43 |
+
outputs = self.model(**inputs)
|
| 44 |
+
probabilities = F.softmax(outputs.logits, dim=1)
|
| 45 |
+
return probabilities
|
| 46 |
+
|
| 47 |
+
# Example usage
|
| 48 |
+
if __name__ == "__main__":
|
| 49 |
+
classifier = AIDetector(model_name="/path/to/ai_detector")
|
| 50 |
+
target_text = [
|
| 51 |
+
"I am thinking about going away for vacation",
|
| 52 |
+
"How can I help you today?"
|
| 53 |
+
]
|
| 54 |
+
result = classifier.get_probability(target_text)
|
| 55 |
+
print(result)
|
| 56 |
+
# >>> Expected Output:
|
| 57 |
+
# >>> tensor([[0.9954, 0.0046],
|
| 58 |
+
# >>> [0.0265, 0.9735]])
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
## Citation
|
| 64 |
+
|
| 65 |
+
If you find this model useful, please cite:
|
| 66 |
+
|
| 67 |
+
```plaintext
|
| 68 |
+
[Authors], "[Paper Title]," [Venue], [Year], [URL or DOI].
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|