import onnxruntime as ort import numpy as np import librosa import soundfile as sf import soxr from pathlib import Path from typing import Tuple, Union, Optional import soundfile as sf class RefAudioUtilities: """音频处理工具类,使用ONNX模型生成tokens""" def __init__(self, onnx_model_path: str, wav2vec2_path, ref_segment_duration: float = 6.0, latent_hop_length: int = 320): """ 初始化ONNX模型 Args: onnx_model_path: ONNX模型文件路径 wav2vec2_path: wav2vec2 ONNX模型文件路径,如果为None则不加载wav2vec2模型 ref_segment_duration: 参考音频时长(秒) latent_hop_length: 潜在特征跳长度 """ self.ort_session = ort.InferenceSession(onnx_model_path, providers=['CUDAExecutionProvider','CPUExecutionProvider']) print(f"🖥️ONNX Session actual providers: {self.ort_session.get_providers()}") self.sample_rate = 16000 self.ref_segment_duration = ref_segment_duration self.latent_hop_length = latent_hop_length # 获取模型输入输出信息 self.input_names = [input_info.name for input_info in self.ort_session.get_inputs()] self.output_names = [output_info.name for output_info in self.ort_session.get_outputs()] print(f"模型输入: {self.input_names}") print(f"模型输出: {self.output_names}") # 初始化wav2vec2模型 self.wav2vec2_session = ort.InferenceSession(wav2vec2_path, providers=['CUDAExecutionProvider','CPUExecutionProvider']) print(f"🖥️Wav2Vec2 Session actual providers: {self.wav2vec2_session.get_providers()}") def load_audio(self, audio_path: Union[str, Path], target_sr: int = 16000, volume_normalize: bool = False) -> np.ndarray: """ 加载音频文件,与BiCodecTokenizer保持一致 Args: audio_path: 音频文件路径 target_sr: 目标采样率 volume_normalize: 是否进行音量归一化 Returns: 音频数据数组 """ if isinstance(audio_path, str): audio_path = Path(audio_path) # 使用soundfile加载音频,与BiCodecTokenizer保持一致 audio, sr = sf.read(audio_path) if len(audio.shape) > 1: audio = audio[:, 0] # 如果是立体声,取第一个通道 # 重采样到目标采样率 if sr != target_sr: audio = soxr.resample(audio, sr, target_sr, quality="VHQ") sr = target_sr # 音量归一化 if volume_normalize: audio = self._audio_volume_normalize(audio) return audio def _audio_volume_normalize(self, audio: np.ndarray, coeff: float = 0.2) -> np.ndarray: """音频音量归一化""" # Sort the absolute values of the audio signal temp = np.sort(np.abs(audio)) # If the maximum value is less than 0.1, scale the array to have a maximum of 0.1 if temp[-1] < 0.1: scaling_factor = max( temp[-1], 1e-3 ) # Prevent division by zero with a small constant audio = audio / scaling_factor * 0.1 # Filter out values less than 0.01 from temp temp = temp[temp > 0.01] L = temp.shape[0] # Length of the filtered array # If there are fewer than or equal to 10 significant values, return the audio without further processing if L <= 10: return audio # Compute the average of the top 10% to 1% of values in temp volume = np.mean(temp[int(0.9 * L) : int(0.99 * L)]) # Normalize the audio to the target coefficient level, clamping the scale factor between 0.1 and 10 audio = audio * np.clip(coeff / volume, a_min=0.1, a_max=10) # Ensure the maximum absolute value in the audio does not exceed 1 max_value = np.max(np.abs(audio)) if max_value > 1: audio = audio / max_value return audio def extract_mel_spectrogram(self, wav: np.ndarray, n_mels: int = 128, n_fft: int = 1024, hop_length: int = 320, win_length: int = 640) -> np.ndarray: """ 提取梅尔频谱图 Args: wav: 音频数据 n_mels: 梅尔滤波器组数量 n_fft: FFT窗口大小 hop_length: 帧移 win_length: 窗口长度 Returns: 梅尔频谱图 """ mel_spec = librosa.feature.melspectrogram( y=wav, sr=self.sample_rate, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length, win_length=win_length, power=1, norm="slaney", fmin=10, ) return mel_spec def extract_wav2vec2_features(self, wav: np.ndarray) -> np.ndarray: """ 使用ONNX wav2vec2模型提取特征,模拟BiCodecTokenizer的行为 Args: wav: 音频数据 Returns: 特征向量 """ # 检查wav2vec2模型是否已加载 if self.wav2vec2_session is None: raise RuntimeError("wav2vec2模型未加载,请在初始化时提供wav2vec2_path参数") # 添加batch维度 input_data = wav[np.newaxis, :].astype(np.float32) # [1, sequence_length] # 运行wav2vec2推理 # 注意:这个ONNX模型已经包含了特征提取器的预处理和多个隐藏层的组合 inputs = {'input': input_data} outputs = self.wav2vec2_session.run(None, inputs) # 输出形状应该是 [1, time_steps, 1024] # 这个输出已经是通过选择隐藏层11, 14, 16并计算平均值得到的 print(f'outputs: {outputs}') print(f'outputs: {outputs[0].shape}') features = outputs[0][0] # 移除batch维度,得到 [time_steps, 1024] return features.astype(np.float32) def get_ref_clip(self, wav: np.ndarray) -> np.ndarray: """ 获取参考音频片段,与BiCodecTokenizer保持一致 Args: wav: 原始音频数据 Returns: 参考音频片段 """ # 使用与BiCodecTokenizer相同的计算方式 ref_segment_length = ( int(self.sample_rate * self.ref_segment_duration) // self.latent_hop_length * self.latent_hop_length ) wav_length = len(wav) if ref_segment_length > wav_length: # 如果音频不足指定长度,重复音频直到达到要求 repeat_times = ref_segment_length // wav_length + 1 wav = np.tile(wav, repeat_times) # 截取指定长度 return wav[:ref_segment_length] def process_audio(self, audio_path: Union[str, Path], volume_normalize: bool = False) -> Tuple[np.ndarray, np.ndarray]: """ 处理音频文件,返回原始音频和参考音频,与BiCodecTokenizer保持一致 Args: audio_path: 音频文件路径 volume_normalize: 是否进行音量归一化 Returns: (原始音频, 参考音频) """ wav = self.load_audio(audio_path, volume_normalize=volume_normalize) ref_wav = self.get_ref_clip(wav) return wav, ref_wav def tokenize(self, audio_path: Union[str, Path]) -> Tuple[np.ndarray, np.ndarray]: """ 使用ONNX模型生成tokens Args: audio_path: 音频文件路径 Returns: (global_tokens, semantic_tokens) """ # 处理音频 wav, ref_wav = self.process_audio(audio_path) # 提取特征 feat = self.extract_wav2vec2_features(wav) ref_mel = self.extract_mel_spectrogram(ref_wav) # 添加batch维度 ref_mel_input = ref_mel[np.newaxis, :, :].astype(np.float32) # [1, 128, 301] feat_input = feat[np.newaxis, :, :].astype(np.float32) # [1, feat_len, 1024] # 运行ONNX模型 inputs = { 'ref_wav_mel': ref_mel_input, 'feat': feat_input } outputs = self.ort_session.run(self.output_names, inputs) # 解析输出 semantic_tokens = outputs[0] # 第一个输出 global_tokens = outputs[1] # 第二个输出 return global_tokens, semantic_tokens def tokenize_batch(self, audio_paths: list) -> Tuple[list, list]: """ 批量处理音频文件 Args: audio_paths: 音频文件路径列表 Returns: (global_tokens_list, semantic_tokens_list) """ global_tokens_list = [] semantic_tokens_list = [] for audio_path in audio_paths: global_tokens, semantic_tokens = self.tokenize(audio_path) global_tokens_list.append(global_tokens) semantic_tokens_list.append(semantic_tokens) return global_tokens_list, semantic_tokens_list # 测试函数 def test_ref_audio_utilities(): """测试RefAudioUtilities类""" # 初始化工具类 onnx_model_path = '/Volumes/bigdata/models/RWKVTTS_WebRWKV/BiCodecTokenize.onnx' wav2vec2_path = "/Volumes/bigdata/models/RWKVTTS_WebRWKV/wav2vec2-large-xlsr-53.onnx" # 使用与BiCodecTokenizer相同的参数 utilities = RefAudioUtilities( onnx_model_path, wav2vec2_path, ref_segment_duration=6.0, # 6秒参考音频 latent_hop_length=320 # 潜在特征跳长度 ) # 测试音频文件(使用项目中的示例音频) test_audio_path = "demos/刘德华/dehua_zh.wav" if Path(test_audio_path).exists(): print(f"测试音频文件: {test_audio_path}") try: # 生成tokens global_tokens, semantic_tokens = utilities.tokenize(test_audio_path) print(f"Global tokens shape: {global_tokens.shape}") print(f"Semantic tokens shape: {semantic_tokens.shape}") print(f"Global tokens: {global_tokens.flatten().tolist()}") print(f"Semantic tokens : {semantic_tokens.flatten().tolist()}") except Exception as e: print(f"处理音频时出错: {e}") else: print(f"测试音频文件不存在: {test_audio_path}") print("请确保测试音频文件存在") if __name__ == "__main__": test_ref_audio_utilities()