Update test_lora.py
Browse files- test_lora.py +52 -36
test_lora.py
CHANGED
|
@@ -2,39 +2,55 @@ from diffusers import DiffusionPipeline
|
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
|
| 5 |
+
|
| 6 |
+
def test_lora(lcm_speedup=Flase):
|
| 7 |
+
# 加载 Stable Diffusion 模型
|
| 8 |
+
pipe = DiffusionPipeline.from_pretrained("your_sd_dir/stable-diffusion-v1-5", torch_dtype=torch.float16, safety_checker = None, requires_safety_checker=False)
|
| 9 |
+
pipe.to("cuda")
|
| 10 |
+
|
| 11 |
+
# 加载 LoRA 权重
|
| 12 |
+
lora_path = "your_lora_dir"
|
| 13 |
+
pipe.load_lora_weights(pretrained_model_name_or_path_or_dict=lora_path, weight_name="1epoch_lora.safetensors", adapter_name="pattern")
|
| 14 |
+
if lcm_speedup:
|
| 15 |
+
pipe.load_lora_weights(pretrained_model_name_or_path_or_dict=lora_path, weight_name="lcm_lora.safetensors", adapter_name="lcm")
|
| 16 |
+
pipe.set_adapters(["pattern", "lcm"], adapter_weights=[1.0, 1.0])
|
| 17 |
+
|
| 18 |
+
# 定义 prompt 列表
|
| 19 |
+
prompts = [
|
| 20 |
+
"Tang Dynasty Phoenix bird pattern, multi-integrated color complex figurative embroidery animal pattern, white background, asymmetry, meaning good weather, good luck, happy life. A symbol of good peace, abundance of children, supreme power and dominion. Worship of auspicious gods",
|
| 21 |
+
"Tang Dynasty Treasure Flower Pattern,flower,rotational,flower,rotational, radioactive arrangement,symmetry, solo, yellow theme"
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
# 设置生成参数
|
| 25 |
+
if lcm_speedup:
|
| 26 |
+
num_inference_steps = 8
|
| 27 |
+
guidance_scale = 2
|
| 28 |
+
else:
|
| 29 |
+
num_inference_steps = 30
|
| 30 |
+
guidance_scale = 7.5
|
| 31 |
+
|
| 32 |
+
num_samples_per_prompt = 3
|
| 33 |
+
|
| 34 |
+
# 创建一个空的图像列表
|
| 35 |
+
all_images = []
|
| 36 |
+
|
| 37 |
+
# 为每个 prompt 生成 num_samples_per_prompt 张图片
|
| 38 |
+
for prompt in prompts:
|
| 39 |
+
images = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_samples_per_prompt).images
|
| 40 |
+
all_images.extend(images)
|
| 41 |
+
|
| 42 |
+
# 创建一个 2x3 的网格图
|
| 43 |
+
grid_image = Image.new('RGB', (3 * 512, 2 * 512)) # 假设每张图片大小为 512x512
|
| 44 |
+
for idx, img in enumerate(all_images):
|
| 45 |
+
x = (idx % 3) * 512
|
| 46 |
+
y = (idx // 3) * 512
|
| 47 |
+
grid_image.paste(img, (x, y))
|
| 48 |
+
|
| 49 |
+
# 保存网格图
|
| 50 |
+
n = 4 if lcm_speedup else 30
|
| 51 |
+
grid_image.save(f"test_lora_grid_{n}_steps.png")
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
if __name__ == "__main__":
|
| 55 |
+
test_lora()
|
| 56 |
+
test_lora(lcm_speedup=True)
|