xfbai commited on
Commit
4f00010
·
verified ·
1 Parent(s): 26ce219

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -5
README.md CHANGED
@@ -1,5 +1,49 @@
1
- ---
2
- license: mit
3
- language:
4
- - en
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ **AMRBART** is a pretrained semantic parser which converts a sentence into an abstract meaning graph. You may find our paper [here](https://arxiv.org/pdf/2203.07836.pdf) (Arxiv). The original implementation is avaliable [here](https://github.com/goodbai-nlp/AMRBART/tree/acl2022)
3
+
4
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/graph-pre-training-for-amr-parsing-and-1/amr-to-text-generation-on-ldc2017t10)](https://paperswithcode.com/sota/amr-to-text-generation-on-ldc2017t10?p=graph-pre-training-for-amr-parsing-and-1)
5
+
6
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/graph-pre-training-for-amr-parsing-and-1/amr-to-text-generation-on-ldc2020t02)](https://paperswithcode.com/sota/amr-to-text-generation-on-ldc2020t02?p=graph-pre-training-for-amr-parsing-and-1)
7
+
8
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/graph-pre-training-for-amr-parsing-and-1/amr-parsing-on-ldc2017t10)](https://paperswithcode.com/sota/amr-parsing-on-ldc2017t10?p=graph-pre-training-for-amr-parsing-and-1)
9
+
10
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/graph-pre-training-for-amr-parsing-and-1/amr-parsing-on-ldc2020t02)](https://paperswithcode.com/sota/amr-parsing-on-ldc2020t02?p=graph-pre-training-for-amr-parsing-and-1)
11
+
12
+ **News**🎈
13
+
14
+ - (2022/12/10) fix max_length bugs in AMR parsing and update results.
15
+ - (2022/10/16) release the AMRBART-v2 model which is simpler, faster, and stronger.
16
+
17
+ # Requirements
18
+ + python 3.8
19
+ + pytorch 1.8
20
+ + transformers 4.21.3
21
+ + datasets 2.4.0
22
+ + Tesla V100 or A100
23
+
24
+ We recommend to use conda to manage virtual environments:
25
+ ```
26
+ conda env update --name <env> --file requirements.yml
27
+ ```
28
+
29
+ # Data Processing
30
+
31
+ <!-- Since AMR corpus require LDC license, we upload some examples for format reference. If you have the license, feel free to contact us for getting the preprocessed data. -->
32
+ You may download the AMR corpora at [LDC](https://www.ldc.upenn.edu).
33
+
34
+ Please follow [this respository](https://github.com/goodbai-nlp/AMR-Process) to preprocess AMR graphs:
35
+ ```
36
+ bash run-process-acl2022.sh
37
+ ```
38
+
39
+ # Usage
40
+
41
+ Our model is avaliable at [huggingface](https://huggingface.co/xfbai). Here is how to initialize a AMR parsing model in PyTorch:
42
+
43
+ ```
44
+ from transformers import BartForConditionalGeneration
45
+ from model_interface.tokenization_bart import AMRBartTokenizer # We use our own tokenizer to process AMRs
46
+
47
+ model = BartForConditionalGeneration.from_pretrained("xfbai/AMRBART-large-finetuned-AMR3.0-AMRParsing-v2")
48
+ tokenizer = AMRBartTokenizer.from_pretrained("xfbai/AMRBART-large-finetuned-AMR3.0-AMRParsing-v2")
49
+ ```