wealthcoders commited on
Commit
d9b2cab
·
verified ·
1 Parent(s): 499de81

Upload folder using huggingface_hub

Browse files
Files changed (5) hide show
  1. .gitattributes +0 -2
  2. README.md +38 -368
  3. config.json +3 -3
  4. model.safetensors +1 -1
  5. training_args.bin +3 -0
.gitattributes CHANGED
@@ -33,5 +33,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
- assets/llama-index.png filter=lfs diff=lfs merge=lfs -text
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
README.md CHANGED
@@ -1,389 +1,59 @@
1
  ---
2
  license: apache-2.0
3
- pipeline_tag: text-classification
4
  tags:
5
- - transformers
6
- - sentence-transformers
7
- - text-embeddings-inference
8
- language:
9
- - multilingual
 
10
  ---
11
 
12
- # Reranker
 
13
 
14
- **More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/tree/master).**
 
15
 
16
- - [Model List](#model-list)
17
- - [Usage](#usage)
18
- - [Fine-tuning](#fine-tune)
19
- - [Evaluation](#evaluation)
20
- - [Citation](#citation)
21
 
22
- Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
23
- You can get a relevance score by inputting query and passage to the reranker.
24
- And the score can be mapped to a float value in [0,1] by sigmoid function.
25
 
 
26
 
27
- ## Model List
28
 
29
- | Model | Base model | Language | layerwise | feature |
30
- |:--------------------------------------------------------------------------|:--------:|:-----------------------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|
31
- | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
32
- | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | [xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
33
- | [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) | [bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | - | Lightweight reranker model, possesses strong multilingual capabilities, easy to deploy, with fast inference. |
34
- | [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) | [gemma-2b](https://huggingface.co/google/gemma-2b) | Multilingual | - | Suitable for multilingual contexts, performs well in both English proficiency and multilingual capabilities. |
35
- | [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) | [MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) | Multilingual | 8-40 | Suitable for multilingual contexts, performs well in both English and Chinese proficiency, allows freedom to select layers for output, facilitating accelerated inference. |
36
 
 
37
 
38
- You can select the model according your senario and resource.
39
- - For **multilingual**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma)
40
 
41
- - For **Chinese or English**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise).
42
 
43
- - For **efficiency**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and the low layer of [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise).
44
 
45
- - For better performance, recommand [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) and [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma)
 
 
 
 
 
 
 
 
 
 
 
46
 
47
- ## Usage
48
- ### Using FlagEmbedding
49
 
50
- ```
51
- pip install -U FlagEmbedding
52
- ```
53
 
54
- #### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
55
 
56
- Get relevance scores (higher scores indicate more relevance):
57
 
58
- ```python
59
- from FlagEmbedding import FlagReranker
60
- reranker = FlagReranker('BAAI/bge-reranker-v2-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
61
-
62
- score = reranker.compute_score(['query', 'passage'])
63
- print(score) # -5.65234375
64
-
65
- # You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
66
- score = reranker.compute_score(['query', 'passage'], normalize=True)
67
- print(score) # 0.003497010252573502
68
-
69
- scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
70
- print(scores) # [-8.1875, 5.26171875]
71
-
72
- # You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
73
- scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True)
74
- print(scores) # [0.00027803096387751553, 0.9948403768236574]
75
- ```
76
-
77
- #### For LLM-based reranker
78
-
79
- ```python
80
- from FlagEmbedding import FlagLLMReranker
81
- reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
82
- # reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
83
-
84
- score = reranker.compute_score(['query', 'passage'])
85
- print(score)
86
-
87
- scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
88
- print(scores)
89
- ```
90
-
91
- #### For LLM-based layerwise reranker
92
-
93
- ```python
94
- from FlagEmbedding import LayerWiseFlagLLMReranker
95
- reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
96
- # reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # You can also set use_bf16=True to speed up computation with a slight performance degradation
97
-
98
- score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
99
- print(score)
100
-
101
- scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], cutoff_layers=[28])
102
- print(scores)
103
- ```
104
-
105
- ### Using Huggingface transformers
106
-
107
- #### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
108
-
109
- Get relevance scores (higher scores indicate more relevance):
110
-
111
- ```python
112
- import torch
113
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
114
-
115
- tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-m3')
116
- model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-v2-m3')
117
- model.eval()
118
-
119
- pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
120
- with torch.no_grad():
121
- inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
122
- scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
123
- print(scores)
124
- ```
125
-
126
- #### For LLM-based reranker
127
-
128
- ```python
129
- import torch
130
- from transformers import AutoModelForCausalLM, AutoTokenizer
131
-
132
- def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
133
- if prompt is None:
134
- prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
135
- sep = "\n"
136
- prompt_inputs = tokenizer(prompt,
137
- return_tensors=None,
138
- add_special_tokens=False)['input_ids']
139
- sep_inputs = tokenizer(sep,
140
- return_tensors=None,
141
- add_special_tokens=False)['input_ids']
142
- inputs = []
143
- for query, passage in pairs:
144
- query_inputs = tokenizer(f'A: {query}',
145
- return_tensors=None,
146
- add_special_tokens=False,
147
- max_length=max_length * 3 // 4,
148
- truncation=True)
149
- passage_inputs = tokenizer(f'B: {passage}',
150
- return_tensors=None,
151
- add_special_tokens=False,
152
- max_length=max_length,
153
- truncation=True)
154
- item = tokenizer.prepare_for_model(
155
- [tokenizer.bos_token_id] + query_inputs['input_ids'],
156
- sep_inputs + passage_inputs['input_ids'],
157
- truncation='only_second',
158
- max_length=max_length,
159
- padding=False,
160
- return_attention_mask=False,
161
- return_token_type_ids=False,
162
- add_special_tokens=False
163
- )
164
- item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
165
- item['attention_mask'] = [1] * len(item['input_ids'])
166
- inputs.append(item)
167
- return tokenizer.pad(
168
- inputs,
169
- padding=True,
170
- max_length=max_length + len(sep_inputs) + len(prompt_inputs),
171
- pad_to_multiple_of=8,
172
- return_tensors='pt',
173
- )
174
-
175
- tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-gemma')
176
- model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-gemma')
177
- yes_loc = tokenizer('Yes', add_special_tokens=False)['input_ids'][0]
178
- model.eval()
179
-
180
- pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
181
- with torch.no_grad():
182
- inputs = get_inputs(pairs, tokenizer)
183
- scores = model(**inputs, return_dict=True).logits[:, -1, yes_loc].view(-1, ).float()
184
- print(scores)
185
- ```
186
-
187
- #### For LLM-based layerwise reranker
188
-
189
- ```python
190
- import torch
191
- from transformers import AutoModelForCausalLM, AutoTokenizer
192
-
193
- def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
194
- if prompt is None:
195
- prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
196
- sep = "\n"
197
- prompt_inputs = tokenizer(prompt,
198
- return_tensors=None,
199
- add_special_tokens=False)['input_ids']
200
- sep_inputs = tokenizer(sep,
201
- return_tensors=None,
202
- add_special_tokens=False)['input_ids']
203
- inputs = []
204
- for query, passage in pairs:
205
- query_inputs = tokenizer(f'A: {query}',
206
- return_tensors=None,
207
- add_special_tokens=False,
208
- max_length=max_length * 3 // 4,
209
- truncation=True)
210
- passage_inputs = tokenizer(f'B: {passage}',
211
- return_tensors=None,
212
- add_special_tokens=False,
213
- max_length=max_length,
214
- truncation=True)
215
- item = tokenizer.prepare_for_model(
216
- [tokenizer.bos_token_id] + query_inputs['input_ids'],
217
- sep_inputs + passage_inputs['input_ids'],
218
- truncation='only_second',
219
- max_length=max_length,
220
- padding=False,
221
- return_attention_mask=False,
222
- return_token_type_ids=False,
223
- add_special_tokens=False
224
- )
225
- item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
226
- item['attention_mask'] = [1] * len(item['input_ids'])
227
- inputs.append(item)
228
- return tokenizer.pad(
229
- inputs,
230
- padding=True,
231
- max_length=max_length + len(sep_inputs) + len(prompt_inputs),
232
- pad_to_multiple_of=8,
233
- return_tensors='pt',
234
- )
235
-
236
- tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True)
237
- model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
238
- model = model.to('cuda')
239
- model.eval()
240
-
241
- pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
242
- with torch.no_grad():
243
- inputs = get_inputs(pairs, tokenizer).to(model.device)
244
- all_scores = model(**inputs, return_dict=True, cutoff_layers=[28])
245
- all_scores = [scores[:, -1].view(-1, ).float() for scores in all_scores[0]]
246
- print(all_scores)
247
- ```
248
-
249
- ## Fine-tune
250
-
251
- ### Data Format
252
-
253
- Train data should be a json file, where each line is a dict like this:
254
-
255
- ```
256
- {"query": str, "pos": List[str], "neg":List[str], "prompt": str}
257
- ```
258
-
259
- `query` is the query, and `pos` is a list of positive texts, `neg` is a list of negative texts, `prompt` indicates the relationship between query and texts. If you have no negative texts for a query, you can random sample some from the entire corpus as the negatives.
260
-
261
- See [toy_finetune_data.jsonl](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker/toy_finetune_data.jsonl) for a toy data file.
262
-
263
- ### Train
264
-
265
- You can fine-tune the reranker with the following code:
266
-
267
- **For llm-based reranker**
268
-
269
- ```shell
270
- torchrun --nproc_per_node {number of gpus} \
271
- -m FlagEmbedding.llm_reranker.finetune_for_instruction.run \
272
- --output_dir {path to save model} \
273
- --model_name_or_path google/gemma-2b \
274
- --train_data ./toy_finetune_data.jsonl \
275
- --learning_rate 2e-4 \
276
- --num_train_epochs 1 \
277
- --per_device_train_batch_size 1 \
278
- --gradient_accumulation_steps 16 \
279
- --dataloader_drop_last True \
280
- --query_max_len 512 \
281
- --passage_max_len 512 \
282
- --train_group_size 16 \
283
- --logging_steps 1 \
284
- --save_steps 2000 \
285
- --save_total_limit 50 \
286
- --ddp_find_unused_parameters False \
287
- --gradient_checkpointing \
288
- --deepspeed stage1.json \
289
- --warmup_ratio 0.1 \
290
- --bf16 \
291
- --use_lora True \
292
- --lora_rank 32 \
293
- --lora_alpha 64 \
294
- --use_flash_attn True \
295
- --target_modules q_proj k_proj v_proj o_proj
296
- ```
297
-
298
- **For llm-based layerwise reranker**
299
-
300
- ```shell
301
- torchrun --nproc_per_node {number of gpus} \
302
- -m FlagEmbedding.llm_reranker.finetune_for_layerwise.run \
303
- --output_dir {path to save model} \
304
- --model_name_or_path openbmb/MiniCPM-2B-dpo-bf16 \
305
- --train_data ./toy_finetune_data.jsonl \
306
- --learning_rate 2e-4 \
307
- --num_train_epochs 1 \
308
- --per_device_train_batch_size 1 \
309
- --gradient_accumulation_steps 16 \
310
- --dataloader_drop_last True \
311
- --query_max_len 512 \
312
- --passage_max_len 512 \
313
- --train_group_size 16 \
314
- --logging_steps 1 \
315
- --save_steps 2000 \
316
- --save_total_limit 50 \
317
- --ddp_find_unused_parameters False \
318
- --gradient_checkpointing \
319
- --deepspeed stage1.json \
320
- --warmup_ratio 0.1 \
321
- --bf16 \
322
- --use_lora True \
323
- --lora_rank 32 \
324
- --lora_alpha 64 \
325
- --use_flash_attn True \
326
- --target_modules q_proj k_proj v_proj o_proj \
327
- --start_layer 8 \
328
- --head_multi True \
329
- --head_type simple \
330
- --lora_extra_parameters linear_head
331
- ```
332
-
333
- Our rerankers are initialized from [google/gemma-2b](https://huggingface.co/google/gemma-2b) (for llm-based reranker) and [openbmb/MiniCPM-2B-dpo-bf16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-bf16) (for llm-based layerwise reranker), and we train it on a mixture of multilingual datasets:
334
-
335
- - [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data)
336
- - [quora train data](https://huggingface.co/datasets/quora)
337
- - [fever train data](https://fever.ai/dataset/fever.html)
338
-
339
- ## Evaluation
340
-
341
- - llama-index.
342
-
343
- ![image-20240317193909373](./assets/llama-index.png)
344
-
345
-
346
- - BEIR.
347
-
348
- rereank the top 100 results from bge-en-v1.5 large.
349
-
350
- ![image-20240317174633333](./assets/BEIR-bge-en-v1.5.png)
351
-
352
- rereank the top 100 results from e5 mistral 7b instruct.
353
-
354
- ![image-20240317172949713](./assets/BEIR-e5-mistral.png)
355
-
356
- - CMTEB-retrieval.
357
- It rereank the top 100 results from bge-zh-v1.5 large.
358
-
359
- ![image-20240317173026235](./assets/CMTEB-retrieval-bge-zh-v1.5.png)
360
-
361
- - miracl (multi-language).
362
- It rereank the top 100 results from bge-m3.
363
-
364
- ![image-20240317173117639](./assets/miracl-bge-m3.png)
365
-
366
-
367
-
368
- ## Citation
369
-
370
- If you find this repository useful, please consider giving a star and citation
371
-
372
- ```bibtex
373
- @misc{li2023making,
374
- title={Making Large Language Models A Better Foundation For Dense Retrieval},
375
- author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao},
376
- year={2023},
377
- eprint={2312.15503},
378
- archivePrefix={arXiv},
379
- primaryClass={cs.CL}
380
- }
381
- @misc{chen2024bge,
382
- title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
383
- author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
384
- year={2024},
385
- eprint={2402.03216},
386
- archivePrefix={arXiv},
387
- primaryClass={cs.CL}
388
- }
389
- ```
 
1
  ---
2
  license: apache-2.0
3
+ base_model: BAAI/bge-reranker-v2-m3
4
  tags:
5
+ - generated_from_trainer
6
+ library_name: sentence-transformers
7
+ pipeline_tag: text-ranking
8
+ model-index:
9
+ - name: bge_reranker
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
 
16
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/tookitaki/huggingface/runs/ed60vdsj)
17
+ # bge_reranker
18
 
19
+ This model is a fine-tuned version of [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) on an unknown dataset.
 
 
 
 
20
 
21
+ ## Model description
 
 
22
 
23
+ More information needed
24
 
25
+ ## Intended uses & limitations
26
 
27
+ More information needed
 
 
 
 
 
 
28
 
29
+ ## Training and evaluation data
30
 
31
+ More information needed
 
32
 
33
+ ## Training procedure
34
 
35
+ ### Training hyperparameters
36
 
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 3e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 2
43
+ - total_train_batch_size: 32
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: cosine_with_restarts
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - num_epochs: 4.0
48
+ - mixed_precision_training: Native AMP
49
 
50
+ ### Training results
 
51
 
 
 
 
52
 
 
53
 
54
+ ### Framework versions
55
 
56
+ - Transformers 4.42.4
57
+ - Pytorch 2.1.0+cu118
58
+ - Datasets 2.20.0
59
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "BAAI/bge-m3",
3
  "architectures": [
4
  "XLMRobertaForSequenceClassification"
5
  ],
@@ -27,8 +27,8 @@
27
  "pad_token_id": 1,
28
  "position_embedding_type": "absolute",
29
  "torch_dtype": "float32",
30
- "transformers_version": "4.38.1",
31
  "type_vocab_size": 1,
32
  "use_cache": true,
33
  "vocab_size": 250002
34
- }
 
1
  {
2
+ "_name_or_path": "BAAI/bge-reranker-v2-m3",
3
  "architectures": [
4
  "XLMRobertaForSequenceClassification"
5
  ],
 
27
  "pad_token_id": 1,
28
  "position_embedding_type": "absolute",
29
  "torch_dtype": "float32",
30
+ "transformers_version": "4.42.4",
31
  "type_vocab_size": 1,
32
  "use_cache": true,
33
  "vocab_size": 250002
34
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d9e3e081faff1eefb84019509b2f5558fd74c1a05a2c7db22f74174fcedb5286
3
  size 2271071852
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e6bbabe8a1a14e647c139974d888f8bf0dc28996689adc05335cf53ba4dd90d
3
  size 2271071852
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf5dc7d256bf53c6379abc1146c103d88e9ef1b9c4b2b430345d8a0067eb75d8
3
+ size 5240