Upload stable_diffusion_loader.py
Browse files- stable_diffusion_loader.py +130 -0
stable_diffusion_loader.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import base64
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
from PIL import Image
|
| 6 |
+
|
| 7 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
| 8 |
+
from diffusers import (
|
| 9 |
+
StableDiffusionPipeline,
|
| 10 |
+
UNet2DConditionModel,
|
| 11 |
+
AutoencoderKL,
|
| 12 |
+
DDIMScheduler,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def load_custom_pipeline(
|
| 17 |
+
model_path: str = "./fine-tuned-model",
|
| 18 |
+
use_mps_if_available: bool = True
|
| 19 |
+
):
|
| 20 |
+
"""
|
| 21 |
+
Loads your custom fine-tuned Stable Diffusion model from a local folder structure.
|
| 22 |
+
Returns a pipeline object ready for inference.
|
| 23 |
+
"""
|
| 24 |
+
# Load tokenizer
|
| 25 |
+
tokenizer = CLIPTokenizer.from_pretrained(os.path.join(model_path, "tokenizer"))
|
| 26 |
+
|
| 27 |
+
# Load text encoder
|
| 28 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
| 29 |
+
os.path.join(model_path, "text_encoder"),
|
| 30 |
+
torch_dtype=torch.float32
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Load UNet
|
| 34 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 35 |
+
os.path.join(model_path, "unet"),
|
| 36 |
+
torch_dtype=torch.float32
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Load VAE
|
| 40 |
+
vae = AutoencoderKL.from_pretrained(
|
| 41 |
+
os.path.join(model_path, "vae"),
|
| 42 |
+
torch_dtype=torch.float32
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Load scheduler
|
| 46 |
+
scheduler = DDIMScheduler.from_pretrained(
|
| 47 |
+
"CompVis/stable-diffusion-v1-4",
|
| 48 |
+
subfolder="scheduler"
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
# Create the pipeline
|
| 52 |
+
pipe = StableDiffusionPipeline(
|
| 53 |
+
tokenizer=tokenizer,
|
| 54 |
+
text_encoder=text_encoder,
|
| 55 |
+
vae=vae,
|
| 56 |
+
unet=unet,
|
| 57 |
+
scheduler=scheduler,
|
| 58 |
+
safety_checker=None, # Disable safety checker
|
| 59 |
+
feature_extractor=None
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# Set device
|
| 63 |
+
device = (
|
| 64 |
+
torch.device("mps") if (torch.backends.mps.is_available() and use_mps_if_available)
|
| 65 |
+
else torch.device("cpu")
|
| 66 |
+
)
|
| 67 |
+
pipe.to(device)
|
| 68 |
+
|
| 69 |
+
# Optional: reduce memory usage
|
| 70 |
+
pipe.enable_attention_slicing()
|
| 71 |
+
|
| 72 |
+
return pipe
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def load_base_pipeline(
|
| 76 |
+
model_id: str = "CompVis/stable-diffusion-v1-4",
|
| 77 |
+
use_mps_if_available: bool = True
|
| 78 |
+
):
|
| 79 |
+
"""
|
| 80 |
+
Loads the original Stable Diffusion v1.4 model from Hugging Face.
|
| 81 |
+
Returns a pipeline object ready for inference.
|
| 82 |
+
"""
|
| 83 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 84 |
+
model_id,
|
| 85 |
+
torch_dtype=torch.float32,
|
| 86 |
+
safety_checker=None,
|
| 87 |
+
feature_extractor=None
|
| 88 |
+
)
|
| 89 |
+
device = (
|
| 90 |
+
torch.device("mps") if (torch.backends.mps.is_available() and use_mps_if_available)
|
| 91 |
+
else torch.device("cpu")
|
| 92 |
+
)
|
| 93 |
+
pipe.to(device)
|
| 94 |
+
pipe.enable_attention_slicing()
|
| 95 |
+
return pipe
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def generate_image(
|
| 99 |
+
pipe: StableDiffusionPipeline,
|
| 100 |
+
prompt: str,
|
| 101 |
+
num_inference_steps: int = 50,
|
| 102 |
+
guidance_scale: float = 7.5,
|
| 103 |
+
seed: int = None
|
| 104 |
+
):
|
| 105 |
+
"""
|
| 106 |
+
Generates a single image from the provided pipeline and prompt.
|
| 107 |
+
Optionally accepts a 'seed' for reproducibility.
|
| 108 |
+
"""
|
| 109 |
+
if seed is not None:
|
| 110 |
+
generator = torch.Generator(device=pipe.device).manual_seed(seed)
|
| 111 |
+
else:
|
| 112 |
+
generator = None
|
| 113 |
+
|
| 114 |
+
with torch.no_grad():
|
| 115 |
+
result = pipe(
|
| 116 |
+
prompt=prompt,
|
| 117 |
+
num_inference_steps=num_inference_steps,
|
| 118 |
+
guidance_scale=guidance_scale,
|
| 119 |
+
generator=generator
|
| 120 |
+
)
|
| 121 |
+
return result.images[0]
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def pil_image_to_base64_str(img: Image.Image) -> str:
|
| 125 |
+
"""
|
| 126 |
+
Converts a PIL Image into a Base64-encoded PNG string.
|
| 127 |
+
"""
|
| 128 |
+
buffered = BytesIO()
|
| 129 |
+
img.save(buffered, format="PNG")
|
| 130 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|