Text Generation
Transformers
Safetensors
mixtral
Mixture of Experts
frankenmoe
Merge
mergekit
lazymergekit
mlabonne/AlphaMonarch-7B
beowolx/CodeNinja-1.0-OpenChat-7B
SanjiWatsuki/Kunoichi-DPO-v2-7B
mlabonne/NeuralDaredevil-7B
HuggingFaceH4/zephyr-7b-beta
mistralai/Mistral-7B-Instruct-v0.2
teknium/OpenHermes-2.5-Mistral-7B
meta-math/MetaMath-Mistral-7B
conversational
text-generation-inference
File size: 3,913 Bytes
323fe53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- mlabonne/AlphaMonarch-7B
- beowolx/CodeNinja-1.0-OpenChat-7B
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- mlabonne/NeuralDaredevil-7B
- HuggingFaceH4/zephyr-7b-beta
- mistralai/Mistral-7B-Instruct-v0.2
- teknium/OpenHermes-2.5-Mistral-7B
- meta-math/MetaMath-Mistral-7B
base_model:
- mlabonne/AlphaMonarch-7B
- beowolx/CodeNinja-1.0-OpenChat-7B
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- mlabonne/NeuralDaredevil-7B
- HuggingFaceH4/zephyr-7b-beta
- mistralai/Mistral-7B-Instruct-v0.2
- teknium/OpenHermes-2.5-Mistral-7B
- meta-math/MetaMath-Mistral-7B
---
# yk_8x7b_model
yk_8x7b_model is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
* [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B)
* [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B)
* [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B)
* [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
* [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
* [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B)
## 🧩 Configuration
```yaml
base_model: mistralai/Mistral-7B-Instruct-v0.2
dtype: float16
gate_mode: hidden
experts:
- source_model: mlabonne/AlphaMonarch-7B
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
- "I want"
- "help"
- source_model: beowolx/CodeNinja-1.0-OpenChat-7B
positive_prompts:
- "code"
- "python"
- "javascript"
- "programming"
- "algorithm"
- "coding"
- source_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
positive_prompts:
- "storywriting"
- "write"
- "scene"
- "story"
- "character"
- "creative"
- source_model: mlabonne/NeuralDaredevil-7B
positive_prompts:
- "reason"
- "math"
- "mathematics"
- "solve"
- "count"
- "logic"
- source_model: HuggingFaceH4/zephyr-7b-beta
positive_prompts:
- "You are an helpful general-purpose assistant."
- "assist"
- "helpful"
- "support"
- "guide"
- source_model: mistralai/Mistral-7B-Instruct-v0.2
positive_prompts:
- "You are helpful assistant."
- "aid"
- "assist"
- "guide"
- "support"
- source_model: teknium/OpenHermes-2.5-Mistral-7B
positive_prompts:
- "You are helpful a coding assistant."
- "code"
- "programming"
- "debug"
- "scripting"
- "coding"
- source_model: meta-math/MetaMath-Mistral-7B
positive_prompts:
- "You are an assistant good at math."
- "mathematics"
- "calculation"
- "problem solving"
- "arithmetics"
- "math"
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "yatinece/yk_8x7b_model"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |