--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - HuggingFaceTB/SmolLM3-3B --- This tiny model is for debugging. It is randomly initialized with the config adapted from [HuggingFaceTB/SmolLM3-3B](https://huggingface.co/HuggingFaceTB/SmolLM3-3B). ### Example usage: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "yujiepan/smollm3-tiny-random" device = "cuda" # for GPU usage or "cpu" for CPU usage # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True ).to(device) # prepare the model input prompt = "Give me a brief explanation of gravity in simple terms." messages_think = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages_think, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate the output generated_ids = model.generate(**model_inputs, max_new_tokens=200) # Get and decode the output output_ids = generated_ids[0][len(model_inputs.input_ids[0]):] print(tokenizer.decode(output_ids, skip_special_tokens=True)) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, set_seed, ) source_model_id = "HuggingFaceTB/SmolLM3-3B" save_folder = "/tmp/yujiepan/smollm3-tiny-random" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['hidden_size'] = 64 config_json['intermediate_size'] = 128 config_json['num_attention_heads'] = 2 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 1 config_json['tie_word_embeddings'] = True config_json['layer_types'] = None config_json['no_rope_layer_interval'] = 2 config_json['use_sliding_window'] = True config_json['sliding_window'] = 128 config_json['use_cache'] = True config_json['layer_types'] = None config_json['no_rope_layers'] = None with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.2) print(name, p.shape) model.save_pretrained(save_folder) print(model) ``` ### Printing the model: ```text SmolLM3ForCausalLM( (model): SmolLM3Model( (embed_tokens): Embedding(128256, 64, padding_idx=128004) (layers): ModuleList( (0-1): 2 x SmolLM3DecoderLayer( (self_attn): SmolLM3Attention( (q_proj): Linear(in_features=64, out_features=64, bias=False) (k_proj): Linear(in_features=64, out_features=32, bias=False) (v_proj): Linear(in_features=64, out_features=32, bias=False) (o_proj): Linear(in_features=64, out_features=64, bias=False) ) (mlp): SmolLM3MLP( (gate_proj): Linear(in_features=64, out_features=128, bias=False) (up_proj): Linear(in_features=64, out_features=128, bias=False) (down_proj): Linear(in_features=128, out_features=64, bias=False) (act_fn): SiLU() ) (input_layernorm): SmolLM3RMSNorm((64,), eps=1e-06) (post_attention_layernorm): SmolLM3RMSNorm((64,), eps=1e-06) ) ) (norm): SmolLM3RMSNorm((64,), eps=1e-06) (rotary_emb): SmolLM3RotaryEmbedding() ) (lm_head): Linear(in_features=64, out_features=128256, bias=False) ) ```