File size: 4,679 Bytes
bf05986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- ./sample_speech.py
- generated_from_trainer
metrics:
- wer
model-index:
- name: en-xlsr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# en-xlsr

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./SAMPLE_SPEECH.PY - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4835
- Cer: 0.1119
- Wer: 0.2446

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer    | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 2.9534        | 0.22  | 100  | 2.9533          | 1.0    | 1.0    |
| 2.933         | 0.44  | 200  | 2.9231          | 1.0    | 1.0    |
| 2.904         | 0.65  | 300  | 2.8851          | 1.0    | 1.0    |
| 2.3607        | 0.87  | 400  | 2.1546          | 0.6799 | 0.9976 |
| 1.1725        | 1.09  | 500  | 0.9899          | 0.2665 | 0.6191 |
| 0.9865        | 1.31  | 600  | 0.8060          | 0.2126 | 0.5064 |
| 0.8959        | 1.53  | 700  | 0.7131          | 0.1980 | 0.4607 |
| 0.7743        | 1.74  | 800  | 0.6663          | 0.1799 | 0.4370 |
| 0.7805        | 1.96  | 900  | 0.6159          | 0.1683 | 0.3997 |
| 0.6562        | 2.18  | 1000 | 0.6186          | 0.1537 | 0.3705 |
| 0.6223        | 2.4   | 1100 | 0.5698          | 0.1496 | 0.3552 |
| 0.5627        | 2.62  | 1200 | 0.5555          | 0.1446 | 0.3372 |
| 0.5476        | 2.84  | 1300 | 0.5435          | 0.1416 | 0.3307 |
| 0.5002        | 3.05  | 1400 | 0.5304          | 0.1436 | 0.3393 |
| 0.5174        | 3.27  | 1500 | 0.5377          | 0.1485 | 0.3357 |
| 0.4745        | 3.49  | 1600 | 0.5289          | 0.1340 | 0.3132 |
| 0.5239        | 3.71  | 1700 | 0.5112          | 0.1395 | 0.3239 |
| 0.5115        | 3.93  | 1800 | 0.5079          | 0.1342 | 0.3094 |
| 0.4471        | 4.14  | 1900 | 0.5131          | 0.1301 | 0.2965 |
| 0.4455        | 4.36  | 2000 | 0.5015          | 0.1278 | 0.2931 |
| 0.4199        | 4.58  | 2100 | 0.4954          | 0.1299 | 0.2962 |
| 0.4699        | 4.8   | 2200 | 0.4827          | 0.1268 | 0.2890 |
| 0.3521        | 5.02  | 2300 | 0.4857          | 0.1217 | 0.2782 |
| 0.3976        | 5.23  | 2400 | 0.4936          | 0.1231 | 0.2802 |
| 0.365         | 5.45  | 2500 | 0.4906          | 0.1221 | 0.2774 |
| 0.3857        | 5.67  | 2600 | 0.4843          | 0.1202 | 0.2757 |
| 0.3578        | 5.89  | 2700 | 0.4857          | 0.1196 | 0.2708 |
| 0.3298        | 6.11  | 2800 | 0.4867          | 0.1197 | 0.2689 |
| 0.3099        | 6.32  | 2900 | 0.4924          | 0.1237 | 0.2770 |
| 0.3606        | 6.54  | 3000 | 0.4851          | 0.1189 | 0.2684 |
| 0.3807        | 6.76  | 3100 | 0.4700          | 0.1196 | 0.2656 |
| 0.3286        | 6.98  | 3200 | 0.4770          | 0.1205 | 0.2730 |
| 0.3318        | 7.2   | 3300 | 0.4845          | 0.1166 | 0.2579 |
| 0.2936        | 7.42  | 3400 | 0.4909          | 0.1159 | 0.2570 |
| 0.3119        | 7.63  | 3500 | 0.4899          | 0.1150 | 0.2539 |
| 0.3142        | 7.85  | 3600 | 0.4782          | 0.1143 | 0.2550 |
| 0.2935        | 8.07  | 3700 | 0.4885          | 0.1153 | 0.2527 |
| 0.2805        | 8.29  | 3800 | 0.4906          | 0.1143 | 0.2529 |
| 0.254         | 8.51  | 3900 | 0.4822          | 0.1144 | 0.2538 |
| 0.2855        | 8.72  | 4000 | 0.4852          | 0.1123 | 0.2476 |
| 0.2661        | 8.94  | 4100 | 0.4847          | 0.1132 | 0.2496 |
| 0.2524        | 9.16  | 4200 | 0.4900          | 0.1116 | 0.2442 |
| 0.253         | 9.38  | 4300 | 0.4888          | 0.1120 | 0.2458 |
| 0.2591        | 9.6   | 4400 | 0.4813          | 0.1125 | 0.2458 |
| 0.2583        | 9.81  | 4500 | 0.4844          | 0.1114 | 0.2435 |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1