Delete xtuner_config.py
Browse files- xtuner_config.py +0 -189
xtuner_config.py
DELETED
|
@@ -1,189 +0,0 @@
|
|
| 1 |
-
SYSTEM = ''
|
| 2 |
-
accumulative_counts = 1
|
| 3 |
-
batch_size = 32
|
| 4 |
-
betas = (
|
| 5 |
-
0.9,
|
| 6 |
-
0.999,
|
| 7 |
-
)
|
| 8 |
-
custom_hooks = [
|
| 9 |
-
dict(
|
| 10 |
-
tokenizer=dict(
|
| 11 |
-
padding_side='right',
|
| 12 |
-
pretrained_model_name_or_path='lmsys/vicuna-13b-v1.5',
|
| 13 |
-
trust_remote_code=True,
|
| 14 |
-
type='transformers.AutoTokenizer.from_pretrained'),
|
| 15 |
-
type='xtuner.engine.DatasetInfoHook'),
|
| 16 |
-
dict(
|
| 17 |
-
evaluation_images='https://llava-vl.github.io/static/images/view.jpg',
|
| 18 |
-
evaluation_inputs=[
|
| 19 |
-
'请描述一下这张照片',
|
| 20 |
-
'Please describe this picture',
|
| 21 |
-
],
|
| 22 |
-
every_n_iters=500,
|
| 23 |
-
image_processor=dict(
|
| 24 |
-
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
|
| 25 |
-
trust_remote_code=True,
|
| 26 |
-
type='transformers.CLIPImageProcessor.from_pretrained'),
|
| 27 |
-
prompt_template='xtuner.utils.PROMPT_TEMPLATE.vicuna',
|
| 28 |
-
system='',
|
| 29 |
-
tokenizer=dict(
|
| 30 |
-
padding_side='right',
|
| 31 |
-
pretrained_model_name_or_path='lmsys/vicuna-13b-v1.5',
|
| 32 |
-
trust_remote_code=True,
|
| 33 |
-
type='transformers.AutoTokenizer.from_pretrained'),
|
| 34 |
-
type='xtuner.engine.EvaluateChatHook'),
|
| 35 |
-
]
|
| 36 |
-
data_path = './data/llava_data/LLaVA-Pretrain/blip_laion_cc_sbu_558k.json'
|
| 37 |
-
data_root = './data/llava_data/'
|
| 38 |
-
dataloader_num_workers = 0
|
| 39 |
-
default_hooks = dict(
|
| 40 |
-
checkpoint=dict(interval=1, type='mmengine.hooks.CheckpointHook'),
|
| 41 |
-
logger=dict(interval=10, type='mmengine.hooks.LoggerHook'),
|
| 42 |
-
param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
|
| 43 |
-
sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
|
| 44 |
-
timer=dict(type='mmengine.hooks.IterTimerHook'))
|
| 45 |
-
env_cfg = dict(
|
| 46 |
-
cudnn_benchmark=False,
|
| 47 |
-
dist_cfg=dict(backend='nccl'),
|
| 48 |
-
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
|
| 49 |
-
evaluation_freq = 500
|
| 50 |
-
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg'
|
| 51 |
-
evaluation_inputs = [
|
| 52 |
-
'请描述一下这张照片',
|
| 53 |
-
'Please describe this picture',
|
| 54 |
-
]
|
| 55 |
-
image_folder = './data/llava_data/LLaVA-Pretrain/images'
|
| 56 |
-
image_processor = dict(
|
| 57 |
-
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
|
| 58 |
-
trust_remote_code=True,
|
| 59 |
-
type='transformers.CLIPImageProcessor.from_pretrained')
|
| 60 |
-
launcher = 'pytorch'
|
| 61 |
-
llava_dataset = dict(
|
| 62 |
-
data_path='./data/llava_data/LLaVA-Pretrain/blip_laion_cc_sbu_558k.json',
|
| 63 |
-
dataset_map_fn='xtuner.dataset.map_fns.llava_map_fn',
|
| 64 |
-
image_folder='./data/llava_data/LLaVA-Pretrain/images',
|
| 65 |
-
image_processor=dict(
|
| 66 |
-
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
|
| 67 |
-
trust_remote_code=True,
|
| 68 |
-
type='transformers.CLIPImageProcessor.from_pretrained'),
|
| 69 |
-
max_length=1472,
|
| 70 |
-
pad_image_to_square=False,
|
| 71 |
-
template_map_fn=dict(
|
| 72 |
-
template='xtuner.utils.PROMPT_TEMPLATE.vicuna',
|
| 73 |
-
type='xtuner.dataset.map_fns.template_map_fn_factory'),
|
| 74 |
-
tokenizer=dict(
|
| 75 |
-
padding_side='right',
|
| 76 |
-
pretrained_model_name_or_path='lmsys/vicuna-13b-v1.5',
|
| 77 |
-
trust_remote_code=True,
|
| 78 |
-
type='transformers.AutoTokenizer.from_pretrained'),
|
| 79 |
-
type='xtuner.dataset.LLaVADataset')
|
| 80 |
-
llm_name_or_path = 'lmsys/vicuna-13b-v1.5'
|
| 81 |
-
load_from = None
|
| 82 |
-
log_level = 'INFO'
|
| 83 |
-
lr = 0.001
|
| 84 |
-
max_epochs = 1
|
| 85 |
-
max_length = 1472
|
| 86 |
-
max_norm = 1
|
| 87 |
-
model = dict(
|
| 88 |
-
freeze_llm=True,
|
| 89 |
-
freeze_visual_encoder=True,
|
| 90 |
-
llm=dict(
|
| 91 |
-
pretrained_model_name_or_path='lmsys/vicuna-13b-v1.5',
|
| 92 |
-
quantization_config=dict(
|
| 93 |
-
bnb_4bit_compute_dtype='torch.float16',
|
| 94 |
-
bnb_4bit_quant_type='nf4',
|
| 95 |
-
bnb_4bit_use_double_quant=True,
|
| 96 |
-
llm_int8_has_fp16_weight=False,
|
| 97 |
-
llm_int8_threshold=6.0,
|
| 98 |
-
load_in_4bit=True,
|
| 99 |
-
load_in_8bit=False,
|
| 100 |
-
type='transformers.BitsAndBytesConfig'),
|
| 101 |
-
torch_dtype='torch.float16',
|
| 102 |
-
trust_remote_code=True,
|
| 103 |
-
type='transformers.AutoModelForCausalLM.from_pretrained'),
|
| 104 |
-
type='xtuner.model.LLaVAModel',
|
| 105 |
-
visual_encoder=dict(
|
| 106 |
-
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
|
| 107 |
-
type='transformers.CLIPVisionModel.from_pretrained'))
|
| 108 |
-
optim_type = 'torch.optim.AdamW'
|
| 109 |
-
optim_wrapper = dict(
|
| 110 |
-
optimizer=dict(
|
| 111 |
-
betas=(
|
| 112 |
-
0.9,
|
| 113 |
-
0.999,
|
| 114 |
-
),
|
| 115 |
-
lr=0.001,
|
| 116 |
-
type='torch.optim.AdamW',
|
| 117 |
-
weight_decay=0),
|
| 118 |
-
type='DeepSpeedOptimWrapper')
|
| 119 |
-
param_scheduler = [
|
| 120 |
-
dict(
|
| 121 |
-
begin=0,
|
| 122 |
-
by_epoch=True,
|
| 123 |
-
convert_to_iter_based=True,
|
| 124 |
-
end=0.03,
|
| 125 |
-
start_factor=1e-05,
|
| 126 |
-
type='mmengine.optim.LinearLR'),
|
| 127 |
-
dict(
|
| 128 |
-
T_max=1,
|
| 129 |
-
begin=0.03,
|
| 130 |
-
by_epoch=True,
|
| 131 |
-
convert_to_iter_based=True,
|
| 132 |
-
eta_min=0.0,
|
| 133 |
-
type='mmengine.optim.CosineAnnealingLR'),
|
| 134 |
-
]
|
| 135 |
-
prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.vicuna'
|
| 136 |
-
randomness = dict(deterministic=False, seed=None)
|
| 137 |
-
resume = False
|
| 138 |
-
runner_type = 'FlexibleRunner'
|
| 139 |
-
strategy = dict(
|
| 140 |
-
config=dict(
|
| 141 |
-
bf16=dict(enabled=True),
|
| 142 |
-
fp16=dict(enabled=False, initial_scale_power=16),
|
| 143 |
-
gradient_accumulation_steps='auto',
|
| 144 |
-
gradient_clipping='auto',
|
| 145 |
-
train_micro_batch_size_per_gpu='auto',
|
| 146 |
-
zero_allow_untested_optimizer=True,
|
| 147 |
-
zero_force_ds_cpu_optimizer=False,
|
| 148 |
-
zero_optimization=dict(overlap_comm=True, stage=2)),
|
| 149 |
-
exclude_frozen_parameters=True,
|
| 150 |
-
gradient_accumulation_steps=1,
|
| 151 |
-
gradient_clipping=1,
|
| 152 |
-
train_micro_batch_size_per_gpu=32,
|
| 153 |
-
type='xtuner.engine.DeepSpeedStrategy')
|
| 154 |
-
tokenizer = dict(
|
| 155 |
-
padding_side='right',
|
| 156 |
-
pretrained_model_name_or_path='lmsys/vicuna-13b-v1.5',
|
| 157 |
-
trust_remote_code=True,
|
| 158 |
-
type='transformers.AutoTokenizer.from_pretrained')
|
| 159 |
-
train_cfg = dict(by_epoch=True, max_epochs=1, val_interval=1)
|
| 160 |
-
train_dataloader = dict(
|
| 161 |
-
batch_size=32,
|
| 162 |
-
collate_fn=dict(type='xtuner.dataset.collate_fns.default_collate_fn'),
|
| 163 |
-
dataset=dict(
|
| 164 |
-
data_path=
|
| 165 |
-
'./data/llava_data/LLaVA-Pretrain/blip_laion_cc_sbu_558k.json',
|
| 166 |
-
dataset_map_fn='xtuner.dataset.map_fns.llava_map_fn',
|
| 167 |
-
image_folder='./data/llava_data/LLaVA-Pretrain/images',
|
| 168 |
-
image_processor=dict(
|
| 169 |
-
pretrained_model_name_or_path='openai/clip-vit-large-patch14-336',
|
| 170 |
-
trust_remote_code=True,
|
| 171 |
-
type='transformers.CLIPImageProcessor.from_pretrained'),
|
| 172 |
-
max_length=1472,
|
| 173 |
-
pad_image_to_square=False,
|
| 174 |
-
template_map_fn=dict(
|
| 175 |
-
template='xtuner.utils.PROMPT_TEMPLATE.vicuna',
|
| 176 |
-
type='xtuner.dataset.map_fns.template_map_fn_factory'),
|
| 177 |
-
tokenizer=dict(
|
| 178 |
-
padding_side='right',
|
| 179 |
-
pretrained_model_name_or_path='lmsys/vicuna-13b-v1.5',
|
| 180 |
-
trust_remote_code=True,
|
| 181 |
-
type='transformers.AutoTokenizer.from_pretrained'),
|
| 182 |
-
type='xtuner.dataset.LLaVADataset'),
|
| 183 |
-
num_workers=0,
|
| 184 |
-
sampler=dict(shuffle=True, type='mmengine.dataset.DefaultSampler'))
|
| 185 |
-
visual_encoder_name_or_path = 'openai/clip-vit-large-patch14-336'
|
| 186 |
-
visualizer = None
|
| 187 |
-
warmup_ratio = 0.03
|
| 188 |
-
weight_decay = 0
|
| 189 |
-
work_dir = './work_dirs/llava_vicuna_13b_v15_clip_vit_large_p14_336_e1_gpu8_pretrain'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|