File size: 7,489 Bytes
08071f6
 
 
 
2db6956
 
08071f6
 
 
 
 
 
 
 
 
 
2db6956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d7a2b2
2db6956
 
 
 
 
 
 
 
 
 
 
 
3d7a2b2
2db6956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08071f6
2219c9e
08071f6
 
 
c96ef73
08071f6
 
 
 
 
 
 
 
 
3d7a2b2
 
 
 
 
 
08071f6
 
 
 
2436d2e
08071f6
 
 
 
59b0ff3
76d57cf
3b2ce30
 
3d7a2b2
3b2ce30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d7a2b2
 
 
 
 
 
b226088
4160111
400f620
4160111
4f074fc
91792f9
4f074fc
dcc0048
4160111
 
240c00e
4f074fc
 
 
3d7a2b2
 
 
 
 
 
 
 
 
 
 
 
7dda17e
 
3060ad8
 
7dda17e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
---
license: apache-2.0
datasets:
- open-r1/OpenR1-Math-220k
- yentinglin/s1K-1.1-trl-format
- simplescaling/s1K-1.1
language:
- en
metrics:
- accuracy
base_model:
- mistralai/Mistral-Small-24B-Instruct-2501
pipeline_tag: text-generation
tags:
- reasoning
model-index:
- name: yentinglin/Mistral-Small-24B-Instruct-2501-reasoning
  results:
  - task:
      type: text-generation
    dataset:
      name: MATH-500
      type: MATH
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.95
      verified: false
    source:
      name: yentinglin/zhtw-reasoning-eval-leaderboard
      url: https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard
  - task:
      type: text-generation
    dataset:
      name: AIME 2025
      type: AIME
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.5333
      verified: false
    source:
      name: yentinglin/zhtw-reasoning-eval-leaderboard
      url: https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard
  - task:
      type: text-generation
    dataset:
      name: AIME 2024
      type: AIME
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.6667
      verified: false
    source:
      name: yentinglin/zhtw-reasoning-eval-leaderboard
      url: https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard
  - task:
      type: text-generation
    dataset:
      name: GPQA Diamond
      type: GPQA
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.62022
      verified: false
    source:
      name: yentinglin/zhtw-reasoning-eval-leaderboard
      url: https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard
---
# Mistral-Small-Reasoning

<!-- Provide a quick summary of what the model is/does. -->

This model is a fine-tuned version of [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501), specifically optimized for mathematical reasoning tasks. It has been fine-tuned on datasets including [OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k), and [s1K-1.1](https://huggingface.co/datasets/simplescaling/s1K-1.1), aiming to enhance its reasoning capabilities.

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->



- **Developed by:** [Yenting Lin](https://www.linkedin.com/in/yen-ting-lin-416732b3/)
- **Funded by:** [Ubitus](https://ubitus.net)
- **Model type:** Instruction-tuned language model for reasoning
- **Language(s) (NLP):** English (en)
- **License:** Apache 2.0
- **Finetuned from model:** [mistralai/Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501)


## How to Get Started with the Model

A demo is available at [twllm.com](https://twllm.com/models/yentinglin/mistral-sft), and inference can be run using vLLM or sglang.


## Training Details

The model was trained using **4×8 H100 GPUs**, provided by [**Ubitus**](https://ubitus.net).  


[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See Training config</summary>

axolotl version: [`a98526ef7843a3e8aa006f260e6b4fb8912b5f1a`](https://github.com/axolotl-ai-cloud/axolotl/tree/a98526ef7843a3e8aa006f260e6b4fb8912b5f1a)

```yaml
base_model: mistralai/Mistral-Small-24B-Instruct-2501

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

datasets:
  - path: yentinglin/s1K-1.1-trl-format
    type: chat_template
    chat_template: tokenizer_default
    field_messages: messages
    message_field_role: role
    message_field_content: content
  - path: open-r1/OpenR1-Math-220k
    type: chat_template
    chat_template: tokenizer_default
    field_messages: messages
    message_field_role: from
    message_field_content: value
dataset_prepared_path:
val_set_size: 0.0
output_dir: ./placeholder/

sequence_len: 32768
sample_packing: true
eval_sample_packing: False
pad_to_sequence_len: true

wandb_project: Reasoning
wandb_entity:
wandb_watch:
wandb_name: Mistral-24B-SFT-220k
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 5
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: auto
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
logging_steps: 1
flash_attention: true

warmup_ratio: 0.1
saves_per_epoch: 2
weight_decay: 0.0
deepspeed: deepspeed_configs/zero3_bf16.json
special_tokens:
  pad_token: "<pad>"
```

</details><br>

## Evaluation  

The evaluation code is available at [Hugging Face Open-R1](https://github.com/huggingface/open-r1). Note that I have updated the AIME 25 dataset to the full set, available at [AIME 2025](https://huggingface.co/datasets/yentinglin/aime_2025).

Our results below are averaged over multiple runs. See our eval details [here.](https://huggingface.co/datasets/yentinglin/zhtw-reasoning-details-_fsx_ubuntu_yentinglin_ckpt_run_20250214_1600_checkpoint-800_)

| Pass@1                            | # Params | MATH-500 | AIME 2025 | AIME 2024 | GPQA Diamond |
|-----------------------------------|---------|---------|-----------|-----------|--------------|
| **Mistral-24B-Reasoning (Ours)**  | 24B     | 95.0    | 53.33     | 66.67     | 62.02        |
| Mistral-24B-Instruct  | 24B     | 70.6    | -  | -   | 45.3        |
| s1.1-32B                          | 32B     | 93.2    | 40.0      | 56.7      | 61.62        |
| LIMO                          | 32B     | 94.8    | 36.67      | 57.1      | 59.09        |
| DeepSeek-R1-Distill-Llama-70B     | 70B     | 94.5    | 46.67     | 70.0      | 65.2         |
| DeepSeek-R1-Distill-Qwen-32B      | 32B     | 94.3    | 60.0      | 72.6      | 62.1         |
| DeepSeek-R1                       | 671B    | 97.3    | 70.0      | 72.6      | 71.5         |
| o1                                | -       | 96.4    | 79.0      | -         | 75.7         |
| o3-mini (high)                    | -       | 97.9    | 86.5      | -         | 77.2         |
| o3-mini (medium)                  | -       | 97.3    | 76.5      | -         | 74.9         |

## Citation

If you use this model, please cite:
```bib
@article{yentinglin2025_mistral_reasoning,
  author = {Yenting Lin},
  title = {Mistral-Small-24B-Instruct-2501-reasoning},
  journal = {Hugging Face},
  year = {2025},
  url = {https://huggingface.co/yentinglin/Mistral-Small-24B-Instruct-2501-reasoning}
}
```


# Disclaimer

This model is provided “as‑is” and without warranties of any kind. Users are solely responsible for evaluating the accuracy and suitability of the outputs. The developers assume no liability for any direct or indirect damages arising from its use.  
The model is strictly not intended for high‑risk applications such as medical diagnosis, legal advice, or financial investment. For such use cases, please consult qualified professionals.

本模型「如是」(as‑is)提供,使用者須自行評估結果之正確性與適用性。開發者對於使用本模型所引發之任何直接或間接損失,不承擔任何法律責任。  
嚴禁用於醫療診斷、法律諮詢、金融投資等高風險場景;若有相關需求,請尋求專業人員協助。