Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: diffusers
|
| 3 |
+
base_model: runwayml/stable-diffusion-v1-5
|
| 4 |
+
tags:
|
| 5 |
+
- text-to-image
|
| 6 |
+
license: creativeml-openrail-m
|
| 7 |
+
inference: true
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
## yujiepan/dreamshaper-8-lcm-openvino
|
| 11 |
+
|
| 12 |
+
This model applies [latent-consistency/lcm-lora-sdv1-5](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5)
|
| 13 |
+
on base model [Lykon/dreamshaper-8](https://huggingface.co/Lykon/dreamshaper-8), and is converted as OpenVINO **FP16** format.
|
| 14 |
+
|
| 15 |
+
#### Usage
|
| 16 |
+
|
| 17 |
+
```python
|
| 18 |
+
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline
|
| 19 |
+
pipeline = OVStableDiffusionPipeline.from_pretrained(
|
| 20 |
+
'yujiepan/dreamshaper-8-lcm-openvino',
|
| 21 |
+
device='CPU',
|
| 22 |
+
)
|
| 23 |
+
prompt = 'cute dog typing at a laptop, 4k, details'
|
| 24 |
+
images = pipeline(prompt=prompt, num_inference_steps=8, guidance_scale=1.0).images
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+

|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
#### Scripts
|
| 31 |
+
|
| 32 |
+
The model is generated by the following codes:
|
| 33 |
+
|
| 34 |
+
```python
|
| 35 |
+
import torch
|
| 36 |
+
from diffusers import AutoPipelineForText2Image, LCMScheduler
|
| 37 |
+
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipeline
|
| 38 |
+
|
| 39 |
+
base_model_id = "Lykon/dreamshaper-8"
|
| 40 |
+
adapter_id = "latent-consistency/lcm-lora-sdv1-5"
|
| 41 |
+
save_torch_folder = './dreamshaper-8-lcm'
|
| 42 |
+
save_ov_folder = './dreamshaper-8-lcm-openvino'
|
| 43 |
+
|
| 44 |
+
torch_pipeline = AutoPipelineForText2Image.from_pretrained(
|
| 45 |
+
base_model_id, torch_dtype=torch.float16, variant="fp16")
|
| 46 |
+
torch_pipeline.scheduler = LCMScheduler.from_config(
|
| 47 |
+
torch_pipeline.scheduler.config)
|
| 48 |
+
# load and fuse lcm lora
|
| 49 |
+
torch_pipeline.load_lora_weights(adapter_id)
|
| 50 |
+
torch_pipeline.fuse_lora()
|
| 51 |
+
torch_pipeline.save_pretrained(save_torch_folder)
|
| 52 |
+
|
| 53 |
+
ov_pipeline = OVStableDiffusionPipeline.from_pretrained(
|
| 54 |
+
save_torch_folder,
|
| 55 |
+
device='CPU',
|
| 56 |
+
export=True,
|
| 57 |
+
)
|
| 58 |
+
ov_pipeline.half()
|
| 59 |
+
ov_pipeline.save_pretrained(save_ov_folder)
|
| 60 |
+
```
|