wefio commited on
Commit
3fc384a
·
verified ·
1 Parent(s): e9b13fa
Huggy2/README.md ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: ml-agents
3
+ tags:
4
+ - Huggy
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - ML-Agents-Huggy
8
+ ---
9
+
10
+ # **ppo** Agent playing **Huggy**
11
+ This is a trained model of a **ppo** agent playing **Huggy**
12
+ using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
13
+
14
+ ## Usage (with ML-Agents)
15
+ The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
16
+
17
+ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
18
+ - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
19
+ browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
20
+ - A *longer tutorial* to understand how works ML-Agents:
21
+ https://huggingface.co/learn/deep-rl-course/unit5/introduction
22
+
23
+ ### Resume the training
24
+ ```bash
25
+ mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
26
+ ```
27
+
28
+ ### Watch your Agent play
29
+ You can watch your agent **playing directly in your browser**
30
+
31
+ 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
32
+ 2. Step 1: Find your model_id: wefio/ppo-Huggy
33
+ 3. Step 2: Select your *.nn /*.onnx file
34
+ 4. Click on Watch the agent play 👀
35
+
Huggy2/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"behaviors": {"Huggy": {"trainer_type": "ppo", "threaded": true, "hyperparameters": {"batch_size": 2048, "buffer_size": 20480, "learning_rate": 0.0003, "beta": 0.005, "epsilon": 0.2, "lambd": 0.95, "num_epoch": 5, "learning_rate_schedule": "linear"}, "curiosity": {"strength": 0.01, "gamma": 0.995}, "network_settings": {"normalize": true, "hidden_units": 512, "num_layers": 3, "vis_encode_type": "simple"}, "reward_signals": {"extrinsic": {"gamma": 0.995, "strength": 1.0}}, "checkpoint_interval": 200000, "keep_checkpoints": 15, "max_steps": "2e6", "time_horizon": 1000, "summary_freq": 50000}}}
Huggy2/configuration.yaml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ behaviors:
2
+ Huggy:
3
+ trainer_type: ppo
4
+ threaded: True
5
+ hyperparameters:
6
+ batch_size: 2048
7
+ buffer_size: 20480
8
+ learning_rate: 0.0003
9
+ beta: 0.005
10
+ epsilon: 0.2
11
+ lambd: 0.95
12
+ num_epoch: 5
13
+ learning_rate_schedule: linear
14
+ curiosity:
15
+ strength: 0.01
16
+ gamma: 0.995
17
+ network_settings:
18
+ normalize: true
19
+ hidden_units: 512
20
+ num_layers: 3
21
+ vis_encode_type: simple
22
+ reward_signals:
23
+ extrinsic:
24
+ gamma: 0.995
25
+ strength: 1.0
26
+ checkpoint_interval: 200000
27
+ keep_checkpoints: 15
28
+ max_steps: 2e6
29
+ time_horizon: 1000
30
+ summary_freq: 50000