--- license: apache-2.0 language: - zh - en - fr --- ### Direct Use Run the model import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer model_id = "xinping/Mixtral-instruction-zh_V0.1-nf4" model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(model_id) streamer = TextStreamer(tokenizer,skip_prompt=True, skip_special_tokens=True) text = "今天是星期五,后天是星期几?" print(text) model_input = tokenizer(text, return_tensors="pt").to("cuda") result = model.generate(**model_input,streamer=streamer, max_new_tokens=2048, repetition_penalty=1.15) [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary