Huggy
Browse files- Huggy2/README.md +35 -0
- Huggy2/config.json +1 -0
- Huggy2/configuration.yaml +30 -0
Huggy2/README.md
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: ml-agents
|
| 3 |
+
tags:
|
| 4 |
+
- Huggy
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- ML-Agents-Huggy
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# **ppo** Agent playing **Huggy**
|
| 11 |
+
This is a trained model of a **ppo** agent playing **Huggy**
|
| 12 |
+
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
|
| 13 |
+
|
| 14 |
+
## Usage (with ML-Agents)
|
| 15 |
+
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
|
| 16 |
+
|
| 17 |
+
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
|
| 18 |
+
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
|
| 19 |
+
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
|
| 20 |
+
- A *longer tutorial* to understand how works ML-Agents:
|
| 21 |
+
https://huggingface.co/learn/deep-rl-course/unit5/introduction
|
| 22 |
+
|
| 23 |
+
### Resume the training
|
| 24 |
+
```bash
|
| 25 |
+
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
### Watch your Agent play
|
| 29 |
+
You can watch your agent **playing directly in your browser**
|
| 30 |
+
|
| 31 |
+
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
|
| 32 |
+
2. Step 1: Find your model_id: wefio/ppo-Huggy
|
| 33 |
+
3. Step 2: Select your *.nn /*.onnx file
|
| 34 |
+
4. Click on Watch the agent play 👀
|
| 35 |
+
|
Huggy2/config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"behaviors": {"Huggy": {"trainer_type": "ppo", "threaded": true, "hyperparameters": {"batch_size": 2048, "buffer_size": 20480, "learning_rate": 0.0003, "beta": 0.005, "epsilon": 0.2, "lambd": 0.95, "num_epoch": 5, "learning_rate_schedule": "linear"}, "curiosity": {"strength": 0.01, "gamma": 0.995}, "network_settings": {"normalize": true, "hidden_units": 512, "num_layers": 3, "vis_encode_type": "simple"}, "reward_signals": {"extrinsic": {"gamma": 0.995, "strength": 1.0}}, "checkpoint_interval": 200000, "keep_checkpoints": 15, "max_steps": "2e6", "time_horizon": 1000, "summary_freq": 50000}}}
|
Huggy2/configuration.yaml
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
behaviors:
|
| 2 |
+
Huggy:
|
| 3 |
+
trainer_type: ppo
|
| 4 |
+
threaded: True
|
| 5 |
+
hyperparameters:
|
| 6 |
+
batch_size: 2048
|
| 7 |
+
buffer_size: 20480
|
| 8 |
+
learning_rate: 0.0003
|
| 9 |
+
beta: 0.005
|
| 10 |
+
epsilon: 0.2
|
| 11 |
+
lambd: 0.95
|
| 12 |
+
num_epoch: 5
|
| 13 |
+
learning_rate_schedule: linear
|
| 14 |
+
curiosity:
|
| 15 |
+
strength: 0.01
|
| 16 |
+
gamma: 0.995
|
| 17 |
+
network_settings:
|
| 18 |
+
normalize: true
|
| 19 |
+
hidden_units: 512
|
| 20 |
+
num_layers: 3
|
| 21 |
+
vis_encode_type: simple
|
| 22 |
+
reward_signals:
|
| 23 |
+
extrinsic:
|
| 24 |
+
gamma: 0.995
|
| 25 |
+
strength: 1.0
|
| 26 |
+
checkpoint_interval: 200000
|
| 27 |
+
keep_checkpoints: 15
|
| 28 |
+
max_steps: 2e6
|
| 29 |
+
time_horizon: 1000
|
| 30 |
+
summary_freq: 50000
|